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DIGITAL Z!-TOPOLOGICAL SPACES

ADNAN ABDULWAHID, ELGADDAFI ELAMAMI

ABSTRACT. This paper is a recipe for three crucial ingredients: Bitopological
spaces, proximity theory and digital image processing. The notion of £g-
topological spaces and .Z{'-proximity spaces are introduced as generalizations
of topological spaces and proximity spaces respectively. We explicitly compute
and visualize descriptive-Z'-open sets.

1. Introduction and Preliminaries

1.1. Introduction. Proximity theory has been growing rapidly. It leads to various
applications of digital image processing. Descriptive proximity plays a crucial role in
visualizing patterns that bridge some important geometric and topological concepts
such as connectedness, nearness, adjacency of points, parallel edges, and spatially
distinct points with matching descriptions. A proximity space is a topological space
equipped with a proximity relation [3]. Using proximity spaces and topology enables
us to study and discover many important concepts in a beautiful mathematical
approach.

Following [], a digital image is a discrete representation of visual field objects
that have spatial (layout) and intensity (color or grey tone) information. From
an appearance point of view, a greyscale digital image (an image containing pixels
that are visible as black or white or grey tones (intermediate between black and
white)) is represented by a 2D light intensity function I(z,y), where = and y are
spatial coordinates and the value of I at (z,y) is proportional to the intensity of
light that impacted on an optical sensor and recorded in the corresponding picture
element (pixel) at that point. If we have a multicolor image, then a pixel at (z,y)
is 1 x 3 array and each array element indicates a red, green or blue brightness
of the pixel in a color band (or color channel). A greyscale digital image I is
represented by a single 2D array of numbers and a color image is represented by a
collection of 2D arrays, one for each color band or channel. This is how, for example,
Matlab represents color images. A pixel is a physical point in a raster image. A
bitopological space is a set together with two topologies. Bitopological spaces can
be seen as a generalization of topological spaces. The concept of bitopological spaces
was first used by Kelly [I]. Bitopological spaces, proximity theory and digital image
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processing are the primary ingredients of this paper.
Throughout this paper, n is a positive integer, [n] = {1,--- ,n} and S & [n]. The
paper is organized as follows.

In Section 2, .£¢-topological spaces are introduced, and defining .#¢'-continuous
maps gives rise to a category €& whose objects are .Z&-topological spaces and
whose morphisms are £&-continuous maps. In Section 3, we introduce the no-
tion of £&-proximity spaces as a generalization of proximity spaces, and we con-
struct Z§-topological spaces using proximity relations. In Section 4, the concept
of descriptive-.£¢-proximity spaces are introduced, and we explicitly calculate and
visualize descriptive-.Zg-open sets.

2. Z%#-Topological Spaces

Definition 2.1. Let n be a positive integer and j € [n] = {1,--- ,n} be a fized
positive integer, and let S & [n]. Let X be a set, and let (X,7),---,(X,7,) be
topological spaces.

(1) A set A C X is called an Z}*-open set in X if there exists a set U € 7;
with
vcac Y T,
{ieln] i}

where for any i € [n], T’ is the closure set of U with respect to 7,. A set
B C X is called an £}'-closed set in X if X \ B € &' — O(X). In this
case, we say that (X, 7, -+ ,7,) is L' -topological space (or simply £~

?'n

space). The set of all Z[*-open sets in X is denoted by L' — O(X) (or
L =0((X,1,---,1,)) if convenient), and the set of all £}"-closed sets in

v 11

X is denoted by £ — C(X) (or £ = C((X, 7, ,7,)) if convenient).

