Bulletin of Mathematical Analysis and Applications ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 14 Issue 3(2022), Pages 1-19. https://doi.org/10.54671/BMAA-2022-3-1

DIGITAL \mathscr{L}^n_S -TOPOLOGICAL SPACES

ADNAN ABDULWAHID, ELGADDAFI ELAMAMI

ABSTRACT. This paper is a recipe for three crucial ingredients: Bitopological spaces, proximity theory and digital image processing. The notion of \mathscr{L}_S^n -topological spaces and \mathscr{L}_S^n -proximity spaces are introduced as generalizations of topological spaces and proximity spaces respectively. We explicitly compute and visualize descriptive- \mathscr{L}_S^n -open sets.

1. Introduction and Preliminaries

1.1. **Introduction.** Proximity theory has been growing rapidly. It leads to various applications of digital image processing. Descriptive proximity plays a crucial role in visualizing patterns that bridge some important geometric and topological concepts such as connectedness, nearness, adjacency of points, parallel edges, and spatially distinct points with matching descriptions. A proximity space is a topological space equipped with a proximity relation [3]. Using proximity spaces and topology enables us to study and discover many important concepts in a beautiful mathematical approach.

Following [4], a *digital image* is a discrete representation of visual field objects that have spatial (layout) and intensity (color or grey tone) information. From an appearance point of view, a greyscale digital image (an image containing pixels that are visible as black or white or grey tones (intermediate between black and white)) is represented by a 2D light intensity function I(x, y), where x and y are spatial coordinates and the value of I at (x, y) is proportional to the intensity of light that impacted on an optical sensor and recorded in the corresponding picture element (pixel) at that point. If we have a multicolor image, then a pixel at (x, y)is 1×3 array and each array element indicates a red, green or blue brightness of the pixel in a color band (or color channel). A greyscale digital image I is represented by a single 2D array of numbers and a color image is represented by a collection of 2D arrays, one for each color band or channel. This is how, for example, Matlab represents color images. A pixel is a physical point in a raster image. A bitopological space is a set together with two topologies. Bitopological spaces can be seen as a generalization of topological spaces. The concept of bitopological spaces was first used by Kelly [1]. Bitopological spaces, proximity theory and digital image

¹⁹⁹¹ Mathematics Subject Classification. 54H30, 68U03, 54H05, 54E05, 94A08, 54E55.

Key words and phrases. topology, proximity, descriptive, image, digital.

 $[\]textcircled{C}2022$ Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted June 24, 2022. Published July 26, 2022.

Communicated by Naim L. Braha.

processing are the primary ingredients of this paper. Throughout this paper, n is a positive integer, $[n] = \{1, \dots, n\}$ and $S \subsetneq [n]$. The paper is organized as follows.

In Section 2, \mathscr{L}_{S}^{n} -topological spaces are introduced, and defining \mathscr{L}_{S}^{n} -continuous maps gives rise to a category \mathscr{C}_{S}^{n} whose objects are \mathscr{L}_{S}^{n} -topological spaces and whose morphisms are \mathscr{L}_{S}^{n} -continuous maps. In Section 3, we introduce the notion of \mathscr{L}_{S}^{n} -proximity spaces as a generalization of proximity spaces, and we construct \mathscr{L}_{S}^{n} -topological spaces using proximity relations. In Section 4, the concept of descriptive- \mathscr{L}_{S}^{n} -proximity spaces are introduced, and we explicitly calculate and visualize descriptive- \mathscr{L}_{S}^{n} -open sets.

2. \mathscr{L}^n_S -Topological Spaces

Definition 2.1. Let n be a positive integer and $j \in [n] = \{1, \dots, n\}$ be a fixed positive integer, and let $S \subsetneq [n]$. Let X be a set, and let $(X, \tau_1), \dots, (X, \tau_n)$ be topological spaces.

(1) A set $A \subseteq X$ is called an \mathscr{L}_{j}^{n} -open set in X if there exists a set $U \in \tau_{j}$ with

$$U \subseteq A \subseteq \bigcup_{\{i \in [n] : i \neq j\}} \overline{U}^i,$$

where for any $i \in [n]$, \overline{U}^j is the closure set of U with respect to τ_i . A set $B \subseteq X$ is called an \mathscr{L}_j^n -closed set in X if $X \setminus B \in \mathscr{L}_j^n - O(X)$. In this case, we say that $(X, \tau_1, \cdots, \tau_n)$ is \mathscr{L}_j^n -topological space (or simply \mathscr{L}_j^n -space). The set of all \mathscr{L}_j^n -open sets in X is denoted by $\mathscr{L}_j^n - O(X)$ (or $\mathscr{L}_j^n - O((X, \tau_1, \cdots, \tau_n))$ if convenient), and the set of all \mathscr{L}_j^n -closed sets in X is denoted by \mathscr{L}_j^n -closed sets in X is denoted by $\mathscr{L}_j^n - O(X)$ (or $\mathscr{L}_j^n - O((X, \tau_1, \cdots, \tau_n))$) if convenient).

 \mathscr{L}^3_1 -open set

(2) The \mathscr{L}_{j}^{n} -closure of a set $K \subseteq X$, denoted by $\overline{K}^{\mathscr{L}_{j}^{n}}$ is the intersection of all \mathscr{L}_{j}^{n} -closed sets containing K.

The \mathscr{L}_2^3 -closure of a set $K \subseteq X$

(3) A set $E \subseteq X$ is called an \mathscr{L}^n_S -open set in X if there exists a set $V \in \bigcap_{a \in S} \tau_a$ with

$$V \subseteq E \subseteq \bigcup_{\{i \in [n] : i \notin S\}} \overline{V}^i,$$

where for any $i \in [n]$, \overline{V}^i is the closure set of V with respect to τ_i . A set $F \subseteq X$ is called an \mathscr{L}^n_S -closed set in X if $X \setminus F \in \mathscr{L}^n_S - O(X)$. In this case, we say that $(X, \tau_1, \cdots, \tau_n)$ is \mathscr{L}^n_S -topological space (or simply \mathscr{L}^n_S -space).

(4) The \mathscr{L}_{S}^{n} -closure of a set $K \subseteq X$, denoted by $\overline{K}^{\mathscr{L}_{S}^{n}}$ is the intersection of all \mathscr{L}_{S}^{n} -closed sets containing K. The set of all \mathscr{L}_{S}^{n} -open sets in X is denoted by \widetilde{K}^{n} . $\begin{array}{l} by \ \mathscr{L}^n_S - O(X) \ (or \ \mathscr{L}^n_S - O((X, \tau_1, \cdots, \tau_n)) \ if \ convenient), \ and \ the \ set \ of \ all \\ \mathscr{L}^n_S \text{-closed sets in } X \ is \ denoted \ by \ \mathscr{L}^n_S - C(X) \ (or \ \mathscr{L}^n_S - C((X, \tau_1, \cdots, \tau_n))) \end{array}$ if convenient).

