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LACUNARY STATISTICAL CONVERGENCE OF DOUBLE

SEQUENCES IN TOPOLOGICAL GROUPS

EKREM SAVAS

Abstract. In this paper, we introduce a class of summability methods that
can be applied to lacunary double statistical convergence in topological groups

and we also prove some theorems .

1. Introduction

We recall that the concept of statistical convergence of sequences was first in-
troduced by Fast [4] as an extension of the usual concept of sequential limits and
also independently Schoenberg [16] for real and complex sequences. Maddox [7] ex-
tended statistical convergence to locally convex Hausdorff topological linear spaces
in terms of strong summability and further in [6], statistical convergence to normed
spaces was extended by Kolk [6]. Also in [1] and [2], Çakalli extended this no-
tation to topological Hausdorff groups. Savas [15] introduced lacunary statistical
convergence of double sequences in topological groups. Also double ideal lacunary
statistical convergence in topological groups was studied by Savas (see, [14]). Note
that, generalized double statistical convergence in topological groups is considered
by Savas, ( see, [13]). More results on double statistical convergence can be seen
from [3, 11, 12].

The notion of the statistical convergence depends on the density of subsets of N
A subset E of N is said to have density δ(E) if

δ(E) = lim
n→∞

1

n

n∑
k=1

χE(k)

exist.
Note that if K ⊂ N is a finite set, then δ(K) = 0, and for any set K ⊂ N,

δ(Kc) = 1− δ(K).
A sequence x = (xk) is statistically convergent to ξ if

δ({k ∈ N : |xk − ξ| ≥ ε}) = 0

for every ε > 0, (see [5]). In this case ξ is called the statistical limit of x.
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By X, we will denote an abelian topological Hausdorff group, written additively,
which satisfies the first axiom of countability. For a subset B of X, s(B) will denote
the set of all sequences x = (xk) such that xk is in B for k = 1, 2, ..., c(X) will denote
the set of all convergent sequences.

A sequence x = (xk) in X is called to be statistically convergent to an element
ξ of X if for each neighborhood U of 0, ( see, [2])

lim
n→∞

1

n
|{k ≤ n : xk − ξ /∈ U}| = 0

and is called statistically Cauchy in X if for each neighborhood U of 0 there exists
a positive integer N = N(ε), depending on the neighborhood U such that

lim
n→∞

1

n
|{k ≤ n : xk − xN /∈ U}| = 0

where the vertical bars indicate the number of elements in the enclosed set. The
set of all statistically convergent sequences in X is denoted by S(X) and the set
of all statistically Cauchy sequences in X is denoted by SC(X). It is known that
SC(X) = S(X) if X is complete.

By a lacunary sequence, we mean an increasing sequence θ = (kr) of positive
integers such that k0 = 0 and hr : kr − kr−1 → ∞ as r → ∞. Throughout this
paper, the intervals determined by θ will be denoted by Ir = (kr−1, kr].
Lacunary statistical convergence in topological groups was defined by Cakalli [1]
as follows: A sequence x = (xk) is said to be Sθ−convergent to ξ (or lacunary
statistically convergent to ξ) if for each neighborhood U of 0,

limr→∞
1

hr
|k ∈ Ir : xk − ξ /∈ U}| = 0.

In a topological group X, by the convergence of a double sequence we mean the
convergence in Pringsheims sense [10]. A double sequence x = (xkl) in X is said to
be convergent to a point ξ in X in the Pringsheims sense if for every neighborhood
U of 0 there exists N ∈ N such that xkl − ξ ∈ U whenever k, l ≥ N . ξ is called
the Pringsheim limit of x. A double sequence x = (xkl) of points in X is said to
be a Cauchy sequence if for every neighborhood U of 0 there exists two positive
integers N = N(ε) and M = M(ε), depending on the neighborhood U such that
xkl − xNM ∈ U.

The goal of this paper is to introduce the statistical convergence of double se-
quences in topological groups and to prove some useful theorems.