Z3-open set

n

(2) The Z}*-closure of a set K C X, denoted by K " s the intersection of all
=%j"—closed sets containing K.
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The Z5-closure of a set K C X

A set E C X is called an L& -open set in X if there exists a set V € ()
with

aesTa

i

vceEce | V.
{i€[n]:i¢S}

where for any i € [n], V' is the closure set of V. with respect to 7,. A set

F C X is called an L& -closed set in X if X\ F € & —O(X). In this case,

we say that (X,7,,---,7,) is L& -topological space (or simply L& -space).
27’",

? 'n

The £&-closure of a set K C X, denoted by K ° s the intersection of all
ZL&-closed sets containing K. The set of all £&-open sets in X is denoted
by L& —0(X) (or L& —O((X, 7, - ,7,)) if convenient), and the set of all
L& -closed sets in X is denoted by L& —C(X) (or £&—-C(X,7,---,7,))
if convenient).

Remark 2.2.

(1)
(2)

For any ¢ € [n] with S = {i}, one has £ — O(X) = £ — O(X).

Let S & [n]. If A, A" € £§ —O(X), then AN A’ need not be in £ —O(X)
(see Example ) However, the following proposition shows that the
union of a family of Z§-open sets in X is £&-open.

Proposition 2.3. For anyi € [n], let (X, 7,) be a topological space, and let S & [n].

(1)

(2)

(3)

Let {A, .} be a family of an Z&-open sets in X. Then
U 4 e 2y -o0X).
a€eA

Let {F,_,} be a family of an L& -closed sets in X. Then

(SN
(] E. € 28 - C(X).
acl
IfU €N,yeg T then T e LY — O(X) for every j € [n]\ S.
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Proof.

(1) Let S & [n], and let {A _,} be a family of an .Z¢-open sets in X. By
Definition (2.1), for any a € A, there exists a set U, € [, g7, with

a€S 'a
uvcac U T
ic[n]\S

Thus, we have

1

JrcUacy Ume U Ume U Ue
acA i€[n]\S a€A

acA ach i€[n]\S i€[n]\S a€A

As a consequence, we have
U E e 2 —ox).
aEN

(2) This follows directly from part (1) of the proposition.
(3) This clearly follows from Definition

Sa

A Union of Two Z-open Sets A, and A, is an
Z3-open Set

The following is an immediate consequence of Proposition .
Corollary 2.4. For any i € [n], let (X,7,) be a topological space, and let S & [n].
(1) ?Eg € L& —C(X) for any K C X.
(2) K € 0 — C(X) if and only if K =K — .
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Proof.
(1) This follows immediately from Definition ([2.I)) and part (2) of Proposition
£3). |
72]”
(2) Suppose that K € Z% —C(X). By Definition (7 K is the intersection

£

of all Z]"-closed sets containing K. So, K C K °. Since K € L8 —-C0(X),
the intersection of all .Z"-closed sets containing K is K itself.Thus, K =

ez oz
K . If K=K | then by part (2) of Proposition l) KeZy-C(X)
as desired.

O

Theorem 2.5. For any i € [n], let (X,7,) be a topological space, and let n be a
positive integer.

(1) For any k € [n], one has
7. C L - 0(X).
(2) For any k,l,m € [n] with 1 <k <1<m <n, we have
L -0(X) CcZm - 0(X).
(8) For any E C X and a fized positive integer j € [n], one has

(4) For any set S & [n], we have
N7 CZ8-0(X).
a€S
(5) For any set S & [n] and an integer t with t > n, we have
L —0(X) C Z-0(X).
(6) Let S € S" & [n]. Then
L8 —0(X) L8 —0(X).
(7) For any set S & [n], we have
L8 - 0(X)C ()£ - 0X).
acsS
(8) For any S & [n] and E C X, one has
F:fg C Enaes Ta
(9) Let S & [n] and U € 7, for any a € S. Then
U TU'ezz-owx).
i€[n] 1 i¢S
(10) Let S & [n] and F' an 7,-closed for some a € S. Then
N Fezr-ox).
i€[n]:i¢S
Proof.
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Fix k € [n], and let A € 7,. We have
Acac | A\
{i€[n]:i#j}
Thus, A € £ — O(X), and hence 7, C 2" — O(X).
Fix k,l,m € [n) with 1 <k <1 <m <mn,andlet 4 € ,,%,i - O0(X). By
definition, there exists a set U € 7, with
vcac |J Tc |J T (since ] Clm)).