Remark 2.2.

- (1) For any $i \in [n]$ with $S = \{i\}$, one has $\mathscr{L}_{S}^{n} O(X) = \mathscr{L}_{i}^{n} O(X)$. (2) Let $S \subsetneqq [n]$. If $A, A' \in \mathscr{L}_{S}^{n} O(X)$, then $A \cap A'$ need not be in $\mathscr{L}_{S}^{n} O(X)$ (see Example (2.7)). However, the following proposition shows that the union of a family of \mathscr{L}^n_S -open sets in X is \mathscr{L}^n_S -open.

Proposition 2.3. For any $i \in [n]$, let (X, τ_i) be a topological space, and let $S \subsetneq [n]$. (1) Let $\{A_{\alpha \in \Lambda}\}$ be a family of an \mathscr{L}^n_S -open sets in X. Then

$$\bigcup_{a \in A} A_a \in \mathscr{L}^n_S - O(X).$$

(2) Let $\{F_{\alpha \in \Lambda}\}$ be a family of an \mathscr{L}^n_S -closed sets in X. Then

$$\bigcap_{\alpha\in\Lambda}\,E_{\!\!a}\in\mathscr{L}^n_S-C(X).$$

(3) If $U \in \bigcap_{a \in S} \tau_a$, then $\overline{U}^j \in \mathscr{L}^n_S - O(X)$ for every $j \in [n] \setminus S$.

Proof.

4

(1) Let $S \subsetneq [n]$, and let $\{A_{\alpha \in \Lambda}\}$ be a family of an \mathscr{L}_{S}^{n} -open sets in X. By Definition (2.1), for any $\alpha \in \Lambda$, there exists a set $U_{\alpha} \in \bigcap_{a \in S} \tau_{a}$ with

$$U_{\alpha} \subseteq A_{\alpha} \subseteq \bigcup_{i \in [n] \setminus S} \overline{U_{\alpha}}^{i}.$$

Thus, we have

$$\bigcup_{\alpha \in \Lambda} U_{\alpha} \subseteq \bigcup_{\alpha \in \Lambda} A_{\alpha} \subseteq \bigcup_{\alpha \in \Lambda} \bigcup_{i \in [n] \setminus S} \overline{U_{\alpha}}^i \subseteq \bigcup_{i \in [n] \setminus S} \bigcup_{\alpha \in \Lambda} \overline{U_{\alpha}}^i \subseteq \bigcup_{i \in [n] \setminus S} \overline{\bigcup_{\alpha \in \Lambda} U_{\alpha}}^i.$$

As a consequence, we have

$$\bigcup_{\alpha \in \Lambda} E_{\alpha} \in \mathscr{L}_{j}^{n} - O(X).$$

- (2) This follows directly from part (1) of the proposition.
- (3) This clearly follows from Definition 2.1.

A Union of Two $\mathscr{L}^3_1\text{-open Sets }A_{\!\!\!\alpha}$ and $A_{\!\!\!\alpha'}$ is an \mathscr{L}^3_1 -open Set

The following is an immediate consequence of Proposition (2.3).

Corollary 2.4. For any $i \in [n]$, let (X, τ_i) be a topological space, and let $S \subsetneqq [n]$.

- (1) $\overline{K}^{\mathscr{L}_{S}^{n}} \in \mathscr{L}_{S}^{n} C(X)$ for any $K \subseteq X$. (2) $K \in \mathscr{L}_{S}^{n} C(X)$ if and only if $K = \overline{K}^{\mathscr{L}_{S}^{n}}$.

Proof.

- (1) This follows immediately from Definition (2.1) and part (2) of Proposition (2.3).
- (2) Suppose that $K \in \mathscr{L}_{S}^{n} C(X)$. By Definition (2.1), $\overline{K}^{\mathscr{L}_{j}^{n}}$ is the intersection of all \mathscr{L}_{j}^{n} -closed sets containing K. So, $K \subseteq \overline{K}^{\mathscr{L}_{S}^{n}}$. Since $K \in \mathscr{L}_{S}^{n} C(X)$, the intersection of all \mathscr{L}_{j}^{n} -closed sets containing K is K itself. Thus, $K = \overline{K}^{\mathscr{L}_{S}^{n}}$. If $K = \overline{K}^{\mathscr{L}_{S}^{n}}$, then by part (2) of Proposition (2.3), $K \in \mathscr{L}_{S}^{n} C(X)$ as desired.

Theorem 2.5. For any $i \in [n]$, let (X, τ_i) be a topological space, and let n be a positive integer.

(1) For any $k \in [n]$, one has

$$\tau_k \subseteq \mathscr{L}_k^n - O(X).$$

(2) For any $k, l, m \in [n]$ with $1 \le k \le l \le m \le n$, we have

$$\mathscr{L}_k^l - O(X) \subseteq \mathscr{L}_k^m - O(X)$$

(3) For any $E \subseteq X$ and a fixed positive integer $j \in [n]$, one has

$$\overline{E}^{\mathscr{L}_j^n} \subseteq \overline{E}^j.$$

(4) For any set $S \subsetneq [n]$, we have

$$\bigcap_{a \in S} \tau_a \subseteq \mathscr{L}^n_S - O(X).$$

(5) For any set $S \subsetneqq [n]$ and an integer t with $t \ge n$, we have

$$\mathscr{L}^n_S - O(X) \subseteq \mathscr{L}^t_S - O(X).$$

(6) Let $S \subseteq S' \subsetneqq [n]$. Then

$$\mathscr{L}^n_{S'} - O(X) \subseteq \mathscr{L}^m_S - O(X).$$

(7) For any set $S \subsetneqq [n]$, we have

$$\mathscr{L}^n_S - O(X) \subseteq \bigcap_{a \in S} \mathscr{L}^n_a - O(X).$$

(8) For any $S \subsetneqq [n]$ and $E \subseteq X$, one has

$$\overline{E}^{\mathscr{L}^n_S} \subseteq \overline{E}^{\bigcap_{a \in S} \tau_a}.$$

(9) Let $S \subsetneqq [n]$ and $U \in \tau_a$ for any $a \in S$. Then

$$\bigcup_{\in [n]: i \notin S} \overline{U}^i \in \mathscr{L}^n_S - O(X).$$

(10) Let $S \subsetneqq [n]$ and F an τ_a -closed for some $a \in S$. Then

$$\bigcap_{i \in [n]: i \notin S} \overline{F}^i \in \mathscr{L}^n_S - C(X).$$

Proof.

