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DIGITAL L n
S –TOPOLOGICAL SPACES

ADNAN ABDULWAHID, ELGADDAFI ELAMAMI

Abstract. This paper is a recipe for three crucial ingredients: Bitopological

spaces, proximity theory and digital image processing. The notion of L n
S -

topological spaces and L n
S -proximity spaces are introduced as generalizations

of topological spaces and proximity spaces respectively. We explicitly compute

and visualize descriptive-L n
S -open sets.

1. Introduction and Preliminaries

1.1. Introduction. Proximity theory has been growing rapidly. It leads to various
applications of digital image processing. Descriptive proximity plays a crucial role in
visualizing patterns that bridge some important geometric and topological concepts
such as connectedness, nearness, adjacency of points, parallel edges, and spatially
distinct points with matching descriptions. A proximity space is a topological space
equipped with a proximity relation [3]. Using proximity spaces and topology enables
us to study and discover many important concepts in a beautiful mathematical
approach.
Following [4], a digital image is a discrete representation of visual field objects
that have spatial (layout) and intensity (color or grey tone) information. From
an appearance point of view, a greyscale digital image (an image containing pixels
that are visible as black or white or grey tones (intermediate between black and
white)) is represented by a 2D light intensity function I(x, y), where x and y are
spatial coordinates and the value of I at (x, y) is proportional to the intensity of
light that impacted on an optical sensor and recorded in the corresponding picture
element (pixel) at that point. If we have a multicolor image, then a pixel at (x, y)
is 1 × 3 array and each array element indicates a red, green or blue brightness
of the pixel in a color band (or color channel). A greyscale digital image I is
represented by a single 2D array of numbers and a color image is represented by a
collection of 2D arrays, one for each color band or channel. This is how, for example,
Matlab represents color images. A pixel is a physical point in a raster image. A
bitopological space is a set together with two topologies. Bitopological spaces can
be seen as a generalization of topological spaces. The concept of bitopological spaces
was first used by Kelly [1]. Bitopological spaces, proximity theory and digital image
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processing are the primary ingredients of this paper.
Throughout this paper, n is a positive integer, [n] = {1, · · · , n} and S & [n]. The
paper is organized as follows.

In Section 2, L n
S -topological spaces are introduced, and defining L n

S -continuous
maps gives rise to a category C n

S whose objects are L n
S -topological spaces and

whose morphisms are L n
S -continuous maps. In Section 3, we introduce the no-

tion of L n
S -proximity spaces as a generalization of proximity spaces, and we con-

struct L n
S -topological spaces using proximity relations. In Section 4, the concept

of descriptive-L n
S -proximity spaces are introduced, and we explicitly calculate and

visualize descriptive-L n
S -open sets.

2. L n
S –Topological Spaces

Definition 2.1. Let n be a positive integer and j ∈ [n] = {1, · · · , n} be a fixed
positive integer, and let S & [n]. Let X be a set, and let (X, τ

1
), · · · , (X, τ

n
) be

topological spaces.

(1) A set A ⊆ X is called an L n
j -open set in X if there exists a set U ∈ τj

with

U ⊆ A ⊆
⋃

{i∈[n] : i 6=j}

U
i
,

where for any i ∈ [n], U
j

is the closure set of U with respect to τ
i
. A set

B ⊆ X is called an L n
j -closed set in X if X \ B ∈ L n

j − O(X). In this
case, we say that (X, τ1 , · · · , τn) is L n

j -topological space (or simply L n
j -

space). The set of all L n
j -open sets in X is denoted by L n

j − O(X) (or
L n
j −O((X, τ1 , · · · , τn)) if convenient), and the set of all L n

j -closed sets in
X is denoted by L n

j − C(X) (or L n
j − C((X, τ

1
, · · · , τ

n
)) if convenient).

X

U
2

U
3

U

A

L 3
1 -open set

(2) The L n
j -closure of a set K ⊆ X, denoted by K

Ln
j

is the intersection of all
L n
j -closed sets containing K.
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X

K
1

K
3

K

K
L3

2

The L 3
2 -closure of a set K ⊆ X

(3) A set E ⊆ X is called an L n
S -open set in X if there exists a set V ∈

⋂
a∈S τa

with

V ⊆ E ⊆
⋃

{i∈[n] : i/∈S}

V
i
,

where for any i ∈ [n], V
i

is the closure set of V with respect to τ
i
. A set

F ⊆ X is called an L n
S -closed set in X if X \F ∈ L n

S −O(X). In this case,
we say that (X, τ

1
, · · · , τ

n
) is L n

S -topological space (or simply L n
S -space).