(i€l ik} {i€lm] ik}

So, we have
L - 0(X) S 4" - O(X).

Fix j € [n], and let E C X. The intersection of all Z*-closed sets con-
taining K is subset of the intersection of all 7.-closed sets containing K.
Therefore,

T
E CE.
Let S & [n], and let V € [, .47, We have V € 7, for every a € S with
veve | 7
{i€[n]:i¢S}
So, V € £¥ — O(X), and hence
7 <28 -0X).
acs
Let S & [n] and fix a positive integer t with ¢t > n. Let E € .£¢ — O(X).
By definition, there exists a set V' € |J,.q 7. with
vcec |y Ve |J V' Gince] ).
{i€[n]:i¢S} {i€[t] : ¢S}
Consequently, we have
L& —0(X) C Z - 0(X).
Let S € 8" & [n], and let E € £ — O(X). By definition, there exists
VeN,cq T With
vcec |J V.
{i€[n]:ig¢S’}
Since (,cqr T € MNyes 7 and
U ve U 7.
{ie[n]:i¢gsS’} {i€[n]:i¢S}
we have E € Z¢§™ — O(X). Thus,
L8 —0(X) C L8 - 0(X).
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(7) Let S & [n], and let E € £ — O(X). By definition, there exists a set
V€N, eq T with

VCEC
{i€[n]:i¢S}
So, V € 7, for any a € S. Furthermore, for any a € .S, we have

vcec |y vc U V.

{i€[n]:i¢S} {i€[n] :i#a}

Accordingly, E € .£'—0O(X) for every a € S and hence .Z&—0(X) C ﬂ ZLr—0(X).
a€sS

(8) This an immediate consequence of part (4) of the theorem.

(9) Note that
ve |J Tc U T.
{i€[n]:i¢S} {i€[n]:i¢S}
(10) The proof follows directly from the previous part.
O

The following consequence shows that .£&-topological spaces are a generalization
of topological spaces.

Theorem 2.6. For any i € [n], let (X,7,) be a topological space, and let n be a
positive integer.

(1) If j € [n] is a fived positive integer and T, = P is the discrete topology on
X, then
ZLF—-0X)=1=9.

j k
(2) If j € [n] is a fized positive integer and 7, = 2 is the discrete topology on
X for all k € [n] with k # j, then

LT —0(X) =7,

(3) If S & [n] and 7, = 2 (the discrete topology on X ) for all a € S, we have
Z¢-0(X)=2.
(4) If S & [n] and 7, = 2 (the discrete topology on X) for all b € [n]\ S, we
have
L8 -0(X)= (-
a€S

(5) If j € [n] is a fived positive integer and 7, = F is the indiscrete topology on
X, then
L' -0X)=1 =7.

J
(6) If S & [n] and 7, = 7 (the indiscrete topology on X) for all a € S, then

Lr—0(X) = 7.
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Example 2.7. Let X = {a,b,c}, E = {a,c}, and S = {1,3}. Consider the
following topologies on X :

7. =1{0,{a}, X}

7, = {0, {b}, X},

7, = {0, {c}, X},

7, = {0, {a}, {a, b}, X},
7, = {0, {a}, {a, c}, X},
7 = {0,{a}, {b,c}, X},
7. = {0, {b}, {a,c}, X},
7 ={0,{b}, {a, b}, X},
7, = {0,{b}, {b,c}, X},
7o = 10, {c}, {a, b}, X},
7, = {0, {c}, {a, c}, X},
7, = {0, {c}, {b,c}, X }.

