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EXISTENCE OF FIXED POINT BY USING F-CONTRACTION

AND F-SUZUKI CONTRACTION IN MODULAR FUNCTION

SPACES

REENA, ANJU PANWAR

Abstract. The purpose of this paper is to study the notions of F-contraction

and F-Suzuki contraction in context of modular function spaces and to prove

some fixed point results. Further we provide some examples to support our
main results.

1. Introduction

In 1950, Nakano [9] introduced the concept of the modular spaces that was
further generalized and redefined by Musielak and Orlicz [8] in 1959. Modular
function spaces are the generalization of some class of Banach spaces which attracts
many analysts to work in this field. The study of fixed point in modular function
spaces was initiated by Khamsi et al. [7] in 1990. On the basis of their results,
many work has been done in these spaces. Dhomopongsa et al. [3] proved that every
ρ-contraction T : C → Fρ(C) has a fixed point where ρ is a convex function modular
satisfying ∆2-type condition, C is a nonempty ρ-bounded, ρ-closed subset of Lρ
and Fρ(C) is the collection of ρ-closed subset of C. In 2011, Khamsi and Kozlowski
[6] proved the existence of fixed points of asymptotic pointwise ρ-nonexpansive
mappings in modular function spaces.

In 2012, Wardowski [15] introduced a new type of contraction F : R+ → R called
F-contraction and gave a fixed point result that generalized Banach contraction
principle in metric spaces. In 2014, Piri and Kumam [11] transformed the result of
Wardowski by applying some weaker conditions on the self map of a complete metric
space and on the mapping F, concerning the contraction defined by Wardowski and
with these weaker conditions, proved a fixed point result for F-Suzuki contraction
which generalizes the result of Wardowski. R. Jain [4] in 2018, proved the exis-
tence of a fixed point for a nondecreasing mapping in partially ordered complete
b-metric space using sequential monotone property of the space. In 2020, R. Jain
[5] introduced the concept of generalized weak contraction mapping in setting of
generating space of b-dislocated metric space endowed with partial order and proved
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some fixed-point theorems for the mappings in space satisfying the generalized weak
contraction. Recently, Panwar and Pinki [10] transformed M iteration process in
CAT(0) spaces to approximate fixed point of generalized α-nonexpansive mappings.

In our paper, we study the concepts of F-contraction and F-Suzuki contraction in
context of modular function spaces and establish some fixed point existence results
in these spaces. Further we construct some examples to support our results.

2. Preliminaries

To finish our paper, we collect some basic definitions and important results.
Let Ω be a nonempty set and Σ be a nontrivial σ-algebra of subsets of Ω. Let P be
a nontrivial δ-ring of subsets of Ω which means that P is closed under countable
intersection, finite union and differences. Suppose that E ∩ A ∈ P for any E ∈ P
and A ∈ Σ. Let us assume that there exists an increasing sequence of sets Kn ∈ P
such that Ω = ∪Kn. By ε we denote the linear space of all simple functions with
support from P. AlsoM∞ denotes the space of all extended measurable functions,
i.e., all functions f : Ω→ [−∞,∞] such that there exists a sequence

{gn} ⊂ ε, |gn| ≤ |f | and gn(w)→ f(w) for all w ∈ Ω.
We define

M = {f ∈M∞ : |f(w)| <∞ ρ− a.e.}.
Now, we recall the definition of modular function.

Definition 2.1. [14] Let X be a vector space (R or C). A functional ρ :M→ [0,∞]
is called a modular if for any arbitrary elements f, g ∈ X, the following conditions
hold:

(i) ρ(f) = 0⇐⇒ f = 0
(ii) ρ(αf) = ρ(f) whenever |α| = 1

(iii) ρ(αf + βg) ≤ ρ(f) + ρ(g) whenever α, β ≥ 0, α+ β = 1.

If we replace (iii) by

(iv) ρ(αf + βg) ≤ αρ(f) + βρ(g) whenever α, β ≥ 0, α+ β = 1.

Then modular ρ is called convex.

Definition 2.2. [14] If ρ is convex modular in X, then the set defined by

Lρ = {f ∈M : ρ(λf)→ 0 as λ→ 0}
is called modular function space.