(4) The L n
S -closure of a set K ⊆ X, denoted by K

Ln
S

is the intersection of all
L n
S -closed sets containing K. The set of all L n

S -open sets in X is denoted
by L n

S −O(X) (or L n
S −O((X, τ

1
, · · · , τ

n
)) if convenient), and the set of all

L n
S -closed sets in X is denoted by L n

S −C(X) (or L n
S −C((X, τ1 , · · · , τn))

if convenient).

Remark 2.2.

(1) For any i ∈ [n] with S = {i}, one has L n
S −O(X) = L n

i −O(X).
(2) Let S & [n]. If A,A′ ∈ L n

S −O(X), then A∩A′ need not be in L n
S −O(X)

(see Example (2.7)). However, the following proposition shows that the
union of a family of L n

S -open sets in X is L n
S -open.

Proposition 2.3. For any i ∈ [n], let (X, τ
i
) be a topological space, and let S & [n].

(1) Let {A
α∈Λ
} be a family of an L n

S -open sets in X. Then⋃
α∈Λ

A
a
∈ L n

S −O(X).

(2) Let {Fα∈Λ} be a family of an L n
S -closed sets in X. Then⋂

α∈Λ

E
a
∈ L n

S − C(X).

(3) If U ∈
⋂
a∈S τa , then U

j ∈ L n
S −O(X) for every j ∈ [n] \ S.
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Proof.

(1) Let S & [n], and let {A
α∈Λ
} be a family of an L n

S -open sets in X. By
Definition (2.1), for any α ∈ Λ, there exists a set Uα ∈

⋂
a∈S τa with

U
α
⊆ A

α
⊆

⋃
i∈[n]\S

U
α

i
.

Thus, we have⋃
α∈Λ

Uα ⊆
⋃
α∈Λ

Aα ⊆
⋃
α∈Λ

⋃
i∈[n]\S

U
α

i ⊆
⋃

i∈[n]\S

⋃
α∈Λ

U
α

i ⊆
⋃

i∈[n]\S

⋃
α∈Λ

U
α

i

.

As a consequence, we have⋃
α∈Λ

E
α
∈ L n

j −O(X).

(2) This follows directly from part (1) of the proposition.
(3) This clearly follows from Definition 2.1.

X

U
α

2
U
α

3

U
α′

2
U
α′

3

U
α

A
α

A
α′

U
α′

A Union of Two L 3
1 -open Sets A

α
and A

α′ is an
L 3

1 -open Set

2

The following is an immediate consequence of Proposition (2.3).

Corollary 2.4. For any i ∈ [n], let (X, τ
i
) be a topological space, and let S & [n].

(1) K
Ln
S

∈ L n
S − C(X) for any K ⊆ X.

(2) K ∈ L n
S − C(X) if and only if K = K

Ln
S

.
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Proof.

(1) This follows immediately from Definition ( 2.1) and part (2) of Proposition
(2.3).

(2) Suppose that K ∈ L n
S −C(X). By Definition ( 2.1), K

Ln
j

is the intersection

of all L n
j -closed sets containing K. So, K ⊆ K

Ln
S

. Since K ∈ L n
S −C(X),

the intersection of all L n
j -closed sets containing K is K itself.Thus, K =

K
Ln
S

. If K = K
Ln
S

, then by part (2) of Proposition (2.3), K ∈ L n
S −C(X)

as desired.

2

Theorem 2.5. For any i ∈ [n], let (X, τ
i
) be a topological space, and let n be a

positive integer.

(1) For any k ∈ [n], one has

τ
k
⊆ L n

k −O(X).

(2) For any k, l,m ∈ [n] with 1 ≤ k ≤ l ≤ m ≤ n, we have

L l
k −O(X) ⊆ Lm

k −O(X).

(3) For any E ⊆ X and a fixed positive integer j ∈ [n], one has

E
Ln
j

⊆ Ej .

(4) For any set S & [n], we have⋂
a∈S

τa ⊆ L n
S −O(X).

(5) For any set S & [n] and an integer t with t ≥ n, we have

L n
S −O(X) ⊆ L t

S −O(X).