A simple calculation shows that
$212 - O(X) = {®7 {b}7 {a7 b}7 {b7 C}v X}

and
$612 - O(X) = {wv {a}7 {a7 b}7 {a’ 0}7 {b7 C}, X}
Note that T, N1, = 7. We have

L2 _oX) =1,
$212 - C(X) = {Q)? {av C}v {C}v {(1}, X}
and

$612 - C(X) = {(Z)’ {b’ C}v {C}’ {b}v {a}v X}
It is clear that

12 12 12
722

%6 —Z5
E ={a,c}=E, F ={abc}=X, and E ={a,b,c}=X.

One might notice that {a,b},{b,c} € ZLI? — O(X), but {a,b} N {b,c} = {b} ¢
L42 — O(X). In general, if A,A" € L% — O(X), then AN A’ need not be in
28 - 0(X).

Definition 2.8. Let S & [n], and let (X,7,,---,7,) and (X',7/,---,7') be ZL¢-
topological spaces. A map f : (X, 7,---,7,) = (X', 7/,--- ,7') is called an L§-
continuous map if f~H W) € L& — O(X), for every W € (,cg7 i X'. The
map (X, 7, ,7) = (X',7/,--- 7)) is called an £ - homeomorphism if it is

bijective, and f and f~! are LT -continuous maps.

Theorem 2.9. Let S & [n], and let (X,7,---,7,) and (X',7/,---,7') be Z-
topological spaces, and let f: X — X' be a map.
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X X’
T
Z§-Continuity with S = {1,3}
(1) If f (X, 7, 7)) = (X', 7/, 7)) dis an £ -continuous map for any
a €S and
(2 —0(X) € 25 - 0(X),
a€S
then f: (X, 7,---,7,) = (X', 7/,--- ,7/) is an L -continuous map.
2) If f+ (X, Npes ™) = (X', Naeg 7)) is a continuous map, then f: (X, 7, - ,7,) —
(X', 7!, 7)) s an £ -continuous map.
(3) If f: (X,7,) = (X', 7)) is a continuous map for any a € S, then f :
X, 7, ,10)—= (X', 7, -, 7)) is an LT -continuous map.
1 n 1 n S
Proof.
1) Let W € 7. It follows that W € 7’ foreverya e S. f: (X, 7, - ,7.) —
a€S ‘a a 1 n
(X',7/, -+, 7!) is an Z*-continuous map for any a € S, f~H (W) € ,cq-La'—
O(X).

Since m Lr—0(X) C LE-0(X), f~1(W) € £8—0(X) which completes the proof.
aeS

(2) This is clear.
(3) This follows directly from the previous part.

The following is an immediate consequence of Theorem ([2.9))
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Corollary 2.10. Let (X,7,,---,7,) and (X', 7/, ,7") be L& -topological spaces,
and let f : X — X' be a map such that f : (X,7,) — (X',7') is a homeomor-
phism for any a € S. Then f : (X, 7, ,7,) — (X,l/,“-,’]'nl) is an ZL&-

homeomorphism.
We have the following analogue of the “usual continuity”.

Theorem 2.11. Let S & [n], and let (X,7,,---,7,) and (X', 7/,---,7") be Z¢-
topological spaces, and let f : X — X' be a map. Then, the following statements
are equivalent:

(1) f:(X, 7, 7)) = (X', 7! 7)) is L& -continuous.

(2) f71(W) e Z§ — C(X), for every (,cq 7 —closed set W in X'.

(3) For any subset E in X,

f(F“%L) C f(E)naES Ta/'
(4) For any subset E' in X',

— _pn I ’
JT®) c i (Ees™).
It might be noticeable that Definition (2.8) gives rise to a category €& whose
objects are .£¢-topological spaces and whose morphisms are .£&-continuous maps.