(1) Fix $k \in [n]$, and let $A \in \tau_k$. We have

$$A \subseteq A \subseteq \bigcup_{\{i \in [n] : i \neq j\}} \overline{A}^i.$$

Thus, $A \in \mathscr{L}_k^n - O(X)$, and hence $\tau_k \subseteq \mathscr{L}_k^n - O(X)$. (2) Fix $k, l, m \in [n]$ with $1 \leq k \leq l \leq m \leq n$, and let $A \in \mathscr{L}_k^l - O(X)$. By definition, there exists a set $U \in \tau_k$ with

$$U \subseteq A \subseteq \bigcup_{\{i \in [l] : i \neq k\}} \overline{U}^i \subseteq \bigcup_{\{i \in [m] : i \neq k\}} \overline{U}^i \text{ (since } [l] \subseteq [m]) \text{ .}$$

So, we have

$$\mathscr{L}_k^l - O(X) \subseteq \mathscr{L}_k^m - O(X).$$

(3) Fix $j \in [n]$, and let $E \subseteq X$. The intersection of all \mathscr{L}_j^n -closed sets containing K is subset of the intersection of all τ_j -closed sets containing K. Therefore,

$$\overline{E}^{\mathscr{L}_j^n} \subseteq \overline{E}^j$$

(4) Let $S \subsetneqq [n]$, and let $V \in \bigcap_{a \in S} \tau_a$. We have $V \in \tau_a$ for every $a \in S$ with

$$V \subseteq V \subseteq \bigcup_{\{i \in [n] : i \notin S\}} \overline{V}^i.$$

So, $V \in \mathscr{L}_{S}^{n} - O(X)$, and hence

$$\bigcap_{a \in S} \tau_a \subseteq \mathscr{L}^n_S - O(X).$$

(5) Let $S \subsetneq [n]$ and fix a positive integer t with $t \ge n$. Let $E \in \mathscr{L}_S^n - O(X)$. By definition, there exists a set $V \in \bigcup_{a \in S} \tau_a$ with

$$V \subseteq E \subseteq \bigcup_{\{i \in [n] : i \notin S\}} \overline{V}^i \subseteq \bigcup_{\{i \in [t] : i \notin S\}} \overline{V}^i \text{ (since } [n] \subseteq [t]) \text{ .}$$

Consequently, we have

$$\mathscr{L}^n_S - O(X) \subseteq \mathscr{L}^t_S - O(X).$$

(6) Let $S \subseteq S' \subsetneq [n]$, and let $E \in \mathscr{L}^n_{S'} - O(X)$. By definition, there exists $V \in \bigcap_{a \in S'} \tau_a$ with

$$V \subseteq E \subseteq \bigcup_{\{i \in [n] : i \notin S'\}} \overline{V}^i.$$

Since $\bigcap_{a \in S'} \tau_a \subseteq \bigcap_{b \in S} \tau_b$ and

$$\bigcup_{\{i\in[n]\,:\,i\notin S'\}}\overline{V}^i\subseteq\bigcup_{\{i\in[n]\,:\,i\notin S\}}\overline{V}^i,$$

we have $E \in \mathscr{L}_{S}^{\prime m} - O(X)$. Thus,

$$\mathscr{L}^n_{S'} - O(X) \subseteq \mathscr{L}'^m_S - O(X).$$

 $\mathbf{6}$

(7) Let $S \subsetneq [n]$, and let $E \in \mathscr{L}_S^n - O(X)$. By definition, there exists a set $V \in \bigcap_{a \in S} \tau_a$ with

$$V \subseteq E \subseteq \bigcup_{\{i \in [n] : i \notin S\}} \overline{V}^i.$$

So, $V \in \tau_a$ for any $a \in S$. Furthermore, for any $a \in S$, we have

$$V \subseteq E \subseteq \bigcup_{\{i \in [n] : i \notin S\}} \overline{V}^i \subseteq \bigcup_{\{i \in [n] : i \neq a\}} \overline{V}^i.$$

Accordingly, $E \in \mathscr{L}^n_a - O(X)$ for every $a \in S$ and hence $\mathscr{L}^n_S - O(X) \subseteq \bigcap_{a \in S} \mathscr{L}^n_a - O(X)$.

- (8) This an immediate consequence of part (4) of the theorem.
- (9) Note that

$$U \subseteq \bigcup_{\{i \in [n] : i \notin S\}} \overline{U}^i \subseteq \bigcup_{\{i \in [n] : i \notin S\}} \overline{U}^i$$

(10) The proof follows directly from the previous part.

The following consequence shows that $\mathscr{L}^n_S\text{-}\text{topological spaces are a generalization of topological spaces.}$

Theorem 2.6. For any $i \in [n]$, let (X, τ_i) be a topological space, and let n be a positive integer.

(1) If $j \in [n]$ is a fixed positive integer and $\tau_j = \mathscr{D}$ is the discrete topology on X, then

$$\mathscr{L}_i^n - O(X) = \tau_k = \mathscr{D}.$$

(2) If $j \in [n]$ is a fixed positive integer and $\tau_k = \mathscr{D}$ is the discrete topology on X for all $k \in [n]$ with $k \neq j$, then

$$\mathscr{L}_{i}^{n} - O(X) = \tau_{i}.$$

(3) If $S \subsetneq [n]$ and $\tau_a = \mathscr{D}$ (the discrete topology on X) for all $a \in S$, we have

$$\mathscr{L}^n_S - O(X) = \mathscr{D}.$$

(4) If $S \subsetneqq [n]$ and $\tau_{\mathbf{b}} = \mathscr{D}$ (the discrete topology on X) for all $\mathbf{b} \in [n] \setminus S$, we have

$$\mathscr{L}^n_S - O(X) = \bigcap_{a \in S} \tau_a.$$

(5) If $j \in [n]$ is a fixed positive integer and $\tau_j = \mathscr{I}$ is the indiscrete topology on X, then

$$\mathscr{L}_j^n - O(X) = \tau_j = \mathscr{I}.$$

(6) If $S \subsetneq [n]$ and $\tau_a = \mathscr{I}$ (the indiscrete topology on X) for all $a \in S$, then

$$\mathscr{L}^n_S - O(X) = \mathscr{I}.$$

Example 2.7. Let $X = \{a, b, c\}$, $E = \{a, c\}$, and $S = \{1, 3\}$. Consider the following topologies on X:

$$\begin{split} \tau_1 &= \{ \emptyset, \{a\}, X \} \\ \tau_2 &= \{ \emptyset, \{b\}, X \}, \\ \tau_3 &= \{ \emptyset, \{c\}, X \}, \\ \tau_4 &= \{ \emptyset, \{a\}, \{a, b\}, X \} \\ \tau_5 &= \{ \emptyset, \{a\}, \{a, c\}, X \} \\ \tau_6 &= \{ \emptyset, \{a\}, \{b, c\}, X \}, \\ \tau_7 &= \{ \emptyset, \{b\}, \{a, c\}, X \}, \\ \tau_8 &= \{ \emptyset, \{b\}, \{a, c\}, X \}, \\ \tau_9 &= \{ \emptyset, \{b\}, \{a, b\}, X \}, \\ \tau_{10} &= \{ \emptyset, \{c\}, \{a, b\}, X \}, \\ \tau_{11} &= \{ \emptyset, \{c\}, \{b, c\}, X \}. \end{split}$$