Definition 2.3. [14] Let ρ : M∞ → [0,∞] be a nontrivial, convex and even
function. Then ρ is a regular convex function pseudo modular if

(i) ρ(0) = 0;
(ii) ρ is monotone, i.e., |f(w)| ≤ |g(w)| for any w ∈ Ω implies ρ(f) ≤ ρ(g),

where f, g ∈M∞;
(iii) ρ is orthogonally sub-additive, i.e., ρ(fχA∪B) ≤ ρ(fχA) + ρ(fχB) for any

A,B ∈
∑

such that A ∩B 6= φ, f ∈M∞;
(iv) ρ has Fatou property, i.e., |fn(w)| ↑ |f(w)| for w ∈ Ω implies ρ(fn) ↑ ρ(f),

where f ∈M∞;
(v) ρ is order continuous in ε, i.e., gn ∈ ε and |gn(w)| ↓ 0 and ρ(gn) ↓ 0.

ρ is regular convex function modular if ρ(f) = 0 implies f = 0 a.e. The class of all
nonzero regular convex function modular on Ω is denoted by R.
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Definition 2.4. [14] Let ρ ∈ R. Then ρ satisfies ∆2-property if ρ(2fn) → 0
whenever ρ(fn)→ 0 as n→∞.

Definition 2.5. [15] Let F : R+ → R be a mapping satisfying:

(F1) F is strictly increasing, i.e., for all α, β ∈ R+ such that α < β, F (α) < F (β);
(F2) For each sequence {αn}n∈N of positive numbers limn→∞ αn = 0 if and only

if limn→∞ F (αn) = −∞;
(F3) There exists k ∈ (0, 1) such that limα→0+ α

kF (α) = 0.

The set of all functions satisfying the conditions (F1)-(F3) is denoted by F .

3. Fixed point result for F-contraction

In the beginning of this section, we define F-contraction in modular function
spaces and then some examples of F-contraction are provided. In the end, we prove
a theorem for the existence of fixed point for F-contraction.

Definition 3.1. Let ρ ∈ R. Let Dρ be a nonempty, ρ-closed and ρ-bounded subset
of Lρ. Then a mapping T : Dρ → Dρ is said to be F-contraction if there exists
τ > 0 such that for all f, g ∈ Dρ

ρ(Tf − Tg) > 0 =⇒ τ + F (ρ(Tf − Tg)) ≤ F (ρ(f − g)) (3.1)

Now, we provide some examples of F-contraction.

Example 3.2. Let F : R+ → R be defined by F (α) = lnα+
√
α. It can be easily

shown that F satisfies all the conditions of definition 2.5 for any k ∈ (0, 1). Let
T : Dρ → Dρ be a mapping defined as:

ρ(Tf − Tg)

ρ(f − g)
e

[√
ρ(Tf−Tg)−

√
ρ(f−g)

]
≤ e−τ

satisfying (3.1) is F-contraction.

Example 3.3. Let F : R+ → R be defined by F (α) = ln(α+
√
α). It can be easily

shown that F satisfies all the conditions of definition 2.5 for any k ∈ (0, 1). Let
T : Dρ → Dρ be a mapping defined as:

ρ(Tf − Tg)
[
1 + (ρ(Tf − Tg))−

1
2

]
ρ(f − g)

[
1 + (ρ(Tf − Tg))−

1
2

] ≤ e−τ

satisfying (3.1) is F-contraction.

Example 3.4. Let F : R+ → R be defined by F (α) = 1
3 lnα. It can be easily

shown that F satisfies all the conditions of definition 2.5 for any k ∈ (0, 1). Let
T : Dρ → Dρ be a mapping defined as:

ρ(Tf − Tg)

ρ(f − g)
≤ e−3τ

satisfying (3.1) is F-contraction.

Example 3.5. Let F : R+ → R be defined by F (α) = 1
2 lnα+ α. It can be easily

shown that F satisfies all the conditions of definition 2.5 for any k ∈ (0, 1). Let
T : Dρ → Dρ be a mapping defined as:

ρ(Tf − Tg)

ρ(f − g)
e2[ρ(Tf−Tg)−ρ(f−g)] ≤ e−2τ
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satisfying (3.1) is F-contraction.

Now, we prove the main result of the paper.

Theorem 3.6. Let ρ ∈ R satisfying ∆2-type condition. If Dρ is a non-empty,
ρ-closed and ρ-bounded subset of Lρ and T : Dρ → Dρ is an F-contraction then
T has a unique fixed point f∗ and for every f0 ∈ Dρ, the sequence {Tnf0}n∈N
converges to f∗.