3. Z¢—proximity Spaces
Following [2], we first recall some basic concepts of proximity spaces.

Definition 3.1. [2] A binary relation § on the power set of X is called an (Efre-
movic) prozimity on X if 0 satisfies the following axioms:
(i) ASB implies BoA

(ii) AS(BC) implies AOB or ASC

(iii) AdOB implies A+ &, B# &

(iv) AdB implies there exists a subset E such that ASE and (X \ E)dB

(v) A\ B # @ implies A0B
where

= (2(X) x Z(X))\é.

A prozimity space is a pair (X,09), where X is a set and 0 is a prozimity relation.
A proximity space is called separated if the following axiom holds:

(vi) {x}dé{y} implies x =y. If AOB, we say A is near B or A and B are
proximal; otherwise we say A and B are apart, and we write it as AOB. We say B
is a proximal or 6-neighborhood of A, and we write it as A < B, if and only if A
and X \ B are apart.

The main properties of this set neighborhood relation, listed below, provide an
alternative axiomatic characterization of proximity spaces.
For all subsets A, B,C, D C X

1) X< X

) A< B implies A C B

) ACB < CCD implies A< D

) (A< Band A< C) implies A< BNC
) A< Bimplies X\ B X\ A



DIGITAL Z¢-TOPOLOGICAL SPACES 11

(6) A < B implies that there exists some F such that A < F < B.
A proximity or proximal map is one that preserves nearness, that is, given f :
(X,8) = (Y, 5’) if ASB in X, then f(A) f(B) inY .

Theorem 3.2. [2] If a subset A of a proximity space (X, ) is defined to be closed
iff 20 A implies x € A,then the collection of complements of all closed sets so defined
yields a topology T = 7(8) on X. Furthermore, the T-closure A of A is given by

A={x: 26A}.

Theorem 3.3. Let S = {a1, -~ ,am} & [n], and write [n] \ S = {b1,- - ,bp_m}
and let (X, 5b1:) be a prorimity space with a corresponding proximity topology T((Sbl)
for any i € [n]\ S. Define a relation 6 on P(X) (the power set of X) by AéB if
Ag, B for some t € [n]\ S.

(1) The relation § is a prozimity relation on P (X).
(2) For any family of topologies {7, : k € [m]}, we have

L5 - O0((X,m, 1, 7(8,), 576, ))) = L8 = O((X, 7, 7, 7(6))).

> I by s Iy

Proof.
(1) The proof is clear.

(2) Tt suffices to show that
ET(‘S) _ U ET(%)7
i=1

forany EC X. Let EC X. Let ¢ € E'". We have 8 which implies
77—(61,1.)

that x4, I for some t € [n]\ S. Thus, v € ¥ , and hence
n—mi
S U ET((SI’i).
i=1
It follows that
ET(‘S) C U ET(%).
i=1
Let
ye U E"’((Sb )
i=1
So, y € E™ for some ¢t € [n] \ S. This implies that y € . Conse-
quently,

U E ) - B ), and hence ") = U %)
i=1 i=1

This completes the proof of assertion (2).

Definition 3.4. [2] If §, and &, are two prozimities on a set X, we define

0, < &, iff Ao, B implies Ad,B.
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=7(9)

_7—(
E =Uiepmps

% for § = {1,2,4} and n = 9

The above is expressed by saying that ¢, is finer than 4,, or §, is coarser than
6,. The following theorem shows that a finer proximity structure induces a finer
topology:

Theorem 3.5. [2] Let §, and d, be two proximities on a set X. Then 6, < 0§, implies
7(4,) € 7(4)-

An analogue of Theorem for .Z¢-spaces can be stated as follows:

Theorem 3.6. Let S = {a1, -+ ,am} & [n], and write [n]\ S = {b1, -+ ,bp_m}
and let (X, 6,) be a proxzimity space with a corresponding prozimity topology 7(4,) for
anyi € [n]\S. If§, <--- <6, , then for any family of topologies {7, : k € [m]},
we have

gg’l_o((Xva'” T, T((sbl)a"'77—(6bn,m>)):$§n+1_0((X77_1a"' T, T((Sbn,m)))'