(6) Let S ⊆ S′ & [n]. Then

L n
S′ −O(X) ⊆ Lm

S −O(X).

(7) For any set S & [n], we have

L n
S −O(X) ⊆

⋂
a∈S

L n
a −O(X).

(8) For any S & [n] and E ⊆ X, one has

E
Ln
S

⊆ E
⋂
a∈S τa .

(9) Let S & [n] and U ∈ τ
a

for any a ∈ S. Then⋃
i∈[n] : i/∈S

U
i ∈ L n

S −O(X).

(10) Let S & [n] and F an τa-closed for some a ∈ S. Then⋂
i∈[n] : i/∈S

F
i ∈ L n

S − C(X).

Proof.
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(1) Fix k ∈ [n], and let A ∈ τ
k
. We have

A ⊆ A ⊆
⋃

{i∈[n] : i 6=j}

A
i
.

Thus, A ∈ L n
k −O(X), and hence τ

k
⊆ L n

k −O(X).
(2) Fix k, l,m ∈ [n] with 1 ≤ k ≤ l ≤ m ≤ n, and let A ∈ L l

k − O(X). By
definition, there exists a set U ∈ τ

k
with

U ⊆ A ⊆
⋃

{i∈[l] : i 6=k}

U
i ⊆

⋃
{i∈[m] : i 6=k}

U
i

(since [l] ⊆ [m]) .

So, we have

L l
k −O(X) ⊆ Lm

k −O(X).

(3) Fix j ∈ [n], and let E ⊆ X. The intersection of all L n
j -closed sets con-

taining K is subset of the intersection of all τ
j
-closed sets containing K.

Therefore,

E
Ln
j

⊆ Ej .
(4) Let S & [n], and let V ∈

⋂
a∈S τa . We have V ∈ τ

a
for every a ∈ S with

V ⊆ V ⊆
⋃

{i∈[n] : i/∈S}

V
i
.

So, V ∈ L n
S −O(X), and hence⋂

a∈S
τ
a
⊆ L n

S −O(X).

(5) Let S & [n] and fix a positive integer t with t ≥ n. Let E ∈ L n
S − O(X).

By definition, there exists a set V ∈
⋃
a∈S τa with

V ⊆ E ⊆
⋃

{i∈[n] : i/∈S}

V
i ⊆

⋃
{i∈[t] : i/∈S}

V
i

(since [n] ⊆ [t]) .

Consequently, we have

L n
S −O(X) ⊆ L t

S −O(X).

(6) Let S ⊆ S′ & [n], and let E ∈ L n
S′ − O(X). By definition, there exists

V ∈
⋂
a∈S′ τa with

V ⊆ E ⊆
⋃

{i∈[n] : i/∈S′}

V
i
.

Since
⋂
a∈S′ τa ⊆

⋂
b∈S τb and⋃
{i∈[n] : i/∈S′}

V
i ⊆

⋃
{i∈[n] : i/∈S}

V
i
,

we have E ∈ L ′mS −O(X). Thus,

L n
S′ −O(X) ⊆ L ′mS −O(X).
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(7) Let S & [n], and let E ∈ L n
S − O(X). By definition, there exists a set

V ∈
⋂
a∈S τa with

V ⊆ E ⊆
⋃

{i∈[n] : i/∈S}

V
i
.

So, V ∈ τ
a

for any a ∈ S. Furthermore, for any a ∈ S, we have

V ⊆ E ⊆
⋃

{i∈[n] : i/∈S}

V
i ⊆

⋃
{i∈[n] : i6=a}

V
i
.

Accordingly, E ∈ L n
a −O(X) for every a ∈ S and hence L n

S −O(X) ⊆
⋂
a∈S

L n
a −O(X).

(8) This an immediate consequence of part (4) of the theorem.
(9) Note that

U ⊆
⋃

{i∈[n] : i/∈S}

U
i ⊆

⋃
{i∈[n] : i/∈S}

U
i
.

(10) The proof follows directly from the previous part.

2

The following consequence shows that L n
S -topological spaces are a generalization

of topological spaces.

Theorem 2.6. For any i ∈ [n], let (X, τ
i
) be a topological space, and let n be a

positive integer.

(1) If j ∈ [n] is a fixed positive integer and τ
j

= D is the discrete topology on
X, then

L n
j −O(X) = τ

k
= D .

(2) If j ∈ [n] is a fixed positive integer and τ
k

= D is the discrete topology on
X for all k ∈ [n] with k 6= j, then

L n
j −O(X) = τ

j
.