A simple calculation shows that

$$\mathscr{L}_{2}^{12} - O(X) = \{\emptyset, \{b\}, \{a, b\}, \{b, c\}, X\}$$

and

$$\mathscr{L}_{6}^{12} - O(X) = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}.$$

Note that $\tau_1 \cap \tau_3 = \mathscr{I}$. We have

$$\mathscr{L}^{12}_S - C(X) = \mathscr{I}_S$$

since

$$\mathscr{L}_2^{12} - C(X) = \{\emptyset, \{a, c\}, \{c\}, \{a\}, X\}$$

and

$$\mathscr{L}_{6}^{12} - C(X) = \{\emptyset, \{b, c\}, \{c\}, \{b\}, \{a\}, X\}.$$

It is clear that

$$\overline{E}^{\mathscr{L}_{2}^{12}} = \{a,c\} = E, \ \overline{E}^{\mathscr{L}_{6}^{12}} = \{a,b,c\} = X, \ and \ \overline{E}^{\mathscr{L}_{S}^{12}} = \{a,b,c\} = X.$$

One might notice that $\{a,b\}, \{b,c\} \in \mathscr{L}_6^{12} - O(X)$, but $\{a,b\} \cap \{b,c\} = \{b\} \notin \mathscr{L}_6^{12} - O(X)$. In general, if $A, A' \in \mathscr{L}_S^n - O(X)$, then $A \cap A'$ need not be in $\mathscr{L}_S^n - O(X)$.

Definition 2.8. Let $S \subsetneq [n]$, and let $(X, \tau_1, \dots, \tau_n)$ and $(X', \tau'_1, \dots, \tau'_n)$ be \mathscr{L}^n_S topological spaces. A map $f : (X, \tau_1, \dots, \tau_n) \to (X', \tau'_1, \dots, \tau'_n)$ is called an \mathscr{L}^n_S continuous map if $f^{-1}(W) \in \mathscr{L}^n_S - O(X)$, for every $W \in \bigcap_{a \in S} \tau'_a$ in X'. The
map $f : (X, \tau_1, \dots, \tau_n) \to (X', \tau'_1, \dots, \tau'_n)$ is called an \mathscr{L}^n_S homeomorphism if it is
bijective, and f and f^{-1} are \mathscr{L}^n_S -continuous maps.

Theorem 2.9. Let $S \subsetneq [n]$, and let $(X, \tau_1, \dots, \tau_n)$ and $(X', \tau_1', \dots, \tau_n')$ be \mathscr{L}_S^n -topological spaces, and let $f: X \to X'$ be a map.

 \mathscr{L}^4_S -Continuity with $S = \{1, 3\}$

(1) If $f: (X, \tau_1, \dots, \tau_n) \to (X', \tau_1', \dots, \tau_n')$ is an \mathscr{L}^n_a -continuous map for any $a \in S$ and

$$\bigcap_{a \in S} \mathscr{L}_a^n - O(X) \subseteq \mathscr{L}_S^n - O(X),$$

- $\begin{array}{l} \text{then } f:(X,\ \tau_1,\cdots,\tau_n)\to (X',\tau_1',\cdots,\tau_n') \text{ is an } \mathscr{L}^n_S\text{-continuous map.}\\ (2) \ If \ f:(X,\bigcap_{a\in S}\tau_a)\to (X',\bigcap_{a\in S}\tau_a') \text{ is a continuous map, then } f:(X,\tau_1,\cdots,\tau_n)\to (X',\tau_1',\cdots,\tau_n') \text{ is an } \mathscr{L}^n_S\text{-continuous map.}\\ (3) \ If \ f:\ (X,\tau_a)\to (X',\tau_a') \text{ is a continuous map for any } a\in S, \text{ then } f:(X,\tau_1,\cdots,\tau_n)\to (X,\ \tau_1,\cdots,\tau_n)\to (X',\tau_1',\cdots,\tau_n') \text{ is an } \mathscr{L}^n_S\text{-continuous map.}\end{array}$

Proof.

(1) Let $W \in \bigcap_{a \in S} \tau'_a$. It follows that $W \in \tau'_a$ for every $a \in S$. $f : (X, \tau_1, \dots, \tau_n) \to (X', \tau'_1, \dots, \tau'_n)$ is an \mathscr{L}^n_a -continuous map for any $a \in S$, $f^{-1}(W) \in \bigcap_{a \in S} \mathscr{L}^n_a - O(X)$.

Since $\bigcap_{a \in S} \mathscr{L}_a^n - O(X) \subseteq \mathscr{L}_S^n - O(X), \ f^{-1}(W) \in \mathscr{L}_S^n - O(X)$ which completes the proof.

- (2) This is clear.
- (3) This follows directly from the previous part.

The following is an immediate consequence of Theorem (2.9)

Corollary 2.10. Let $(X, \tau_1, \dots, \tau_n)$ and $(X', \tau_1', \dots, \tau_n')$ be \mathscr{L}^n_S -topological spaces, and let $f: X \to X'$ be a map such that $f: (X, \tau_a) \to (X', \tau'_a)$ is a homeomorphism for any $a \in S$. Then $f: (X, \tau_1, \dots, \tau_n) \to (X', \tau'_1, \dots, \tau'_n)$ is an \mathscr{L}^n_S homeomorphism.

We have the following analogue of the "usual continuity".

Theorem 2.11. Let $S \subsetneq [n]$, and let $(X, \tau_1, \cdots, \tau_n)$ and $(X', \tau_1', \cdots, \tau_n')$ be \mathscr{L}_S^n topological spaces, and let $f: X \to X'$ be a map. Then, the following statements are equivalent:

- $\begin{array}{ll} (1) \ f: (X, \ \tau_1, \cdots, \tau_n) \to (X', \tau_1', \cdots, \tau_n') \ is \ \mathscr{L}^n_S \ \text{-continuous.} \\ (2) \ f^{-1}(W) \in \mathscr{L}^n_S \ C(X), \ \text{for every} \ \bigcap_{a \in S} \tau_a' \ \text{-closed set } W \ \text{in } X'. \end{array}$
- (3) For any subset E in X,

$$f(\overline{E}^{\mathscr{L}^n_S}) \subseteq \overline{f(E)}^{\bigcap_{a \in S} \tau'_a}.$$

(4) For any subset E' in X',

$$\overline{f^{-1}(E)}^{\mathscr{L}^n_S} \subseteq f^{-1}(\overline{E}^{\bigcap_{a \in S} \tau'_a}).$$

It might be noticeable that Definition (2.8) gives rise to a category \mathscr{C}_{S}^{n} whose objects are \mathscr{L}^n_S -topological spaces and whose morphisms are \mathscr{L}^n_S -continuous maps.