Proof. We define a sequence {fn}n∈N ⊂ Dρ, fn+1 = Tfn, n = 1, 2, 3, ...
Let αn = ρ(fn+1 − fn). If there exists n0 ∈ N for which Tfn0 = fn0 , then nothing
to prove. Suppose that fn+1 6= fn for every n ∈ N. Then αn > 0 for all n ∈ N.

F (ρ(fn+1 − fn)) = F (ρ(Tfn − Tfn−1))

≤ F (ρ(fn − fn−1))− τ
or F (αn) ≤ F (αn−1)− τ

F (αn) ≤ F (αn−1)− τ ≤ F (αn−2)− 2τ ≤ ... ≤ F (α0)− nτ (3.2)

From inequality (3.2), we get limn→∞ F (αn) = −∞ that together with (F2) gives

lim
n→∞

αn = 0 (3.3)

From (F3), there exists k ∈ (0, 1) such that

lim
n→∞

αknF (αn) = 0 (3.4)

By inequality (3.2), the following inequality holds for all n ∈ N

αknF (αn)− αknF (α0) ≤ αkn(F (α0)− nτ)− αknF (α0) = −nαknτ ≤ 0 (3.5)

Letting n→∞ in inequality (3.5), and using equations (3.3) and (3.4), we get

lim
n→∞

nαkn = 0 (3.6)

From equation (3.6), there exists n1 ∈ N such that nαkn ≤ 1 for all n ≥ n1.
Consequently, we have

αn ≤
1

n
1
k

for all n ≥ n1 (3.7)

We show that {fn}n∈N is a Cauchy sequence. Consider p, q ∈ N such that p > q ≥ n1.
We get

ρ(fp − fq) ≤
ω(p− q)
p− q

[ρ(fp − fp−1) + ρ(fp−1 − fp−2) + ...+ ρ(fq+1 − fq)]

≤ ω(p− q)[ρ(fp − fp−1) + ρ(fp−1 − fp−2) + ...+ ρ(fq+1 − fq)]
= ω(p− q)[αp−1 + αp−2 + ...+ αq]

= ω(p− q)
p−1∑
i=q

αi <

∞∑
i=q

αi

≤ ω(p− q)
∞∑
i=q

1

i
1
k

.
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Since
∑∞
i=q

1

i
1
k

is convergent, so {fn}n∈N is a Cauchy sequence. By the completeness

of Dρ, there exists f∗ ∈ Dρ such that limn→∞ fn = f∗.

ρ(Tf∗ − f∗) = lim
n→∞

ρ(Tfn − fn)

= lim
n→∞

ρ(fn+1 − fn) = 0.

This shows that f∗ is the fixed point of T. Now, we show that T has a unique fixed
point. If f1, f2 ∈ Dρ such that Tf1 = f1 6= Tf2 = f2,

τ ≤ F (ρ(f1 − f2))− F (ρ(Tf1 − Tf2)) = 0

=⇒ τ ≤ 0

which contradicts to the fact that τ > 0. Hence, T has a unique fixed point. �

Example 3.7. Let the real number system R be the space modulared as

ρ(f) =| f |

Consider the sequence {Sn}n∈N as defined below:
S1 = 1

S2 = 1 + 2
...

Sn = n(n+1)
2 , n ∈ N

Let Dρ = {Sn : n ∈ N}. Let T : Dρ → Dρ be a mapping defined as:{
T (Sn) = Sn−1 for n > 1

T (S1) = S1.

Consider the mappings F1(α) = 1
3 lnα, F2(α) = 1

2 lnα+α and F3(α) = lnα+
√
α.

Let us first consider F1 defined in example 3.4, we have

lim
n→∞

ρ(TSn − TS1)

ρ(Sn − S1)
= lim
n→∞

Sn−1 − S1

Sn − S1
= 1,

which is a contradiction. So, T is not F1-contraction.
Now, we take F2 defined in example 3.5, we observe that T is F2-contraction having
τ = 1. For all m,n ∈ N

T (Sn) 6= T (Sm)⇔ m > 2 and n = 1 or m > n > 1.

