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UNCERTAINTY PRINCIPLE FOR THE FOURIER-LIKE
MULTIPLIERS OPERATORS IN ¢-RUBIN SETTING

AHMED SAOUDI

ABSTRACT. The aim of this project is establish the Heisenberg-Pauli-Weyl
uncertainty principle and Donoho-Stark’s uncertainty principle for the Fourier-
like multipliers operators in g-Rubin setting.

1. INTRODUCTION

The g?-analogue differential-difference operator d,, also called g-Rubin’s operator
defined on Ry in [12] 13] by

fla™'2) + f(=q'2) = f(q2) + f(—q2) — 2f(—2)
2(1-q)z

if 2z#0
9qf(2) =
lii)% 9,f(2) in R, if z=0.

This operator has correct eigenvalue relationships for analogue exponential Fourier
analysis using the functions and orthogonalities of [11].

The g¢?-analogue Fourier transform we employ to make our constructions and
results in this paper is based on analogue trigonometric functions and orthogo-
nality results from [I1] which have important applications to g-deformed quantum
mechanics. This transform generalizing the usual Fourier transform, is given by

+o0 _
FAP@) =K [ fOe-itza)igt, w e,
In this paper we study the Fourier multiplier operators 7., defined for f € Lg by
ﬁnf(x) = ‘Ft;l (mafq(f)) (J?), € ERQa
where the function m, is given by
me(z) = m(azx).

These operators are a generalization of the multiplier operators 7,, associated with
a bounded function m and given by 7,,(f) = F~(mF(f)), where F(f) denotes
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the ordinary Fourier transform on R™. These operators made the interest of several
Mathematicians and they were generalized in many settings, (see for instance [I], [2]
15, [19]).

In this work we are interested the L? uncertainty principles for the ¢g?-analogue
Fourier transform. The uncertainty principles play an important role in harmonic
analysis. These principles state that a function f and its Fourier transform F(f)
cannot be simultaneously sharply localized. Many aspects of such principles are
studied for several Fourier transforms.

Recently, we have investigated the behaviour of the ¢?-analogue Fourier trans-
form in many setting [16, 17, 18]. Many uncertainty principles have already been
proved for the g?-analogue Fourier transform [3, 5]. The authors have established
in [3] the Heisenberg-Pauli-Weyl inequality for the g?-analogue Fourier transform,
by showing that

[flla2 < Colllz|Fllg2llylFe(F)llg.2- (1.1)
for every f in Lz such that o f and yF,(f) are in Lg, where

Cq:l+q+q_71 +q°. (1.2)

In the present paper we are interested in proving an analogue of Heisenberg-Pauli-
Weyl uncertainty principle For the operators 7,,. More precisely, we will show, for
fel?

1
2

B o) o) d.a
1122 < K Gl 7 Olaa ([ [ PITu @ 2 ae)

provided m be a function in L(QJ satisfying the admissibility condition
e dqa "
Ima(z)|— =1, ae z€eRy. (1.3)
0 a
Moreover, for 8,6 € [1,00) and ¢ € R, such that Se = (1 — €)d, we will show

Ifllge < PRl +ar) 2Tt | Hly\‘sfq(f)H;E-

Using the techniques of Donoho and Stark [6], we show uncertainty principle of
concentration type for the L? theory. Let f be a function in Lz and m € Lé N L3
satisfying the admissibility condition . If f is e-concentrated on Q and T, f is
v-concentrated on X, then

et ([ [ aﬂdu(,(zz,ac))é > KA (1 (e+0),

where p, is the measure on R} x R, given by dpug(x)(a, ) := (dga/a)dyz.

This paper is organized as follows. In section 2, we recall some basic harmonic
analysis results related with g?-analogue Fourier transform and we introduce pre-
liminary facts that will be used later.

In section 3, we establish Heisenberg-Pauli-Weyl uncertainty principle For the
operators Tp,.