2. Definitions and Notation

The double sequence θ = {(kr, ls)} is called double lacunary if there exist two
increasing of integers such that

k0 = 0, hr = kr − kk−1 →∞ as r →∞
and

l0 = 0, h̄s = ls − ls−1 →∞ as s→∞.
Notations: kr,s = krls, hr,s = hrh̄s, θ is determined by Ir = {(k) : kr−1 < k ≤

kr}, Is = {(l) : ls−1 < l ≤ ls}, Ir,s = {(k, l) : kr−1 < k ≤ kr & ls−1 < l ≤ ls},
qr = kr

kr−1
, q̄s = ls

ls−1
, and qr,s = qr q̄s. We will denote the set of all double lacunary

sequences by Nθr,s .
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Let K ⊆ N× N has double lacunary density δθ2(K) if

P − limr,s
1

hr,s
| {(k, l) ∈ Ir,s : (k, l) ∈ K} |

exists.
In 2005, R. F. Patterson and E. Savas [9] studied double lacunary statistically

convergence by giving the definition for complex sequences as follows:

Definition 1. Let θ be a double lacunary sequence; the double number sequence x
is double lacunary statistical convergent to ξ provided that for every ε > 0,

P − lim
r,s

1

hr,s
|{(k, l) ∈ Ir,s : |xkl − ξ| ≥ ε}| = 0.

In this case write st2θ − limx = ξ or xkl → ξ(st2θ)..

Let K ⊆ N × N be a two dimensional set of positive integers and let Km,n be
the numbers of (i, j) in K such that i ≤ n and j ≤ m. Then the two-dimensional
analogue of natural case density can be defined as follows: The lower asymptotic
density of K is defined as

P − lim inf
m,n

Km,n

mn
= δ2(K).

In the case when the sequence {Km,n

mn }
∞,∞
m,n=1,1 has a limit then we say that K has

a natural density and is defined as

P − lim
m,n

Km,n

mn
= δ2(K).

Recently the studies of double sequences has a rapid growth. The concept of
double statistical convergence, for complex case, was introduced by Mursaleen and
Edely [8] while the idea of statistical convergence of single sequences was first
studied by Fast [4]. Mursaleen and Edely has presented the double statistical
convergence as follows:

Definition 2. A double sequences x = (xkl) is said to be P-statistically convergent
to ξ provided that for each ε > 0

P − lim
m,n

1

mn
{ number of (k, l) : k < m and l < n, |xkl − ξ| ≥ ε} = 0.

In this case we write st2 − limk,l xkl = ξ and we denote the set of all statistical
convergent double sequences by st2.
Recently, statistical convergence of double sequences x = (xkl) in a topological
group was presented by Cakalli and Savas [3] as follows:

A sequence x = (xkl) is called double statistically convergent to a point ξ of X
if for each neighborhood U of 0, the set

{(k, l), k ≤ n; and; l ≤ m : xkl − ξ /∈ U}
has double natural density zero. In this case we write S2(X) − limk,l xkl = ξ and
we write the set of all statistically convergent double sequences by S2(X).

Definition 3. (See, [15]). A sequence x = (xkl) is said to be S2
θ−convergent to ξ of

X (or lacunary double statistically convergent to ξ of X ) if for each neighborhood
U of 0, the set

{(k, l) ∈ Irs : xkl − ξ /∈ U}
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has double natural density zero. In this case, we write

S2
θ − lim

k,l→∞
xkl = ξ or xkl → ξ(S2

θ )

and we write the set of all double lacunary statistically convergent sequences by
S2
θ (X).

3. Main theorems

Theorem 3.1. A double sequence x = (xkl) in X is double lacunary statistically
convergent to ξ if and only if there exists a subset K ⊂ N×N such that δ2θ(K) = 1
and limk,l→∞ xkl = ξ where limit is being taken over the set X, i.e., (k, l) ∈ X.

Proof. Necessity. Suppose that x = (xkl) be double lacunary statistically conver-
gent to ξ, and (Ui) be a base of nested closed neighborhoods of 0. Write

Ki = {(k, l) ∈ Irs : xkl − ξ /∈ Ui}

Mi = {(k, l) ∈ Irs : xkl − ξ ∈ Ui} (i = 1, 2, ...)

Then δ2θ(Ki) = 0 and

M1 ⊃M2 ⊃ ... ⊃Mi ⊃Mi+1 ⊃ ... (3.1)

and

δ2θ(Mi) = 1, i = 1, 2, ... (3.2)

Now we shall show that for (k, l) ∈Mi, (xkl) is double lacunary statistical conver-
gent to ξ. Assume that x = (xkl) is not double lacunary statistical convergent to ξ
so that there is a neighborhood U of 0 such that

xkl − ξ /∈ U

for in finitely many terms. Let Ui ⊂ U (i = 1, 2, ...) andMU = {(k, l) : xkl−ξ ∈ U}.
Then

δ2θ(MU ) = 0

and by (3.1) , Mi ⊂MU . Hence δ2θ(Mi) = 0 which is a contradiction to (3.2) . Thus
x = (xkl) is convergent to ξ.