3. \mathscr{L}_{S}^{n} -proximity Spaces

Following [2], we first recall some basic concepts of proximity spaces.

Definition 3.1. [2] A binary relation δ on the power set of X is called an (Efremovic) proximity on X if δ satisfies the following axioms:

- (i) $A\delta B$ implies $B\delta A$
- (ii) $A\delta(B \mid C)$ implies $A\delta B$ or $A\delta C$
- (iii) $A\delta B$ implies $A \neq \emptyset, B \neq \emptyset$
- (iv) $A\underline{\delta}B$ implies there exists a subset E such that $A\underline{\delta}E$ and $(X \setminus E)\underline{\delta}B$
- (v) $A \cap B \neq \emptyset$ implies $A\delta B$

where

$$\underline{\delta} = (\mathscr{P}(X) \times \mathscr{P}(X)) \setminus \delta.$$

A proximity space is a pair (X, δ) , where X is a set and δ is a proximity relation. A proximity space is called separated if the following axiom holds:

 $\{x\}\delta\{y\}$ implies x = y. If $A\delta B$, we say A is near B or A and B are (vi)proximal; otherwise we say A and B are apart, and we write it as $A\underline{\delta}B$. We say B is a proximal or δ -neighborhood of A, and we write it as $A \ll B$, if and only if A and $X \setminus B$ are apart.

The main properties of this set neighborhood relation, listed below, provide an alternative axiomatic characterization of proximity spaces.

For all subsets $A, B, C, D \subseteq X$

- (1) $X \ll X$
- (2) $A \ll B$ implies $A \subseteq B$
- (3) $A \subseteq B \ll C \subseteq D$ implies $A \ll D$
- (4) $(A \ll B \text{ and } A \ll C)$ implies $A \ll B \cap C$
- (5) $A \ll B$ implies $X \setminus B \ll X \setminus A$

(6) $A \ll B$ implies that there exists some E such that $A \ll E \ll B$.

A proximity or proximal map is one that preserves nearness, that is, given $f : (X, \delta) \to (Y, \delta')$ if $A\delta B$ in X, then $f(A)\delta' f(B)$ in Y [2].

Theorem 3.2. [2] If a subset A of a proximity space (X, δ) is defined to be closed iff $x\delta A$ implies $x \in A$, then the collection of complements of all closed sets so defined yields a topology $\tau = \tau(\delta)$ on X. Furthermore, the τ -closure \overline{A} of A is given by $\overline{A} = \{x : x\delta A\}.$

Theorem 3.3. Let $S = \{a_1, \dots, a_m\} \subsetneq [n]$, and write $[n] \setminus S = \{b_1, \dots, b_{n-m}\}$ and let (X, δ_{b_i}) be a proximity space with a corresponding proximity topology $\tau(\delta_{b_i})$ for any $i \in [n] \setminus S$. Define a relation δ on $\mathscr{P}(X)$ (the power set of X) by $A\delta B$ if $A\delta_{b_i} B$ for some $t \in [n] \setminus S$.

- (1) The relation δ is a proximity relation on $\mathscr{P}(X)$.
- (2) For any family of topologies $\{\tau_k : k \in [m]\}$, we have

$$\mathscr{L}_{S}^{n} - O((X,\tau_{1},\cdots,\tau_{m},\tau(\delta_{b_{1}}),\cdots,\tau(\delta_{b_{n-m}}))) = \mathscr{L}_{S}^{m+1} - O((X,\tau_{1},\cdots,\tau_{m},\tau(\delta))).$$

Proof.

(1) The proof is clear.

(2) It suffices to show that

$$\overline{E}^{\tau(\delta)} = \bigcup_{i=1}^{n-m} \overline{E}^{\tau(\delta_{b_i})},$$

for any $E \subseteq X$. Let $E \subseteq X$. Let $x \in \overline{E}^{\tau(\delta)}$. We have $x \delta E$ which implies that $x_{\delta_{h}} E$ for some $t \in [n] \setminus S$. Thus, $x \in \overline{E}^{\tau(\delta_{b_i})}$, and hence

$$x \in \bigcup_{i=1}^{n-m} \overline{E}^{\tau(\delta_{b_i})}.$$

It follows that

$$\overline{E}^{\tau(\delta)} \subseteq \bigcup_{i=1}^{n-m} \overline{E}^{\tau(\delta_{b_i})}$$

Let

$$y \in \bigcup_{i=1}^{n-m} \overline{E}^{\tau(\delta_{b_i})}.$$

So, $y \in \overline{E}^{\tau(\delta_t)}$ for some $t \in [n] \setminus S$. This implies that $y \in \overline{E}^{\tau(\delta)}$. Consequently,

$$\bigcup_{i=1}^{n-m} \overline{E}^{\tau(\delta_{b_i})} \subseteq \overline{E}^{\tau(\delta)}, \text{ and hence } \overline{E}^{\tau(\delta)} = \bigcup_{i=1}^{n-m} \overline{E}^{\tau(\delta_{b_i})}.$$

This completes the proof of assertion (2).

Definition 3.4. [2] If δ_1 and δ_2 are two proximities on a set X, we define $\delta_1 < \delta_2$ iff $A\delta_1 B$ implies $A\delta_2 B$.

A. ABDULWAHID, E. ELAMAMI

 $\overline{E}^{\tau(\delta)} = \bigcup_{i \in [n] \setminus S} \overline{E}^{\tau(\delta_i)}$ for $S = \{1, 2, 4\}$ and n = 9

The above is expressed by saying that δ_1 is finer than δ_2 , or δ_2 is coarser than δ_1 . The following theorem shows that a finer proximity structure induces a finer topology:

Theorem 3.5. [2] Let δ_1 and δ_2 be two proximities on a set X. Then $\delta_1 < \delta_2$ implies $\tau(\delta_2) \subseteq \tau(\delta_1)$.