For all m > 2,m ∈ N and n=1, we get

ρ(T (Sm)− T (S1))

ρ(Sm − S1)
e2[ρ(T (Sm)−T (S1))−ρ(Sm−S1)] =

Sm−1 − S1

Sm − S1
e2[(Sm−1−S1)−(Sm−S1)]

=
m2 −m− 2

m2 +m− 2
e−2m

< e−2m < e−2
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For all m,n ∈ N,m > n > 1, we have

ρ(T (Sm)− T (Sn))

ρ(Sm − Sn)
e2[ρ(T (Sm)−T (Sn))−ρ(Sm−Sn)] =

Sm−1 − Sn−1
Sm − Sn

e2[(Sm−1−Sn−1)−(Sm−Sn)]

=
m+ n− 1

m+ n+ 1
e2(n−m)

< e2(n−m) ≤ e−2

Now, taking F3 defined in example 3.2, we observe that T is F3-contraction having
τ = 0.37184. For all m,n ∈ N

T (Sn) 6= T (Sm)⇔ m > 2 and n = 1 or m > n > 1.

For all m > 2,m ∈ N and n=1, we get

ρ(T (Sm)− T (S1))

ρ(Sm − S1)
e

[√
ρ(T (Sm)−T (S1))−

√
ρ(Sm−S1)

]
=
Sm−1 − S1

Sm − S1
e[
√
Sm−1−S1−

√
Sm−S1]

=
m2 −m− 2

m2 +m− 2
e

[√
m2−m−2

2 −
√
m2+m−2

2

]

≤ e

[√
m2−m−2

2 −
√
m2+m−2

2

]

≤ e[
√
2−
√
5] = e−0.82185,

if we take m=3.
For all m,n ∈ N,m > n > 1, we obtain the following calculation

ρ(T (Sm)− T (Sn))

ρ(Sm − Sn)
e

[√
ρ(T (Sm)−T (Sn))−

√
ρ(Sm−Sn)

]
=
Sm−1 − Sn−1
Sm − Sn

e[
√
Sm−1−Sn−1−

√
Sm−Sn]

=
m+ n− 1

m+ n+ 1
e

[√
(m−n)(m+n−1)

2 −
√

(m−n)(m+n+1)
2

]

≤ e

[√
(m−n)(m+n−1)

2 −
√

(m−n)(m+n+1)
2

]

≤ e
√
2−
√
3 = e−0.37184,

if we take m=3, n=2.
From this example, we conclude that T is not F1-contraction while it is F2

and F3-contraction. In the following table, we compare Banach contraction with
F-contraction. The generated iteration start from a point f0 = S31 = 496 and
CF (Sn, S1) denotes F (ρ(Sn − S1))− F (ρ(T (Sn)− T (S1))). From the table 3.7, we
conclude that S1 = 1 is the fixed point of T.
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n fn CF1
(Sn, S1) CF2

(Sn, S1) CF3
(Sn, S1)

3 406 0.30543 3.45814 1.73815
4 378 0.19592 4.29389 1.35172
5 351 0.14727 5.22091 1.18349
6 325 0.11889 6.17833 1.087153
7 300 0.10003 7.15005 1.02412
8 276 0.08650 8.12975 0.97943
9 253 0.07628 9.11442 0.94601
10 231 0.06826 10.10239 0.920014
11 210 0.06180 11.09270 0.89919
12 190 0.05647 12.08470 0.88212
13 171 0.05200 13.07800 0.86787
14 153 0.04819 14.07229 0.85578
15 136 0.04491 15.06737 0.84540
16 120 0.04205 16.06307 0.83638
17 105 0.03953 17.05930 0.82848
18 91 0.03731 18.05595 0.82149
19 78 0.03532 19.05297 0.81527
20 66 0.03353 20.05029 0.80969
21 55 0.031915 21.04787 0.80466
22 45 0.03045 22.04567 0.80010
23 36 0.029114 23.04367 0.79595
24 28 0.02789 24.04183 0.792164
25 21 0.02677 25.04015 0.78868
26 15 0.02573 26.03859 0.78547
27 10 0.02477 27.03716 0.78251
28 6 0.02388 28.03582 0.77976
29 3 0.02305 29.03458 0.77721
30 1 0.02228 30.03342 0.77483
31 1 0.02156 31.03234 0.77260
...

...
...