The last section of this paper is devoted to Donoho-Stark’s uncertainty principle
for ¢?-Fourier multiplier operators.
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2. NOTATIONS AND PRELIMINARIES

Throughout this paper, we assume 0 < ¢ < 1 and we refer the reader to 8 [10] for
the definitions and properties of hypergeometric functions. In this section we will
fix some notations and recall some preliminary results. We put R, = {£¢" : n € Z}

and R, = R, U {0}. For a € C, the g-shifted factorials are defined by

n—1 ')
(@qo=1 (aiq)n= ][0 -ad®)n=12.; (6:0)00 = [J(1 - ad®).
k=0 k=0
We denote also
1— ¢ (4:9)n
al, = , a€C and [n])=-—"—""—, neN
A g-analogue of the classical exponential function is given by (see [12] [13])
e(z;¢%) = cos(—iz; ¢*) +isin(—iz; ¢?), (2.1)
where
+oo n.2n +o0 n . 2n+1
(=1)"z : 2 (n+1) (=1)"z
cos(zz?) = S gD CE Gy SR ey U
= [2n]q! = [2n + 1]q!

satisfying the following inequality for all z € R,
1 1

cos(x; ¢?)| < . sin(z; ¢?)| < and |e(iz; ¢?)| < . (2.3
o q>|_<q§Q)oo ( Q)‘_(%q)oo i q>|_(q;q)oo (23)
The g¢-differential-difference operators is defined as (see [12] [13])
—1 —a-l.) —as) — 2 f(—
fla2) + fl=q 2)2(1f(q2)r)+f( 92) =2f(=2) ¢, 4
—q)z
04f(2) = !
iiir%)aqf(z) in Ry it 2=0

and we denote a repeated application by
Ogf =1 Oyt f =001
The ¢-Jackson integrals are defined by (see [9])

a 400
| 1@ = =aay "o,
0 n=0

“+oo

b
/ f@)dge = (1— ) S q (b (bg™) — af (ag™))
a n=0

and

+o0 too
[ f@dr = (1—q) S " {f@) + F(—a")}

provided the sums converge absolutely.
In the following we denote by

e C, o the space of bounded functions on R,, continued at 0 and vanishing a
00.

e C! the space of functions p-times g-differentiable on R, such that for all
0<n<p. OFfiscontinuous on R,.
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e D, the space of functions infinitely g¢-differentiable on R, with compact
supports.

e S, stands for the g-analogue Schwartz space of smooth functions over R,
whose g-derivatives of all order decay at infinity. S, is endowed with the
topology generated by the following family of semi-norms:

llullazs, (f) == sup M(l + |m|)M|8§u(m)| forall weS, and M eN.

reERkS

o &', the space of tempered distributions on Ry, it is the topological dual of
S

o 1= Wl = (2 @) < oo

o L2 = {F 1 lgoe = supser, |f(@)] < o0}
The ¢>-Fourier transform was defined by R. L. Rubin defined in [12], as follow

+oo
Fo(f)z) = K/_ f(t)e(—itx;qQ)dqt, z €R,

where
_ (@)
2(¢*¢*)oo (1 — q)*
To get convergence of our analogue functions to their classical counterparts as

g 11 as in [11], [13], we impose the condition that 1 — ¢ = ¢*™ for some integer m.
Therefore, in the remainder of this paper, letting ¢ T 1 subject to the condition

log(1 — q)
log(q)

It was shown in ([7, [12]) that the ¢®>-Fourier transform F, verifies the following
properties:

(a) If f, uf(u) € L}, then

94(Fg) () (@) = Fy(—iuf(u))(z).
(b) If f, 8,f € L&, then

€ 27.

Fq(0()) (@) = iz Fy(f)(x). (2.4)
(c) If f € L, then Fy(f) € Cq,0 and we have
2K
[Fq(F)llg.00 < mﬂfﬂq,b (2.5)

(d) If f € L, then, we have the reciprocity formula

+o0
VteR,, f(t)=K Fo(f)(z)e(it; q2)dqx. (2.6)

— 00

(e) The ¢*>-Fourier transform F, is an isomorphism from S, onto itself and we
have, for all f € S,

Fo (@) = Fo(f) (=) = Fo()(x). (2.7)
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(f) Fq is an isomorphism from L2 onto itself, and we have
1Fa(Fzig = fllg2, VS €L (2.8)

VieR,, f(t)=K o fq(f)(x)e(itx;qz)dqx.