? 'm? ) 'm Y

Proof. By Theorem (3.5), we have 7(4, ) C--- € 7(4, ). Thus, for any E C X,

bn—m

U B =F ),
i€[n]\S

we have

It follows that
gg—o((Xlev"' ) T, ’7(5171)7"' 77_(613

m

))) :fé"+1—0((X’7—1’... e 77—(617 )))

O

n—m n—m

Definition 3.7. Let S & [n], and let (X,4,) be a proximity space for any i € [n].
Let § be a binary relation on P(X) (the power set of X ) defined by AéB if and
only if the following axioms are satisfied:

(i) x ¢ A implies xd,(X \ B) for any a € S.

(i1) & B for any i € [n]\ S implies x ¢ A.
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Then ¢ is called an Z8 —(Efremovic) prozimity, or simply £ —prozimity, induced
by prozimity relations 6,,--- ,9,. An L —prozimity space induced by 6,,--- ,9, is a
pair (X,0), where X is a set and 0 is an L& -prozimity relation induced by proz-
imity relations 6,,--- , 9, .

n

Theorem 3.8. Let (X,06) be an L& -proximity space induced by 6,,---,96,. If a
subset E of X is defined to be & —open if and only if ESV for some V. C X with
{r e X : 26, (X\V)} = X\V foranya € S, then the collection of all L& -open sets
so defined yields an L& —topological space (on X ) with £F—0(X) = L& —-0(X)(9).

Proof.

We will show that the desired .Z¢'—topological space is precisely the .Zg—topological
space (X,7(4,),---,7(d,)). We first notice that if V C X with {x € X : zd, (X \
V)}=X\V forany a € Sin X, then V € & — O(X,7(4,),---,7(d,)), and the
converse is true as well. Let £ € ¢ — O(X,7(4,),---,7(4,)). There exists a set
V € Nyeg . With

VceEc |J V7,
{i€[n]:i¢S}

where for any i € [n], V" is the closure set of V with respect to 7. So, we have

[l X\VCX\ECX\V.
{ieln] - ig S}
The statement )
[l X\V CX\E
{ieln] s ig S}
shows that x0,V for any i € [n] \ S implies = ¢ E, and the statement
X\ECX\V
asserts that x ¢ E implies xd, (X \V) for any a € S (since V' is 7(4, )—closed for every
a € S). Thus, ESV. Conversely, if E§V for some V € (.7, then V € N .7,
and the following statements are satisfied.
(i) z0,V for any i € [n] \ S implies = ¢ A.
(i) = ¢ E implies =0, (X \ V) for any a € S.
The statements ((i))) and imply that

N X\V cx\E

{ieln] s ig S}
and
X\ECX\V
respectively. This proves that E € £ — O(X,7(4,),---,7(d,)) which completes
the proof. O

It might be noticeable that the relation 0 defined in Definition (3.7)) is not sym-
metric, in general; that is, AdB and BJA need not be the same. Nevertheless, we
have the following consequence.

Theorem 3.9. Let (X,0) be an L8 —prozimity space induced by 6,,--- ,9,, and let
BCC.
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(i) If ASC, then AdB.

(i) If A5§6, then A0B, where B’ s the closure with respect to the L& -
topological space with £§ — O(X) = 28 — O(X)(9).

Proof.

(i) Let A0C, and let = ¢ A. Since ASC, this implies 9, (X \ C) for any a € S.
Since B C C, (X \ C) C (X \ B). Thus, x ¢ A implies zd, (X \ B) for any
a € S. Let 26, B for any i € [n] \ S. It follows that

T < X\C
for any 7 € [n] \ S. Since (X \ C) C (X \ B),
v < X\ B

for any i € [n] \ S. Consequently, A0B. implies x ¢ A.
(ii) This follows directly from part (i) and Theorem (3.8].