(3) If S & [n] and τ
a

= D (the discrete topology on X) for all a ∈ S, we have

L n
S −O(X) = D .

(4) If S & [n] and τ
b

= D (the discrete topology on X) for all b ∈ [n] \ S, we
have

L n
S −O(X) =

⋂
a∈S

τ
a
.

(5) If j ∈ [n] is a fixed positive integer and τ
j

= I is the indiscrete topology on
X, then

L n
j −O(X) = τ

j
= I .

(6) If S & [n] and τ
a

= I (the indiscrete topology on X) for all a ∈ S, then

L n
S −O(X) = I .
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Example 2.7. Let X = {a, b, c}, E = {a, c}, and S = {1, 3}. Consider the
following topologies on X:

τ1 = {∅, {a}, X}
τ
2

= {∅, {b}, X},
τ
3

= {∅, {c}, X},
τ
4

= {∅, {a}, {a, b}, X},
τ5 = {∅, {a}, {a, c}, X},
τ
6

= {∅, {a}, {b, c}, X},
τ
7

= {∅, {b}, {a, c}, X},
τ
8

= {∅, {b}, {a, b}, X},
τ9 = {∅, {b}, {b, c}, X},
τ
10

= {∅, {c}, {a, b}, X},
τ
11

= {∅, {c}, {a, c}, X},
τ
12

= {∅, {c}, {b, c}, X}.

A simple calculation shows that

L 12
2 −O(X) = {∅, {b}, {a, b}, {b, c}, X}

and

L 12
6 −O(X) = {∅, {a}, {a, b}, {a, c}, {b, c}, X}.

Note that τ
1
∩ τ

3
= I . We have

L 12
S − C(X) = I ,

since

L 12
2 − C(X) = {∅, {a, c}, {c}, {a}, X}

and

L 12
6 − C(X) = {∅, {b, c}, {c}, {b}, {a}, X}.

It is clear that

E
L12

2

= {a, c} = E, E
L12

6

= {a, b, c} = X, and E
L12
S

= {a, b, c} = X.

One might notice that {a, b}, {b, c} ∈ L 12
6 − O(X), but {a, b} ∩ {b, c} = {b} /∈

L 12
6 − O(X). In general, if A,A′ ∈ L n

S − O(X), then A ∩ A′ need not be in
L n
S −O(X).

Definition 2.8. Let S & [n], and let (X, τ
1
, · · · , τ

n
) and (X ′, τ ′

1
, · · · , τ ′

n
) be L n

S -
topological spaces. A map f : (X, τ

1
, · · · , τ

n
) → (X ′, τ ′

1
, · · · , τ ′

n
) is called an L n

S -

continuous map if f−1(W ) ∈ L n
S − O(X), for every W ∈

⋂
a∈S τ

′
a

in X ′. The
map f : (X, τ

1
, · · · , τ

n
)→ (X ′, τ ′

1
, · · · , τ ′

n
) is called an L n

S - homeomorphism if it is

bijective, and f and f−1 are L n
S -continuous maps.

Theorem 2.9. Let S & [n], and let (X, τ1 , · · · , τn) and (X ′, τ ′
1
, · · · , τ ′

n
) be L n

S -
topological spaces, and let f : X → X ′ be a map.
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X

U
2

U
4

U

f−1(W ) ∈ L 4
S −O(X)

f : (X, τ1 , τ1 , τ3) −→ (X ′, τ ′
1
, τ ′

1
, τ ′

3
)

X’

∈ τ ′
1

⋂
τ ′
3

∈ τ1
⋂
τ3 W

L 4
S -Continuity with S = {1, 3}

(1) If f : (X, τ
1
, · · · , τ

n
) → (X ′, τ ′

1
, · · · , τ ′

n
) is an L n

a -continuous map for any
a ∈ S and ⋂

a∈S
L n
a −O(X) ⊆ L n

S −O(X),

then f : (X, τ1 , · · · , τn)→ (X ′, τ ′
1
, · · · , τ ′

n
) is an L n

S -continuous map.
(2) If f : (X,

⋂
a∈S τa)→ (X ′,

⋂
a∈S τ

′
a
) is a continuous map, then f : (X, τ

1
, · · · , τ

n
)→

(X ′, τ ′
1
, · · · , τ ′

n
) is an L n

S -continuous map.
(3) If f : (X, τ

a
) → (X ′, τ ′

a
) is a continuous map for any a ∈ S, then f :

(X, τ
1
, · · · , τ

n
)→ (X ′, τ ′

1
, · · · , τ ′

n
) is an L n

S -continuous map.