...
...

n→∞ 1 τ → 0 ≥ τ = 1 ≥ τ = 0.37184

4. Fixed point result for F-Suzuki contraction

In 2013, Secelean [12] proved the following lemma.

Lemma 4.1. Let F : R+ → R be an increasing mapping and {αn}∞n=1 be a sequence
of positive real numbers. Then the following assertion.

1.(a) if limn→∞ F (αn) = −∞, then limn→∞ αn = 0;
2.(b) if inf F = −∞, then limn→∞ F (αn) = −∞.

The condition (F2) in definition 2.5 is replaced by Secelean [12] by an equivalent
but a more simple condition with the help of lemma 4.1,

(F2′) inf F = −∞
or also by

(F2′′) there exists a sequence {αn}∞n=1 of positive real numbers such that

lim
n→∞

F (αn) = −∞.
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The condition (F3) in definition 2.5 is replaced by Piri and Kumam [11] with the
following condition:

(F3′) F is continuous on (0,∞).

The set of all functions satisfying the condition (F1), (F2′) and (F3′) is denoted
by F.

Example 4.2. [11] Let F1(α) = − 1
α , F2(α) = − 1

α + α, F3(α) = 1
1−eα ,

F4(α) = 1
eα−e−α . Then F1, F2, F3, F4 ∈ F.

Remark. The condition (F3) and (F3′) are independent of each other. For example,
F (α) = − 1

α satisfies the conditions (F1), (F2) and (F3′) but it does not satisfy (F3).

Therefore, F 6∈ F . Also, F (α) = − 1√
α+[α]

, where [α] denotes the integral part of

α, satisfies conditions (F1), (F2) and (F3) for any k ∈
(
1
2 , 1
)

but it does not satisfy

(F3′). Therefore, F 6∈ F. But if we take F (α) = 1
3 lnα, then it satisfies conditions

of both F and F and hence, F ∈ F ∩ F.

Definition 4.3. Let ρ ∈ R and satisfy ∆2-condition. Then the growth function
ω : [0,∞)→ [0,∞) is defined as:

ω = sup

{
ρ(tx)

ρ(x)
: 0 < ρ(x) <∞

}
.

Then, 1 < ω(2). In addition ρ(tx) ≤ ω(t)ρ(t),∀t ≥ 0,∀x ∈ Xρ and also that, for
each positive integer l and for arbitrary x1, x2, ..., xl ∈ Xρ

ρ(x1 + x2 + ...+ xl) ≤
ω(l)

l
[ρ(x1) + ρ(x2) + ...+ ρ(xl)].

In 2008, Suzuki [13] introduced the condition (C). Motivated by his work, we
transform this condition to modular structure resulting in the modular-(Cρ) con-
dition as follows:

Definition 4.4. Let ρ ∈ R. Assume that ρ satisfies ∆2-type condition and Dρ be
a nonempty subset of Lρ. A mapping T : Dρ → Dρ is said to satisfy condition (Cρ)
if

1

ω(2)
ρ(f − Tf) ≤ ρ(f − g) =⇒ ρ(Tf − Tg) ≤ ρ(f − g),∀f, g ∈ Dρ.

Definition 4.5. Let ρ ∈ R. Assume that ρ satisfies ∆2-type condition and Dρ be
a nonempty subset of Lρ. A mapping T : Dρ → Dρ is said F-Suzuki contraction if
there exists τ > 0 such that for all f, g ∈ Dρ with Tf 6= Tg

1

ω(2)
ρ(f − Tf) ≤ ρ(f − g) =⇒ τ + F (ρ(Tf − Tg)) ≤ F (ρ(f − g)), (4.1)

where F ∈ F.

Theorem 4.6. Let ρ ∈ R. Assume that ρ satisfies ∆2-type condition and Dρ

be a nonempty bounded, closed subset of Lρ and T : Dρ → Dρ be an F-Suzuki

contraction. Then T has a unique fixed point f ∈ Dρ and for every f0 ∈ Dρ, the

sequence {Tnf0} converges to f .
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Proof. We define a sequence {fn}n∈N ⊂ Dρ, fn = Tfn−1, n ∈ N. If there exists
n0 ∈ N for which Tfn0 = fn0 , then nothing to prove. Suppose that fn+1 6= fn for
every n ∈ N. As ρ(fn − Tfn) > 0 for all n ∈ N, therefore

1

ω(2)
ρ(fn − Tfn) < ρ(fn − Tfn),∀n ∈ N (4.2)

For any n ∈ N

F (ρ(fn+1 − Tfn+1)) = F (ρ(Tfn − T 2fn))

≤ F (ρ(fn − Tfn))− τ.