— 00

and

The g-translation operator 7g,,,z € Ry is defined on L by (see [12])

—+o0
To()@) = K [ Fo(F)()elita; ¢*)elity; ¢*)dgt, y € Ry,

73.0(f)(2) = (F)(2).
It was shown in [I2] that the g-translation operator can be also defined on Lg.
Furthermore, it verifies the following properties
(a) For f,g € L}, we have

Touf (%) = 142 f(y), Vz,y Ry
and
+oo +o0 "
[ rancog@ie = [ oo ek,

(b) For all f € L} and all y € R,, we have(see [4])

/ (@) = / " @)y (2.9)

— o0 — 00
(c) Forally € R, and for all f € LF ;1 < p < oo, we have 7, (f) € L? (see[d])
and

||Tq,yf

lap < M| fllgps (2.10)
where

4(_(]1 q)oo
(1 -9)%4(q,9)
(d) 74y f is an isomorphism for f € L2 onto itself and we have

2 ~
I7gyflla2 < ——Ifllq2, Yy €Ry. (2.12)
(e) Let f e L2, then

(¢, @)oo
Foltaw )N = e(idy; ) Fo(f)(N), Yy € Ry, (2.13)

The g-convolution product is defined by using the g-translation operator, as follow
For f € Lg and g € Lé, the g-convolution product is given by

M= +20, with C=K2e(,q)loqlleCa) g (2.11)

+oo
Frow) =K [y f@g()dye,

The g-convolution product satisfying the following properties:
(a) frg=gxf.

(b) Vf.g € Lgn Ly, Fylf *q9) = Fo(f)Fql9)-
)Vf,gESq, [*q9 €Sy

) fxgeLZif and only if F,(f)F,(g) € L2 and we have

]'-q(f *g) = fq(f)fq(g)-
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(e) Let f,g € L2. Then we have

I1f * gll7.2 = KIIF, (/) Fe(9)II7 2 (2.14)
and
Frg=F (Fo(F)Fal9))- (2.15)
(f) If f,g € L} then fxg e L} and
1 *gllga = KM][fllg1llgllg.1- (2.16)

Definition 2.1. Let a € Rg‘, m € Lg and f a smooth function on R,. We define

the ¢*-Fourier L*-multiplier operators T, for a regular function f on R, as follow
Tnf(@) = Fy (maFo(f) (), 7€ Ry, (2.17)
where the function m, is given by
mq(x) = m(azx).
Remark. Let a € R;}‘, m € L3 and f, we can write the operator T, as
T f(2) = f;l(ma) x f(x), x€Ry, (2.18)
where

x

Frma)@) = 2 m)(5)

q

3. HEISENBERG-PAULI-WEYL UNCERTAINTY PRINCIPLE

This section is devoted to establish Heisenberg-Pauli-Weyl uncertainty principle
for the ¢?-Fourier multiplier operator 7,,.

Theorem 3.1. Let m be a function in Lg satisfying the admissibility condition
. Then, for f € Lg, we have
1
2 —1 Y B 2 dqa :
112 < K ColllylFq(f)llg.2 ; 2| T f(2) = =dg ) (3.1)

Proof. Let f € L2. The inequality (3.1)) holds if
1y F4(f)

q2 = T

or
(o) (o)
d
| [ PP e = .
— 00

Let us now assume that

oo o0 d
IF Do+ [ [P @ e < +oc.

Inequality (L.1]) leads to

| @i <c, ([ |aﬂ|2|w<sc>|2dqac)5 ([ WPIE T )0 P

Integrating with respect to dqa/a, we get

2
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s < C [ ([ ety

X ( /_ N |y|2|qu(Tmf(.))<y)|2dqy)é dqa

a

From Plancherel formula for the ¢>-Fourier multiplier operators [14, Theorem 3.1]
and Schwartz’s inequality, we obtain

B [ee] o0 da 2
22 < 57 ([T [ PP

(// WPIF T )Py )

According to relation (2.17), Fubini-Tonnelli’s theorem and the admissibility con-
dition (1.3]), we obtain

Y . 9, dqa _ [ 21 2 2, dga
L[ wPm i wra®® = [ [ R PIE6 6
= [ WPERO0 P

This gives the result and completes the proof of the theorem. O

Theorem 3.2. Let m be a function in L2 satisfying the admissibility condition
(-) and 8,0 € [1,00). Let e € R, such thatﬁa— (1—€)d then, for all f € L2,

have

1fllg2 < CP7K~Peam tar |

P T f | o I Fa (D], - (3.2)
Proof. Let f € Lg. Then the inequality 1) holds if
1—
121 T f|[ o, = +00 or |y’ Fo(Hl,, =
Let us now assume that f € Lg with f # 0 such that