O

Definition 3.10. Let (X, ) and (X,d") be Z§ —prozimity spaces induced by d,,--- , 9,
and 0/, -+, 0" respectively. We define

§ < & iff AS'B implies A6B
for any subsets A and B of X.

Theorem 3.11. Let (X,d) and (X,0") be an L& -proximity spaces induced by
&, .0, and &,--- 0" respectively, and let §' < 4, for any a € S. Then 6 < ¢’
implies 2% — O(X)(6) C Z£& — O(X)(d).

Proof. Let 6 < ¢', and let E € £¢ — O(X)(9). It follows from Theorem
that EoV for some V' € (0, .47(d,). Since §' < 4, for any a € S, by Theorem
(3-5), we have 7(3,) € 7(d,) for any a € S, and hence (), g 7(d,) € ,cq7(d)).
Consequently, we have E0V with V' € (), g 7(d/). Theorem asserts that
E € L& — O(X)(¢). Therefore, £& — O(X)(d) C Z£L —O(X)(6 O

Definition 3.12. Let (X,0) and (Y,0') be an L& -proximity spaces induced by
&, -0, and &/,--- 0" respectively. A map f : (X,6) — (Y,¢') is said to be an
L& —prozimity map if any B CY with{y € Y : yd'(Y\B)} =Y\ B for anya € S
implies f~Y(B)dV, for some V. C X with {x € X : 26, (X \V)} = X\ V for any
a€S inX.

Theorem 3.13. Let (X,0) and (Y,0") be an L& -prozimity spaces induced by

&, .0, and 0,---,0" respectively, and let f : X — Y be a map. Then f :

(X,0) = (Y, &) is an L& —prozimity map iff f : (X, 7(4,),---,7(5,)) = (Y,7(5)),--- ,7(8)))
is L& —continuous.

Proof. Suppose that f: (X,6) — (Y,¢) is an £ proximity map. Let Y\ W €
Nues 7(d)). So, Wis (,.47(0))—closed and hence 7(d')-closed for any a € S.
It follows that the set {y € Y : yd/(Y \ W)} = Y \ W for any a € S. Since
[ (X,0) = (Y,8) is an ZZ—proximity map, f~1(W)§V, for some V C X with
{xeX :25,(X\V)}=X\V forany a € S in X. As a consequence, f~}(W)dV,
for some V' C X. By Theorem , 7tw) e L& — O0(X,7(6,),- -+ ,7(8,)).
Thus, f: (X,7(0,),---,7(,)) = (Y,7(5),---,7(8))) is L& —continuous. For the

n
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other direction, suppose that f : (X,7(5),---,7(5,)) = (Y,7(3)),---,7(d)) is
ZL§—continuous. Let B C Y with {y € Y : y0/(Y\B)} = Y\ B for any a € S. This
implies that B is 7(¢)—closed for any a € S and hence Y\ B € 7(¢') for any a € S.
So, Y\ B € (,eg7(d). Since f : (X,7(3,),---,7(5,)) = (Y;7(5)), - ,7(5"))
is Z&—continuous, f~H (W) € L& — O(X,7(6,), -+ ,7(5,)). By Theorem ,

O

Y W)V, for some V C X, and this completes the proof.

4. Descriptive .£¢—proximity Spaces

Following [3] and [4], we recall some basic concepts of digital topology. A probe
® maps a member of a set to a value in R (reals). Probe function values define
feature vectors useful in comparing, clustering and classifying members of a set.
One can find open sets in digital images. Let ®(x) denote a feature vector for the
object z, i.e., a vector of feature values that describe z. A feature vector provides
a description of an object and subsets of X. Let ® denote a set of n real-valued
probe functions ® : X — R representing features such as greylevel intensity, colour,
shape or texture of a point x (picture element) in a digital image X, i.e.,

q): {¢17"' 7¢n}

And let ®(z) denote a feature vector containing numbers representing feature values
extracted from x. Then, for a set of n probe functions, a feature vector has the
following form:

P(z) = {¢1($)7 T 7¢n(x)}7
where ¢;(x) is the ith feature value. To obtain a descriptive proximity relation
(denoted by &, ), one first chooses a set of probe functions, which provides a basis
for describing points in a set. Let A, B € &(X). Let Q(A), Q(B) denote sets of
descriptions of points in A, B, respectively. That is,

Q(A) = {®(a) : a € A}, Q(B) ={®(b) : be B}.