Proof.

(1) LetW ∈
⋂
a∈S τ

′
a
. It follows thatW ∈ τ ′

a
for every a ∈ S. f : (X, τ

1
, · · · , τ

n
)→

(X ′, τ ′
1
, · · · , τ ′

n
) is an L n

a -continuous map for any a ∈ S, f−1(W ) ∈
⋂
a∈S L n

a −
O(X).

Since
⋂
a∈S

L n
a −O(X) ⊆ L n

S −O(X), f−1(W ) ∈ L n
S −O(X) which completes the proof.

(2) This is clear.
(3) This follows directly from the previous part.

2

The following is an immediate consequence of Theorem (2.9)



10 A. ABDULWAHID, E. ELAMAMI

Corollary 2.10. Let (X, τ
1
, · · · , τ

n
) and (X ′, τ ′

1
, · · · , τ ′

n
) be L n

S -topological spaces,
and let f : X → X ′ be a map such that f : (X, τa) → (X ′, τ ′

a
) is a homeomor-

phism for any a ∈ S. Then f : (X, τ1 , · · · , τn) → (X ′, τ ′
1
, · · · , τ ′

n
) is an L n

S -
homeomorphism.

We have the following analogue of the “usual continuity”.

Theorem 2.11. Let S & [n], and let (X, τ
1
, · · · , τ

n
) and (X ′, τ ′

1
, · · · , τ ′

n
) be L n

S -
topological spaces, and let f : X → X ′ be a map. Then, the following statements
are equivalent:

(1) f : (X, τ
1
, · · · , τ

n
)→ (X ′, τ ′

1
, · · · , τ ′

n
) is L n

S -continuous.

(2) f−1(W ) ∈ L n
S − C(X), for every

⋂
a∈S τ

′
a

–closed set W in X ′.
(3) For any subset E in X,

f(E
Ln
S ) ⊆ f(E)

⋂
a∈S τ

′
a .

(4) For any subset E′ in X ′,

f−1(E)
Ln
S ⊆ f−1(E

⋂
a∈S τ

′
a ).

It might be noticeable that Definition (2.8) gives rise to a category C n
S whose

objects are L n
S -topological spaces and whose morphisms are L n

S -continuous maps.

3. L n
S –proximity Spaces

Following [2], we first recall some basic concepts of proximity spaces.

Definition 3.1. [2] A binary relation δ on the power set of X is called an (Efre-
movic) proximity on X if δ satisfies the following axioms:

(i) AδB implies BδA
(ii) Aδ(B

⋃
C) implies AδB or AδC

(iii) AδB implies A 6= ∅, B 6= ∅
(iv) AδB implies there exists a subset E such that AδE and (X \ E)δB
(v) A

⋂
B 6= ∅ implies AδB

where
δ = (P(X)×P(X)) \ δ.

A proximity space is a pair (X, δ), where X is a set and δ is a proximity relation.
A proximity space is called separated if the following axiom holds:

(vi) {x}δ{y} implies x = y. If AδB, we say A is near B or A and B are
proximal; otherwise we say A and B are apart, and we write it as AδB. We say B
is a proximal or δ-neighborhood of A, and we write it as A � B, if and only if A
and X \B are apart.

The main properties of this set neighborhood relation, listed below, provide an
alternative axiomatic characterization of proximity spaces.

For all subsets A,B,C,D ⊆ X
(1) X � X
(2) A� B implies A ⊆ B
(3) A ⊆ B � C ⊆ D implies A� D
(4) (A� B and A� C) implies A� B ∩ C
(5) A� B implies X \B � X \A
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(6) A� B implies that there exists some E such that A� E � B.

A proximity or proximal map is one that preserves nearness, that is, given f :

(X, δ)→
(
Y, δ

′
)

if AδB in X, then f(A)δ
′
f(B) in Y [2].

Theorem 3.2. [2] If a subset A of a proximity space (X, δ) is defined to be closed
iff xδA implies x ∈ A,then the collection of complements of all closed sets so defined
yields a topology τ = τ(δ) on X. Furthermore, the τ -closure A of A is given by
A = {x : xδA}.