NP Tond o + Nt FaD] " < o0,

therefore, for all 5 > 1, we have

L 3 2|3 2|3
el T 1 1 Ten 155 = lePA Tt B it
’ a3 a8’
with 8/ = %
Applying the Holder’s inequality, we get
1
el Ton e < 1T 125 1l T |17,

According to Plancherel formula for the qz—Fourier multiplier operators [14, Theo-
rem 3.1], we have for all 8 > 1

_1
2 Tm Sl < K27 ||f|

NPT f |2 (3.3)

q,2’
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with equality if 5 = 1. In the same manner, for all § > and using Plancherel formula
(2.8]), we get
1 3 3
HlFa (Dl < K3 112 [P Fa() . (3.4)
with equality if 6 = 1. By using the fact that Se = (1 — £)é and according to

inequalities (3.3) and (3.4)), we have

T fll g 2 1191 Fa (Pl g,

Ftar
111Gz °
with equality if # = § = 1. Next by Theorem we obtain

€ 1—e

CBe(L 4L
1£llq.2 < CFFK P 3 |2 P T f |1, P ()]l
which completes the proof of the theorem. ([

1—¢

|$|ﬂ7-mf|}z,2 |||y|6f’1(f)Hq,2 ’

1 1
< K35 T35

4. DONOHO-STARK’S UNCERTAINTY PRINCIPLE

Definition 4.1. (1) A subset E C Ry is said to be measurable subset of R, if
|E| :/ Xe(z)dqx < 00,

where x g 1s the characteristic function of the set E.
(2) Let Q be a measurable subset of Ry, we say that the function f € Lg 18
e-concentrated on §, if

1f = xaflla2 <€l fllgz2: (4.1)

(3) Let ¥ be a measurable subset oij xRy and let f € Lg. We say that T, f
s v-concentrated on 3, if

[T f = XaTm fllg2 < vl Tmllg,2- (4.2)

We need the following Lemma for the proof of Donoho-Stark’s uncertainty prin-
ciple for the ¢?-Fourier multiplier operator.

Lemma 4.2. Let m, f € Lé N L?I. Then the operators T,, satisfy the following
integral representation

L@ =2 [ 0Dy, (n) € R xR,
where -
U, (z,y) :/ m(2)e(itr, ¢*)e(—itz, ¢*)d,(2).

— 0o

Proof. The result follows from the definition of the ¢?-Fourier multiplier operator
(2.17) and the inversion formula of the g?-Fourier transform (2.6) using Fubini-
Tonnelli’s theorem. O

Theorem 4.3. Let f be a function in Lg and m € Lé N LZ satisfying the admissi-
bility condition . If f is e-concentrated on Q) and T, f is v-concentrated on %,

then 1
1 1 2 N
sttt ([ [ na(a))” = 54 (- (e ),

where puq is the measure on RY x Ry given by dug(x)(a, ) := (dya/a)dgz.
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Proof. Let f be a function in L2. Assume that 0 < 1,(Q) < 0o and

1
//Eﬁduq(a,x) < 0.

According to [I4, Theorem 2.3] and inequalities (4.1))-(4.2)), we get
HTmf - XZTm(XQf)Hq,Q < HTmf - XZTmf q,2 + HXZTm(f - XQf)HQ;Q
< VHTmf”q,? + HXZTm(f - Xﬂf)
K?(e+v)|f|
By triangle inequality it follows that
[Tmfllg2 < NTmf = xsTm(Xaf)lg.2 + IxsTm(xaf)llg.2
< Kz (e+0)|fllgz + xsTm(xa )l (4.3)
On the other hand, we have

q,2

IA

q,2-

[

IxsTm(xaf)llg2 = (//Z ITm(fo)(x)zduq(aw))

and moreover m, xof € L}, N L2, then by Lemma we obtain

1

Vi

1
[Tm (xaf)(x)] < ;||m||17a||f||q,2

o)} (//2 ;duq(a,x)>é.