An analogue of Theorem for \mathscr{L}^n_S -spaces can be stated as follows:

Theorem 3.6. Let $S = \{a_1, \dots, a_m\} \subseteq [n]$, and write $[n] \setminus S = \{b_1, \dots, b_{n-m}\}$ and let (X, δ_i) be a proximity space with a corresponding proximity topology $\tau(\delta_i)$ for any $i \in [n] \setminus S$. If $\delta_1 < \dots < \delta_{n-m}$, then for any family of topologies $\{\tau_k : k \in [m]\}$, we have

$$\mathscr{L}_{S}^{n} - O((X, \tau_{1}, \cdots, \tau_{m}, \tau(\delta_{b_{1}}), \cdots, \tau(\delta_{b_{n-m}}))) = \mathscr{L}_{S}^{m+1} - O((X, \tau_{1}, \cdots, \tau_{m}, \tau(\delta_{b_{n-m}})))$$

Proof. By Theorem (3.5), we have $\tau(\delta_{b_{n-m}}) \subseteq \cdots \subseteq \tau(\delta_{b_1})$. Thus, for any $E \subseteq X$, we have

$$\bigcup_{i \in [n] \setminus S} \overline{E}^{\tau(\delta_{b_i})} = \overline{E}^{\tau(\delta_{b_n-m})}.$$

It follows that

$$\mathscr{L}^n_S - O((X, \tau_1, \cdots, \tau_m, \tau(\delta_{b_1}), \cdots, \tau(\delta_{b_{n-m}}))) = \mathscr{L}^{m+1}_S - O((X, \tau_1, \cdots, \tau_m, \tau(\delta_{b_{n-m}}))).$$

Definition 3.7. Let $S \subsetneq [n]$, and let (X, δ_i) be a proximity space for any $i \in [n]$. Let δ be a binary relation on $\mathscr{P}(X)$ (the power set of X) defined by $A\delta B$ if and only if the following axioms are satisfied:

(i) $x \notin A$ implies $x\delta_a(X \setminus B)$ for any $a \in S$.

(ii) $x\delta_i B$ for any $i \in [n] \setminus S$ implies $x \notin A$.

Then δ is called an \mathscr{L}_{S}^{n} -(Efremovic) proximity, or simply \mathscr{L}_{S}^{n} -proximity, induced by proximity relations $\delta_{1}, \dots, \delta_{n}$. An \mathscr{L}_{S}^{n} -proximity space induced by $\delta_{1}, \dots, \delta_{n}$ is a pair (X, δ) , where X is a set and δ is an \mathscr{L}_{S}^{n} -proximity relation induced by proximity relations $\delta_{1}, \dots, \delta_{n}$.

Theorem 3.8. Let (X, δ) be an \mathscr{L}_{S}^{n} -proximity space induced by $\delta_{1}, \dots, \delta_{n}$. If a subset E of X is defined to be \mathscr{L}_{S}^{n} -open if and only if $E\delta V$ for some $V \subseteq X$ with $\{x \in X : x\delta_{a}(X \setminus V)\} = X \setminus V$ for any $a \in S$, then the collection of all \mathscr{L}_{S}^{n} -open sets so defined yields an \mathscr{L}_{S}^{n} -topological space (on X) with $\mathscr{L}_{S}^{n} - O(X) = \mathscr{L}_{S}^{n} - O(X)(\delta)$.

Proof.

We will show that the desired \mathscr{L}_{S}^{n} -topological space is precisely the \mathscr{L}_{S}^{n} -topological space $(X, \tau(\delta_{1}), \cdots, \tau(\delta_{n}))$. We first notice that if $V \subseteq X$ with $\{x \in X : x\delta_{a}(X \setminus V)\} = X \setminus V$ for any $a \in S$ in X, then $V \in \mathscr{L}_{S}^{n} - O(X, \tau(\delta_{1}), \cdots, \tau(\delta_{n}))$, and the converse is true as well. Let $E \in \mathscr{L}_{S}^{n} - O(X, \tau(\delta_{1}), \cdots, \tau(\delta_{n}))$. There exists a set $V \in \bigcap_{a \in S} \tau_{a}$ with

$$V \subseteq E \subseteq \bigcup_{\{i \in [n] : i \notin S\}} \overline{V}^i,$$

where for any $i \in [n]$, \overline{V}^i is the closure set of V with respect to τ_i . So, we have

$$\bigcap_{\{i \in [n] : i \notin S\}} X \setminus \overline{V}^i \subseteq X \setminus E \subseteq X \setminus V.$$

The statement

$$\bigcap_{i \in [n] : i \notin S\}} X \setminus \overline{V}^i \subseteq X \setminus E$$

shows that $x\delta_i V$ for any $i \in [n] \setminus S$ implies $x \notin E$, and the statement

$$X \setminus E \subseteq X \setminus V$$

asserts that $x \notin E$ implies $x\delta_a(X \setminus V)$ for any $a \in S$ (since V is $\tau(\delta_a)$ -closed for every $a \in S$). Thus, $E\delta V$. Conversely, if $E\delta V$ for some $V \in \bigcap_{a \in S} \tau_a$, then $V \in \bigcap_{a \in S} \tau_a$, and the following statements are satisfied.

- (i) $x\delta_i V$ for any $i \in [n] \setminus S$ implies $x \notin A$.
- (ii) $x \notin E$ implies $x\delta_a(X \setminus V)$ for any $a \in S$.

The statements ((i)) and ((ii)) imply that

$$\bigcap_{\{i\in[n]\,:\,i\notin S\}} X\setminus \overline{V}^i\subseteq X\setminus E$$

and

$$X \setminus E \subseteq X \setminus V$$

respectively. This proves that $E \in \mathscr{L}_{S}^{n} - O(X, \tau(\delta_{1}), \cdots, \tau(\delta_{n}))$ which completes the proof. \Box

It might be noticeable that the relation δ defined in Definition (3.7) is not symmetric, in general; that is, $A\delta B$ and $B\delta A$ need not be the same. Nevertheless, we have the following consequence.

Theorem 3.9. Let (X, δ) be an \mathscr{L}^n_S -proximity space induced by $\delta_1, \dots, \delta_n$, and let $B \subseteq C$.

A. ABDULWAHID, E. ELAMAMI

- (i) If $A\delta C$, then $A\delta B$.
- (ii) If $A\delta \overline{B}^{\delta}$, then $A\delta B$, where \overline{B}^{δ} is the closure with respect to the \mathscr{L}_{S}^{n} topological space with $\mathscr{L}_{S}^{n} O(X) = \mathscr{L}_{S}^{n} O(X)(\delta)$.

Proof.

(i) Let $A\delta C$, and let $x \notin A$. Since $A\delta C$, this implies $x\delta_a(X \setminus C)$ for any $a \in S$. Since $B \subseteq C$, $(X \setminus C) \subseteq (X \setminus B)$. Thus, $x \notin A$ implies $x\delta_a(X \setminus B)$ for any $a \in S$. Let $x\delta_i B$ for any $i \in [n] \setminus S$. It follows that

$$\begin{aligned} & x \ll_{\delta_i} X \setminus C \\ \text{ay } i \in [n] \setminus S. \text{ Since } (X \setminus C) \subseteq (X \setminus B), \\ & x \ll_{\delta_i} X \setminus B \end{aligned}$$

for any $i \in [n] \setminus S$. Consequently, $A\delta B$. implies $x \notin A$.

(ii) This follows directly from part (i) and Theorem (3.8).