The expression Ad, B reads A is descriptively near B. The relation ¢, is called a
descriptive proximity relation. Similarly, AJ, B denotes that A is descriptively far
(remote) from B. The descriptive proximity of A and B is defined by

A¢, B if and only if Q(A) N Q(B) # 0. (4.1)
The descriptive intersection Q of A and B is defined by
AQB ={xr € AUB : Q(z) € Q(A) and Q(x) € Q(B)}. (4.2)
The descriptive proximity relation J, is defined by
0 ={(A4,B) € (Z(X) x (X)) : clAchB # 0}. (4.3)

Whenever sets A and B have no points with matching (or almost near) descriptions,
the sets are descriptively far from each other (denoted by AJ, B), where

5 = (2(X)x 2(X)\4,. (4.4)

2

In general, a binary relation ¢, is a descriptive EF-prozimity, provided the following
axioms are satisfied for A, B,C € #Z(X).

(EF,.1) A descriptively close to B implies A # (), B # ().

(EF,.2) A A B implies A is descriptively close to B.

(EF,.3) A descriptively close to B implies B descriptively close to A (descriptive
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symmetry).

(EF, .4) A descriptively close to (B U C), if and only if, A descriptively close to B
or A descriptively close to C.

(EF,.5) Descriptive Efremovic axiom: A descriptively far from B implies A de-
scriptively far from C' and B descriptively far from X \ C for some C € Z(X).
The descriptive proximity relation ¢, reads descriptively close to (descriptively
near). The structure (X,4,) is a descriptive EF-prozimity space (or, briefly, de-
scriptive EF space, or even descriptive space). The remoteness proximity relation
0, reads descriptively far from (or descriptively remote from or descriptively not
close to). For basic concepts of descriptive spaces and digital topology, we refer the
reader to [3] and [4].

Definition 4.1. Let S & [n] and 3" be a set of probe functions representing
features of picture points in X for any i € [n]. Let (X, 6:())) be a descriptive
proximity space for any ¢ € [n]. Then the £ —descriptive prozimity space induced
by s ,5;2) is the L& —prozimity space (X, 4,) induced by 5:1) e ,(i;i) .

MEON

The following is an immediate consequence of Theorem ((3.8)),

Theorem 4.2. Let (X, 4,) be an L& —descriptive proximity space induced by 5"

where 3 is a set of probe functions representing features of picture points in

X for any i € [n]. Then (X,4d,) induces an Z£F topological space on X with
n n 1) n)

25~ 0(X)(6,) = Z§ —O(X,7(3 ).+ .7(87)).

EESRAN
Example 4.3. We use Theorem to calculate
A= | Tez-ow).
{i€[6] : 142}

@D

e

n)

N
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X x
D

3)

) U

(X, 7(6(

@
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The proximity relations (#(1) are defined as in for every i € [6]. Here, a
P
black color corresponds to 0 = lowest intensity, and a white color represents 255 =

highest intensity.

Example 4.4. We use an image of Iowa “Hawkeyes Herky” and Theorem
to calculate )
A= |J Teg-ox)
{i€[6] : iz£4}

(X,7(8% ) v Ac Z5 - 0(X)(,)

o)

As in the previous example, the proximity relations & L()) are defined as in
P

for every i € [6], a black color corresponds to 0 = lowest intensity, and a white
color represents 255 = highest intensity.
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