1 1 P,
TPl < bl flaalel ([ [ Zdua(en))” + Ko+ 0l

According to Plancherel formula [I4, Theorem 2.3], we obtain

st (/[ algduq(a,:v)f > K (L= (1),

which completes the proof of the theorem. O

Therefore, thus

IxsTm(xofllg2 < lmllallf

Hence, according to last inequality and (4.3

|q72

Acknowledgments. The author gratefully acknowledge the approval and the sup-
port of this research study by the grant no. 7925-SCI-2018-3-9-F from the Deanship
of Scientific Research at Northern Boder University, Arar, Saudi Arabia.

REFERENCES

[1] J. P. Anker, Lp Fourier multipliers on Riemannian symmetric spaces of the noncompact
type, Ann. Math. (1990) 597-628.

[2] J. J. Betancor, O. Ciaurri, and J. L. Varona. The multiplier of the interval [- 1, 1] for the
Dunkl transform on the real line, J. Funct. Anal. 242 1 (2007) 327-336.

[3] N. Bettaibi, Uncertainty Principles in q?-Analogue Fourier Analysis, Math. SCi. Res. J. 11
11 (2007) 590-602.

[4] N. Bettaibi, K. Mezlini, M. El Guénichi, On Rubin’s harmonic analysis and its related positive
definite functions, Acta Math. Sci., Ser. B 32 5 (2012) 1851-1874.

[5] W. Binous, Heisenberg uncertainty principles for some q*-analogue Fourier transforms, J.
Inequal. Pure Appl. Math. 9 2 (2008) Id/No 47.



10

[6
[7
8
[9

[10

[11

[12

[13

[14

[15

[16
[17

[18

[19

DE

A. SAOUDI

| D. L. Donoho, P. B. Stark, Uncertainty principles and signal recovery, SIAM J. Appl. Math.
49 3 (1989) 906-931.

] A. Fitouhi, R. H. Bettaieb, Wavelet transforms in the q*>-analogue Fourier analysis, Math.
Sci. Res. J. 12 9 (2008) 202-214.

| G. Gasper, M. Rahman, Basic hypergeometric series, Cambridge university press, 96 2004.

| F. Jackson, On a q-Definite integrals, Quart. J. Pure Appl. Math. 41 (1910) 193-203.

| V. Kac, P. Cheung, Quantum calculus, Springer, 2002.

] T. H. Koornwinder, R. F. Swarttouw, On g-analogues of the Fourier and Hankel transforms,
Trans. Am. Math. Soc. 333 1 (1992) 445-461.

] R. Rubin, Duhamel solutions of non-homogeneous q?-analogue wave equations, Proc. Amer.
Math. Soc. 135 3 (2007) 777-785.

] R. L. Rubin, A ¢2-Analogue Operator for ¢*-Analogue Fourier Analysis, J. Math. Anal. Appl.
212 2 (1997) 571-582.

] A. Saoudi, Reproducing Formulas for the Fourier-Like Multipliers Operators in q-Rubin Set-
ting, Inter. J. Anal. Appl. 18 3 (2020) 366-380.

| A. Saoudi. Calderdn’s reproducing formulas for the Weinstein L2-multiplier operators, Asian-
Eur. J. Math. 14 1 (2021) Id/No 2150003.

] A. Saoudi, A. Fitouhi, On ¢?-analogue Sobolev type spaces, Matematiche, 70 2 (2015) 63-77.

] A. Saoudi, A. Fitouhi, Three applications in g*-analogue Sobolev spaces, Appl. Math. E-
Notes, 17 (2017) 1-9.

] A. Saoudi, A. Fitouhi, Littlewood-Paley decomposition in quantum calculus, Appl. Anal. 99
12 (2020) 2115-2136.

] A. Saoudi, I. A. Kallel, L2-Uncertainty Principle for the Weinstein-Multiplier Operators,
Inter. J. Anal. Appl. 17 1 (2019) 64-75.

AHMED SAOUDI
PARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE, NORTHERN BORDER UNIVERSITY, ARAR,

SAUDI ARABIA

Tu

Nis EL MANAR UNIVERSITY, TUNISIA
E-mail address: ahmed.saoudi@ipeim.rnu.tn