Definition 3.10. Let (X, δ) and (X, δ') be \mathscr{L}^n_S -proximity spaces induced by $\delta_1, \dots, \delta_n$ and $\delta'_1, \dots, \delta'_n$ respectively. We define

 $\delta < \delta'$ iff $A\delta'B$ implies $A\delta B$

for any subsets A and B of X.

for ar

Theorem 3.11. Let (X, δ) and (X, δ') be an \mathscr{L}^n_S -proximity spaces induced by $\delta_1, \dots, \delta_n$ and $\delta'_1, \dots, \delta'_n$ respectively, and let $\delta'_a < \delta_a$ for any $a \in S$. Then $\delta < \delta'$ implies $\mathscr{L}^n_S - O(X)(\delta) \subseteq \mathscr{L}^n_S - O(X)(\delta')$.

Proof. Let $\delta < \delta'$, and let $E \in \mathscr{L}_{S}^{n} - O(X)(\delta)$. It follows from Theorem (3.8) that $E\delta V$ for some $V \in \bigcap_{a \in S} \tau(\delta_{a})$. Since $\delta'_{a} < \delta_{a}$ for any $a \in S$, by Theorem (3.5), we have $\tau(\delta_{a}) \subseteq \tau(\delta_{a})$ for any $a \in S$, and hence $\bigcap_{a \in S} \tau(\delta_{a}) \subseteq \bigcap_{a \in S} \tau(\delta'_{a})$. Consequently, we have $E\delta V$ with $V \in \bigcap_{a \in S} \tau(\delta'_{a})$. Theorem (3.8) asserts that $E \in \mathscr{L}_{S}^{n} - O(X)(\delta')$. Therefore, $\mathscr{L}_{S}^{n} - O(X)(\delta) \subseteq \mathscr{L}_{S}^{n} - O(X)(\delta')$.

Definition 3.12. Let (X, δ) and (Y, δ') be an \mathscr{L}_{S}^{n} -proximity spaces induced by $\delta_{1}, \dots, \delta_{n}$ and $\delta'_{1}, \dots, \delta'_{n}$ respectively. A map $f : (X, \delta) \to (Y, \delta')$ is said to be an \mathscr{L}_{S}^{n} -proximity map if any $B \subseteq Y$ with $\{y \in Y : y\delta'_{a}(Y \setminus B)\} = Y \setminus B$ for any $a \in S$ implies $f^{-1}(B)\delta V$, for some $V \subseteq X$ with $\{x \in X : x\delta_{a}(X \setminus V)\} = X \setminus V$ for any $a \in S$ in X.

Theorem 3.13. Let (X, δ) and (Y, δ') be an \mathscr{L}_{S}^{n} -proximity spaces induced by $\delta_{1}, \dots, \delta_{n}$ and $\delta'_{1}, \dots, \delta'_{n}$ respectively, and let $f : X \to Y$ be a map. Then $f : (X, \delta) \to (Y, \delta')$ is an \mathscr{L}_{S}^{n} -proximity map iff $f : (X, \tau(\delta_{1}), \dots, \tau(\delta_{n})) \to (Y, \tau(\delta'_{1}), \dots, \tau(\delta'_{n}))$ is \mathscr{L}_{S}^{n} -continuous.

Proof. Suppose that $f: (X, \delta) \to (Y, \delta')$ is an \mathscr{L}_S^n -proximity map. Let $Y \setminus W \in \bigcap_{a \in S} \tau(\delta'_a)$. So, W is $\bigcap_{a \in S} \tau(\delta'_a)$ -closed and hence $\tau(\delta'_a)$ -closed for any $a \in S$. It follows that the set $\{y \in Y : y\delta'_a(Y \setminus W)\} = Y \setminus W$ for any $a \in S$. Since $f: (X, \delta) \to (Y, \delta')$ is an \mathscr{L}_S^n -proximity map, $f^{-1}(W)\delta V$, for some $V \subseteq X$ with $\{x \in X : x\delta_a(X \setminus V)\} = X \setminus V$ for any $a \in S$ in X. As a consequence, $f^{-1}(W)\delta V$, for some $V \subseteq X$. By Theorem (3.8), $f^{-1}(W) \in \mathscr{L}_S^n - O(X, \tau(\delta_1), \cdots, \tau(\delta_n))$. Thus, $f: (X, \tau(\delta_1), \cdots, \tau(\delta_n)) \to (Y, \tau(\delta'_1), \cdots, \tau(\delta'_n))$ is \mathscr{L}_S^n -continuous. For the

other direction, suppose that $f: (X, \tau(\delta_1), \cdots, \tau(\delta_n)) \to (Y, \tau(\delta'_1), \cdots, \tau(\delta'_n))$ is \mathscr{L}_S^n -continuous. Let $B \subseteq Y$ with $\{y \in Y : y\delta'_a(Y \setminus B)\} = Y \setminus B$ for any $a \in S$. This implies that B is $\tau(\delta'_a)$ -closed for any $a \in S$ and hence $Y \setminus B \in \tau(\delta'_a)$ for any $a \in S$. So, $Y \setminus B \in \bigcap_{a \in S} \tau(\delta'_a)$. Since $f: (X, \tau(\delta_1), \cdots, \tau(\delta_n)) \to (Y, \tau(\delta'_1), \cdots, \tau(\delta'_n))$ is \mathscr{L}_S^n -continuous, $f^{-1}(W) \in \mathscr{L}_S^n - O(X, \tau(\delta_1), \cdots, \tau(\delta_n))$. By Theorem (3.8), $f^{-1}(W)\delta V$, for some $V \subseteq X$, and this completes the proof. \Box

4. Descriptive \mathscr{L}^n_S -proximity Spaces

Following [3] and [4], we recall some basic concepts of digital topology. A probe Φ maps a member of a set to a value in \mathbb{R} (reals). Probe function values define feature vectors useful in comparing, clustering and classifying members of a set. One can find open sets in digital images. Let $\Phi(x)$ denote a feature vector for the object x, i.e., a vector of feature values that describe x. A feature vector provides a description of an object and subsets of X. Let Φ denote a set of n real-valued probe functions $\Phi: X \to \mathbb{R}$ representing features such as greylevel intensity, colour, shape or texture of a point x (picture element) in a digital image X, i.e.,

$$\Phi = \{\phi_1, \cdots, \phi_n\}$$

And let $\Phi(x)$ denote a feature vector containing numbers representing feature values extracted from x. Then, for a set of n probe functions, a feature vector has the following form:

$$\Phi(x) = \{\phi_1(x), \cdots, \phi_n(x)\},\$$

where $\phi_i(x)$ is the ith feature value. To obtain a descriptive proximity relation (denoted by δ_{Φ}), one first chooses a set of probe functions, which provides a basis for describing points in a set. Let $A, B \in \mathscr{P}(X)$. Let $\mathcal{Q}(A), \mathcal{Q}(B)$ denote sets of descriptions of points in A, B, respectively. That is,

$$Q(A) = \{\Phi(a) : a \in A\}, \ Q(B) = \{\Phi(b) : b \in B\}.$$

The expression $A\delta_{\Phi}B$ reads A is descriptively near B. The relation δ_{Φ} is called a descriptive proximity relation. Similarly, $A\underline{\delta}_{\Phi}B$ denotes that A is descriptively far (remote) from B. The descriptive proximity of A and B is defined by

$$A\delta_{\Phi}B$$
 if and only if $\mathcal{Q}(A) \cap \mathcal{Q}(B) \neq \emptyset$. (4.1)