Continuing this process, we get

F (ρ(fn − Tfn)) ≤ F (ρ(fn−1 − Tfn−1))− τ
≤ F (ρ(fn−2 − Tfn−2))− 2τ

...

≤ F (ρ(f0 − Tf0))− nτ (4.3)

From inequality (4.3), we get limn→∞ F (ρ(fn − Tfn)) = −∞ that together with
(F2′) gives

lim
n→∞

ρ(fn − Tfn) = 0 (4.4)

Now, we show that {fn} is a Cauchy sequence. By contradiction, we suppose that
there exists ε > 0 and the sequences {u(n)}∞n=1 and {v(n)}∞n=1 of natural numbers
such that

u(n) > v(n) > n, ρ(fu(n) − fv(n)) ≥ ε, ρ(fu(n)−1 − fv(n)) <
ε

ω(2)
,∀n ∈ N (4.5)

so we have

ε ≤ ρ(fu(n) − fv(n))
≤ ω(2)[ρ(fu(n) − fu(n)−1) + ρ(fu(n)−1 − fv(n))]

≤ ω(2)

[
ρ(fu(n) − fu(n)−1) +

ε

ω(2)

]
Using equation (4.4) and above inequality, we get

lim
n→∞

ρ(fu(n) − fv(n)) = ε. (4.6)

From equation (4.4) and inequality (4.5), we can choose a positive integer n1 ∈ N
such that

1

ω(2)
ρ(fu(n) − Tfu(n)) <

ε

ω(2)

≤ ρ(fu(n) − fv(n)),∀n ≥ n1.

So, by definition of F-Suzuki contraction

τ + F (ρ(Tfu(n) − Tfv(n))) ≤ F (ρ(fu(n) − fv(n))),∀n ≥ n1

τ + F (ρ(fu(n)+1 − fv(n)+1)) ≤ F (ρ(fu(n) − fv(n))),∀n ≥ n1 (4.7)

From (F3′), inequalities (4.6) and (4.7), we get

τ + F (ε) ≤ F (ε),
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which is a contradiction. Therefore, {fn} is a Cauchy sequence. Since Dρ is

complete, so there exists f ∈ Dρ such that

lim
n→∞

ρ(fn − f) = 0 (4.8)

We claim that
1

ω(2)
ρ(fn − Tfn) < ρ(fn − f) or

1

ω(2)
ρ(Tfn − T 2fn) < ρ(Tfn − f),∀n ∈ N (4.9)

But we suppose that there exists m ∈ N such that

1

ω(2)
ρ(fm − Tfm) ≥ ρ(fm − f) or

1

ω(2)
ρ(Tfm − T 2fm) ≥ ρ(Tfm − f),∀m ∈ N.

(4.10)
From first part of inequality (4.10)

ρ(fm − f) ≤ 1

ω(2)
ρ(fm − Tfm)

≤ 1

ω(2)

ω(2)

2
[ρ(fm − f) + ρ(f − Tfm)]

≤ 1

2
[ρ(fm − f) + ρ(f − Tfm)]

ρ(fm − f) ≤ ρ(f − Tfm) (4.11)

From inequalities (4.10) and (4.11), we obtain

ρ(fm − f) ≤ ρ(f − Tfm) ≤ 1

ω(2)
ρ(Tfm − T 2fm) (4.12)

Since, 1
ω(2)ρ(fm − Tfm) < ρ(fm − Tfm), therefore by definition 4.6,

τ + F (ρ(Tfm − T 2fm)) ≤ F (ρ(fm − Tfm))

Since τ > 0, F (ρ(Tfm − T 2fm)) < F (ρ(fm − Tfm)). Using (F1), we get

ρ(Tfm − T 2fm) < ρ(fm − Tfm) (4.13)

From inequalities (4.10), (4.12) and (4.13), we get

ρ(Tfm − T 2fm) < ρ(fm − Tfm)

≤ ω(2)

2
[ρ(fm − f) + ρ(f − Tfm)]

≤ ω(2)

2

[
1

ω(2)
ρ(Tfm − T 2fm) +

1

ω(2)
ρ(Tfm − T 2fm)

]
= ρ(Tfm − T 2fm),

which is a contradiction. Hence, the inequality (4.9) holds. So, from inequality
(4.9) for all n ∈ N, we get

either τ + F (ρ(Tfn − Tf)) ≤ F (ρ(fn − f))

or τ + F (ρ(T 2fn − Tf)) ≤ F (ρ(Tfn − f))

or τ + F (ρ(fn+2 − Tf)) ≤ F (ρ(fn+1 − f)).