Theorem 3.3. Let S = {a1, · · · , am} & [n], and write [n] \ S = {b1, · · · , bn−m}
and let (X, δ

bi
) be a proximity space with a corresponding proximity topology τ(δ

bi
)

for any i ∈ [n] \ S. Define a relation δ on P(X) (the power set of X) by AδB if
Aδ

bt
B for some t ∈ [n] \ S.

(1) The relation δ is a proximity relation on P(X).
(2) For any family of topologies {τ

k
: k ∈ [m]}, we have

L n
S −O((X, τ1 , · · · , τm , τ(δ

b1
), · · · , τ(δ

bn−m
))) = Lm+1

S −O((X, τ1 , · · · , τm , τ(δ))).

Proof.

(1) The proof is clear.
(2) It suffices to show that

E
τ(δ)

=

n−m⋃
i=1

E
τ(δ

bi
)
,

for any E ⊆ X. Let E ⊆ X. Let x ∈ Eτ(δ)
. We have xδE which implies

that xδ
bt
E for some t ∈ [n] \ S. Thus, x ∈ Eτ(δ

bi
)
, and hence

x ∈
n−m⋃
i=1

E
τ(δ

bi
)
.

It follows that

E
τ(δ) ⊆

n−m⋃
i=1

E
τ(δ

bi
)
.

Let

y ∈
n−m⋃
i=1

E
τ(δ

bi
)
.

So, y ∈ Eτ(δt ) for some t ∈ [n] \ S. This implies that y ∈ Eτ(δ)
. Conse-

quently,

n−m⋃
i=1

E
τ(δ

bt
) ⊆ Eτ(δ)

, and hence E
τ(δ)

=

n−m⋃
i=1

E
τ(δ

bi
)
.

This completes the proof of assertion (2).

2

Definition 3.4. [2] If δ
1

and δ
2

are two proximities on a set X, we define

δ
1
< δ

2
iff Aδ

1
B implies Aδ

2
B.
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E
τ(δ)

=
⋃
i∈[n]\S E

τ(δi )

E
τ(δ3 )

E
τ(δ5 )

E
τ(δ6 )

E
τ(δ7 )

E
τ(δ8 )

E

E
τ(δ)

=
⋃
i∈[n]\S E

τ(δ
i
)

for S = {1, 2, 4} and n = 9

The above is expressed by saying that δ
1

is finer than δ
2
, or δ

2
is coarser than

δ1 . The following theorem shows that a finer proximity structure induces a finer
topology:

Theorem 3.5. [2] Let δ
1

and δ
2

be two proximities on a set X. Then δ
1
< δ

2
implies

τ(δ2) ⊆ τ(δ1).

An analogue of Theorem for L n
S -spaces can be stated as follows:

Theorem 3.6. Let S = {a1, · · · , am} & [n], and write [n] \ S = {b1, · · · , bn−m}
and let (X, δ

i
) be a proximity space with a corresponding proximity topology τ(δ

i
) for

any i ∈ [n] \S. If δ
1
< · · · < δ

n−m , then for any family of topologies {τ
k

: k ∈ [m]},
we have

L n
S −O((X, τ

1
, · · · , τ

m
, τ(δ

b1
), · · · , τ(δ

bn−m
))) = Lm+1

S −O((X, τ
1
, · · · , τ

m
, τ(δ

bn−m
))).

Proof. By Theorem (3.5), we have τ(δ
bn−m

) ⊆ · · · ⊆ τ(δ
b1

). Thus, for any E ⊆ X,

we have ⋃
i∈[n]\S

E
τ(δ

bi
)

= E
τ(δ

bn−m
)
.

It follows that

L n
S −O((X, τ1 , · · · , τm , τ(δ

b1
), · · · , τ(δ

bn−m
))) = Lm+1

S −O((X, τ1 , · · · , τm , τ(δ
bn−m

))).

2

Definition 3.7. Let S & [n], and let (X, δ
i
) be a proximity space for any i ∈ [n].

Let δ be a binary relation on P(X) (the power set of X) defined by AδB if and
only if the following axioms are satisfied:

(i) x /∈ A implies xδ
a
(X \B) for any a ∈ S.