Sufficiency: Suppose that there exists a subset K = {(k, l)} ⊆ N×N} such that
δ2θ(K) = 1 and limkl xkl = ξ, i.e., there exists an (no,mo) ∈ N × N such that for
each neighborhood U of 0,

xkl − ξ ∈ U for every k ≥ no, l ≥ mo.

Now

KU = {(k, l) : xkl − ξ /∈ U} ⊆ N× N\{(kio+1, lio+1), (kio+2, lio+2), ...}.

Therefore

δ2θ(KU ) ≤ 1− 1 = 0.

It follows that x is double lacunary statistically convergent to ξ. �

Corollary 3.2. If a double sequence x = (xkl) is double lacunary statistically
convergent to ξ, then there exists a double sequence (ykl) such that limk,l ykl = ξ
and δ2θ{(k, l) : xkl = ykl} = 1, i.e., xkl = ykl for almost all (k, l).
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In a topological group, double sequence x = (xkl) is called double lacunary
statistically Cauchy if for each neighborhood U of 0 there exists N = N(U) and
M = M(U) such that the set {(k, l) ∈ Irs : xkl − xNM /∈ U} has double natural
density zero. In this case, we denote the set of all double lacunary statistically
Cauchy sequences by S2

θC(X).

Theorem 3.3. Let X be complete topological group. A double sequence x = (xkl)
in X is double lacunary statistically convergent if and only if x = (xkl) is double
lacunary statistically Cauchy.

We need the following lemma to prove the theorem.

Lemma 3.4. Let be X a topological vector space over the field F . So if W is a
neighborhood of 0 in X then there is a neighborhood U of 0 which is symmetric
(that is U = −U) and which satisfies W +W ⊂ U .

Proof. Let x = (xkl) be double lacunary statistically convergent to ξ. Let U be any
neighborhood of 0. Then we may choose a symmetric neighborhood W of 0 such
that

W +W ⊂ U.
Then for this neighborhood W of 0, the set

{(k, l) ∈ Irs : xkl − ξ ∈W}
has double natural lacunary density 0. For each neighborhood U of 0, the set
{(k, l) ∈ Irs : xkl − ξ /∈ U} has double natural lacunary density zero. Then we may
choose natural numbers M and N such that xMN − ξ /∈ U . Now write

AU = {(k, l) ∈ Irs : xkl − xMN /∈ U}
BW = {(k, l) ∈ Irs : xkl − ξ /∈W}

CW = {(M,N) ∈ Irs : xMN − ξ /∈W}
Then AU ⊂ BW ∪ CW and hence δ2θ(AU ) ≤ δ2θ(BW ) + δ2θ(CW ) = 0. Therefore we
get that x is lacunary statistically Cauchy.

To prove the converse, suppose that there is a double lacunary statistically
Cauchy sequence x but it is not double lacunary statistically convergent. Then
we may find natural numbers M and N such that the set AU has double natural
lacunary density zero. It follows from this that the set

ZU = {(k, l) ∈ Irs : xkl − xMN ∈ U}
has double lacunary natural density 1. Therefore we may choose a symmetric neigh-
borhood W of 0 such that W+W ⊂ U . Now take any fixed non-zero element ξ of X.
Let xkl−xMN = xkl−ξ+ξ−xMN . It follows from this equality that xkl−xMN ∈ U
if xkl − ξ ∈W. Since x is not double lacunary statistically convergent to ξ, the set
CW has double lacunary natural density 1., i.e., the set {(k, l) ∈ Irs : xkl− ξ /∈W}
has double lacunary natural density 0. Hence the set {(k, l) ∈ Irs : xkl−xMN ∈ U}
has double lacunary natural density 0, i.e., the set AU has double lacunary natural
density 1 which is a contradiction. Hence this completes the proof. �

Finally we conclude this paper by stating the following theorem which is from
theorems 1 and 2 and the proof is easy and omitted.

Theorem 3.5. If X is complete topological group, then the following conditions
are equivalent:
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(a): x is double lacunary statistically convergent to ξ;
(b): x is double lacunary statistically Cauchy;
(c): there exists a subsequence y of x such that limk,l ykl = ξ.
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[13] E. Savaş, Generalized Double Statistical Convergence in Topological Groups, Proceedings of

the Sixth International Conference on Mathematics and Computing, Springer (2021), 461-467
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