The descriptive intersection \bigcap_{A} of A and B is defined by

$$A \underset{\Phi}{\cap} B = \{ x \in A \cup B : \mathcal{Q}(x) \in \mathcal{Q}(A) \text{ and } \mathcal{Q}(x) \in \mathcal{Q}(B) \}.$$

$$(4.2)$$

The descriptive proximity relation δ_{Φ} is defined by

$$\delta_{\Phi} = \{ (A, B) \in (\mathscr{P}(X) \times \mathscr{P}(X)) : clA \cap_{\Phi} clB \neq \emptyset \}.$$

$$(4.3)$$

Whenever sets A and B have no points with matching (or almost near) descriptions, the sets are descriptively far from each other (denoted by $A\underline{\delta}_{\star}B$), where

$$\underline{\delta}_{\Phi} = (\mathscr{P}(X) \times \mathscr{P}(X)) \setminus \delta_{\Phi}.$$
(4.4)

In general, a binary relation δ_{Φ} is a *descriptive EF-proximity*, provided the following axioms are satisfied for $A, B, C \in \mathscr{P}(X)$.

(EF₄.1) A descriptively close to B implies $A \neq \emptyset$, $B \neq \emptyset$.

 $(EF_{\Phi}.2) \land A \cap B$ implies A is descriptively close to B.

 $(EF_{\bullet}.3)$ A descriptively close to B implies B descriptively close to A (descriptive

symmetry).

 $(EF_{\Phi}.4)$ A descriptively close to $(B \cup C)$, if and only if, A descriptively close to B or A descriptively close to C.

 $(EF_{\Phi}.5)$ Descriptive Efremovic axiom: A descriptively far from B implies A descriptively far from C and B descriptively far from $X \setminus C$ for some $C \in \mathscr{P}(X)$.

The descriptive proximity relation δ_{Φ} reads descriptively close to (descriptively near). The structure (X, δ_{Φ}) is a *descriptive EF-proximity space* (or, briefly, *descriptive EF space*, or even *descriptive space*). The remoteness proximity relation δ_{Φ} reads descriptively far from (or descriptively remote from or descriptively not close to). For basic concepts of descriptive spaces and digital topology, we refer the reader to [3] and [4].

Definition 4.1. Let $S \subsetneq [n]$ and $\Phi^{(i)}$ be a set of probe functions representing features of picture points in X for any $i \in [n]$. Let $(X, \delta_{\Phi^{(i)}}^{(i)})$ be a descriptive proximity space for any $i \in [n]$. Then the \mathscr{L}_S^n -descriptive proximity space induced by $\delta_{\Phi^{(1)}}^{(1)}, \dots, \delta_{\Phi^{(n)}}^{(n)}$ is the \mathscr{L}_S^n -proximity space (X, δ_{Φ}) induced by $\delta_{\Phi^{(1)}}^{(1)}, \dots, \delta_{\Phi^{(n)}}^{(n)}$.

The following is an immediate consequence of Theorem (3.8),

Theorem 4.2. Let (X, δ_{Φ}) be an \mathscr{L}_{S}^{n} -descriptive proximity space induced by $\delta_{\Phi^{(1)}}^{(1)}, \dots, \delta_{\Phi^{(n)}}^{(n)}$, where $\Phi^{(i)}$ is a set of probe functions representing features of picture points in X for any $i \in [n]$. Then (X, δ_{Φ}) induces an \mathscr{L}_{S}^{n} -topological space on X with $\mathscr{L}_{S}^{n} - O(X)(\delta_{\Phi}) = \mathscr{L}_{S}^{n} - O(X, \tau(\delta_{\Phi^{(1)}}^{(1)}), \dots, \tau(\delta_{\Phi^{(n)}}^{(n)}).$

Example 4.3. We use Theorem (2.5) to calculate

$$A = \bigcup_{\{i \in [6] : i \neq 2\}} \overline{U}^i \in \mathscr{L}_2^6 - O(X).$$

 $U\in\tau(\boldsymbol{\delta}_{_{\boldsymbol{\Phi}^{\!\!\!\!\!(2)}}}^{\!\!\!\!\!(2)})$

The proximity relations $\delta_{\Phi^{(i)}}^{(i)}$ are defined as in (4.1) for every $i \in [6]$. Here, a black color corresponds to 0 = lowest intensity, and a white color represents 255 = highest intensity.

Example 4.4. We use an image of Iowa "Hawkeyes Herky" and Theorem (2.5) to calculate

As in the previous example, the proximity relations $\delta_{\Phi^{(i)}}^{(i)}$ are defined as in (4.1) for every $i \in [6]$, a black color corresponds to 0 = lowest intensity, and a white color represents 255 = highest intensity.

References

- J.C Kelly. Bitopological Spaces. Proceedings of the London Mathematical Society.13, 71-89. (1963).
- [2] S. A. Naimpally, B. D. Warrack. Proximity Spaces. Cambridge Tracts in Mathematics and Mathematical Physics. 59 (1970). Cambridge: Cambridge University Press. ISBN 0-521-07935-7.
- J. F. Peters. Computational Proximity. Excursions in the Topology of Digital Images. Intelligent Systems Reference Library, 102. Springer, [Cham], 2016. doi: 10.1007/978-3-319-30262-1 (2016).
- [4] J. F. Peters. Topology of Digital Images. Visual Pattern Discovery in Proximity Spaces, Intelligent Systems Reference Library, 63, Berlin: Springer (2014).

Adnan Hashim Abdulwahid

DEPARTMENT OF MATHEMATICS, CENTRO DE TECNOLOGIA TEXAS A&M UNIVERSITY–TEXARKANA, 7101 UNIVERSITY AVE TEXARKANA, TX 75503, USA

E-mail address: AAbdulwahid@tamut.edu

Elgaddafi Elamami

MATHEMATICS AND COMPUTER SCIENCE DEPARTMENT, SOUTHERN ARKANSAS UNIVERSITY, 100 E. UNIVERSITY MSC 9255, MAGNOLIA, ARKANSAS, 71753, USA

E-mail address: eelamami@saumag.edut