In first case, from inequality (4.9), (F2′) and lemma 4.1, we obtain

lim
n→∞

F (ρ(Tfn − Tf)) = −∞.
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From (F2′) and lemma 4.1, limn→∞ ρ(Tfn − Tf) = 0, therefore

ρ(f − Tf) = lim
n→∞

ρ(fn+1 − Tf)

= lim
n→∞

ρ(Tfn − Tf) = 0.

In second case, from inequality (4.9), (F2′) and lemma 4.1, we get

lim
n→∞

F (ρ(T 2fn − Tf)) = −∞.

From (F2′) and lemma 4.1, limn→∞ ρ(T 2fn − Tf) = 0, therefore

ρ(f − Tf) = lim
n→∞

ρ(fn+2 − Tf)

= lim
n→∞

ρ(T 2fn − Tf) = 0.

Hence, f is a fixed point of T. Now, we show that T has atmost one fixed point. If
f1, f2 ∈ Dρ such that Tf1 = f1 6= f2 = Tf2, therefore ρ(Tf1 − Tf2) > 0, then we
have

1

ω(2)
ρ(f1 − Tf1) < ρ(f1 − f2),

therefore, τ ≤ F (ρ(f1−f2))−F (ρ(Tf1−Tf2)) = 0 which implies that τ ≤ 0, which
contradicts to the fact that τ > 0. This shows that T has a unique fixed point. �

Example 4.7. Let the real number system R be the space modulared as

ρ(f) =| f | .

The corresponding growth function ω(t) = t,∀t ≥ 0. Consider the sequence {Sn}n∈N
as defined below: 

S1 = 12

S2 = 12 + 22

...

Sn = n(n+1)(2n+1)
6 , n ∈ N

Let Dρ = {Sn : n ∈ N}. Let T : Dρ → Dρ be a mapping defined as:
T (Sn) = Sn−1 for n > 1 and T (S1) = S1.

Since

lim
n→∞

ρ(TSn − TS1)

ρ(Sn − S1)
= lim
n→∞

ρ(Sn−1 − S1)

ρ(Sn − S1)

= lim
n→∞

22 + 32 + ...+ (n− 1)2

22 + 32 + ...+ n2
= 1

T is neither Banach contraction nor Suzuki contraction. Taking F (α) = − 1
α+α ∈ F,

we observe that T is an F-Suzuki contraction with τ = 4. To see this, let us consider
the following calculations. We observe that

1

ω(2)
ρ(Sn − TSn) < ρ(Sn − Sm)⇔ [(1 = n < m) ∨ (1 ≤ m < n) ∨ (1 < m < n)].
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For 1 = n < m, we get

| TSm − TS1 | =| Sm−1 − S1 |
= 22 + 32 + ...+ (m− 1)2

| Sm − S1 | = 22 + 32 + ...+m2

Since m > 1 and

− 1

22 + 32 + ...+ (m− 1)2
< − 1

22 + 32 + ...+m2

4− 1

22 + 32 + ...+ (m− 1)2
< 4− 1

22 + 32 + ...+m2

4− 1

22 + 32 + ...+ (m− 1)2
+ [22 + 32 + ...+ (m− 1)2] < 4− 1

22 + 32 + ...+m2

+ [22 + 32 + ...+ (m− 1)2]

4− 1

22 + 32 + ...+ (m− 1)2
+ [22 + 32 + ...+ (m− 1)2] <

1

22 + 32 + ...+m2

+ [22 + 32 + ...+ (m− 1)2 +m2]

4− 1

| TSm − TS1 |
+ | TSm − TS1 | < −

1

| Sm − S1 |
+ | Sm − S1 |

For 1 ≤ m < n, similar to 1 = n < m.
And now, for 1 < m < n, we have

| TSm − TSn | =| Sm−1 − Sn−1 |
= n2 + (n+ 1)2 + ...+ (m− 1)2

| Sm − Sn | =| Sm − Sn |
= (n+ 1)2 + (n+ 1)2 + ...+m2.

Since m > 1 and

− 1

n2 + (n+ 1)2 + ...+ (m− 1)2
< − 1

(n+ 1)2 + (n+ 2)2 + ...+m2

4− 1

n2 + (n+ 1)2 + ...+ (m− 1)2
< 4− 1

22 + 32 + ...+m2

4− 1
n2+(n+1)2+...+(m−1)2 + [n2 + (n+ 1)2 + ...+ (m− 1)2]

< 4− 1
(n+1)2+(n+2)2+...+m2 + [n2 + (n+ 1)2 + ...+ (m− 1)2]

4− 1
n2+(n+1)2+...+(m−1)2 + [n2 + (n+ 1)2 + ...+ (m− 1)2]

< 1
(n+1)2+(n+2)2+...+m2 +[(4+n2)+(n+1)2+(n+2)2+...+(m−1)2]

4− 1
n2+(n+1)2+...+(m−1)2 + [n2 + (n+ 1)2 + ...+ (m− 1)2]

< 1
(n+1)2+(n+2)2+...+m2 + [(n+ 1)2 + (n+ 2)2 + ...+ (m− 1)2 +m2]

4− 1

| TSm − TSn |
+ | TSm − TSn |< −

1

| Sm − Sn |
+ | Sm − Sn |

Therefore, τ + F (ρ(TSm − TSn)) ≤ F (ρ(Sm − Sn)), for all m,n ∈ N. Hence T
is an F-Suzuki contraction. The following table shows the comparision of Banach
contraction with F-contraction for F1(α) = lnα, F2(α) = lnα+

√
α, F3(α) = − 1√

α
+
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n fn CF1
(Sn, S1) CF2

(Sn, S1) CF3
(Sn, S1) CF4

(Sn, S1)
3 6930 1.178654 9.178654 9.173076 9.157437
4 6201 0.802346 16.802346 16.424403 16.064809
5 5525 0.621688 25.621688 25.015964 25.035081
6 4900 0.510825 36.510825 36.007407 36.021689
7 4324 0.434664 49.434664 49.003916 49.014559
8 3795 0.378732 64.378732 64.002268 64.010346
9 3311 0.335768 81.335768 81.001404 81.007670
10 2870 0.301668 100.301668 100.000916 100.005874
11 2470 0.275894 121.275894 121.000623 121.004618
12 2109 0.248896 144.248896 144.000439 144.003709
13 1785 0.231429 169.231429 169.000318 169.003032
14 1496 0.214795 196.214795 196.000236 196.002517
15 1240 0.200401 225.200401 225.000179 225.002117
16 1015 0.187821 256.187821 256.000138 256.001801
17 819 0.176731 289.176731 289.000108 289.001546
18 650 0.166881 324.166881 324.000086 324.001340
19 506 0.158073 361.158073 361.000069 361.001170
20 385 0.150150 400.150150 400.000056 400.001029
21 285 0.142984 441.142984 441.000046 441.000911
22 204 0.136472 484.136472 484.000038 484.000811
23 140 0.130528 529.130528 529.130528 529.000725
24 91 0.125081 576.125081 576.000027 576.000651
25 55 0.120071 625.120071 625.000023 625.000588
26 30 0.115447 676.115447 676.000019 676.000534
27 14 0.111166 729.111166 729.000016 729.000485
28 5 0.107197 784.107197 784.000014 784.000443
29 1 0.103491 841.103491 841.000012 841.000406
30 1 0.100038 900.100038 900.000011 900.000373
...

...
...

...
...

...
3× 103 1 0.001 9000000.001 9000000 9000000
n→∞ 1 τ → 0 ≥ τ = 1 ≥ τ = 1 ≥ τ = 1

α and F4(α) = − 1√
α+[α]

where F1, F2 ∈ F ∩ F, F3 ∈ F − F and F3 ∈ F − F. The

generated iteration start from a point f0 = S29 = 8555 and CF (Sn, S1) denotes
F (ρ(Sn−S1))−F (ρ(T (Sn)−T (S1))). From the table 4.7, we conclude that S1 = 1
is the fixed point of T.
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