(ii) xδ
i
B for any i ∈ [n] \ S implies x /∈ A.
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Then δ is called an L n
S –(Efremovic) proximity, or simply L n

S –proximity, induced
by proximity relations δ1 , · · · , δn . An L n

S –proximity space induced by δ1 , · · · , δn is a
pair (X, δ), where X is a set and δ is an L n

S -proximity relation induced by prox-
imity relations δ

1
, · · · , δ

n
.

Theorem 3.8. Let (X, δ) be an L n
S –proximity space induced by δ

1
, · · · , δ

n
. If a

subset E of X is defined to be L n
S –open if and only if EδV for some V ⊆ X with

{x ∈ X : xδ
a
(X\V )} = X\V for any a ∈ S, then the collection of all L n

S –open sets
so defined yields an L n

S –topological space (on X) with L n
S −O(X) = L n

S −O(X)(δ).

Proof.
We will show that the desired L n

S –topological space is precisely the L n
S –topological

space (X, τ(δ
1
), · · · , τ(δ

n
)). We first notice that if V ⊆ X with {x ∈ X : xδ

a
(X \

V )} = X \ V for any a ∈ S in X, then V ∈ L n
S − O(X, τ(δ1), · · · , τ(δn)), and the

converse is true as well. Let E ∈ L n
S − O(X, τ(δ1), · · · , τ(δn)). There exists a set

V ∈
⋂
a∈S τa with

V ⊆ E ⊆
⋃

{i∈[n] : i/∈S}

V
i
,

where for any i ∈ [n], V
i

is the closure set of V with respect to τi . So, we have⋂
{i∈[n] : i/∈S}

X \ V i ⊆ X \ E ⊆ X \ V.

The statement ⋂
{i∈[n] : i/∈S}

X \ V i ⊆ X \ E

shows that xδ
i
V for any i ∈ [n] \ S implies x /∈ E, and the statement

X \ E ⊆ X \ V
asserts that x /∈ E implies xδa(X\V ) for any a ∈ S (since V is τ(δa)–closed for every
a ∈ S). Thus, EδV . Conversely, if EδV for some V ∈

⋂
a∈S τa , then V ∈

⋂
a∈S τa ,

and the following statements are satisfied.

(i) xδ
i
V for any i ∈ [n] \ S implies x /∈ A.

(ii) x /∈ E implies xδa(X \ V ) for any a ∈ S.

The statements ((i)) and ((ii)) imply that⋂
{i∈[n] : i/∈S}

X \ V i ⊆ X \ E

and

X \ E ⊆ X \ V
respectively. This proves that E ∈ L n

S − O(X, τ(δ1), · · · , τ(δn)) which completes
the proof. 2

It might be noticeable that the relation δ defined in Definition (3.7) is not sym-
metric, in general; that is, AδB and BδA need not be the same. Nevertheless, we
have the following consequence.

Theorem 3.9. Let (X, δ) be an L n
S –proximity space induced by δ

1
, · · · , δ

n
, and let

B ⊆ C.
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(i) If AδC, then AδB.

(ii) If AδB
δ
, then AδB, where B

δ
is the closure with respect to the L n

S –
topological space with L n

S −O(X) = L n
S −O(X)(δ).

Proof.

(i) Let AδC, and let x /∈ A. Since AδC, this implies xδa(X \C) for any a ∈ S.
Since B ⊆ C, (X \ C) ⊆ (X \B). Thus, x /∈ A implies xδa(X \B) for any
a ∈ S. Let xδ

i
B for any i ∈ [n] \ S. It follows that

x�
δ
i
X \ C

for any i ∈ [n] \ S. Since (X \ C) ⊆ (X \B),

x�
δ
i
X \B

for any i ∈ [n] \ S. Consequently, AδB. implies x /∈ A.
(ii) This follows directly from part (i) and Theorem (3.8).

2

Definition 3.10. Let (X, δ) and (X, δ′) be L n
S –proximity spaces induced by δ1 , · · · , δn

and δ′
1
, · · · , δ′

n
respectively. We define

δ < δ′ iff Aδ′B implies AδB

for any subsets A and B of X.

Theorem 3.11. Let (X, δ) and (X, δ′) be an L n
S –proximity spaces induced by

δ1 , · · · , δn and δ′
1
, · · · , δ′

n
respectively, and let δ′

a
< δa for any a ∈ S. Then δ < δ′

implies L n
S −O(X)(δ) ⊆ L n

S −O(X)(δ′).

Proof. Let δ < δ′, and let E ∈ L n
S − O(X)(δ). It follows from Theorem (3.8)

that EδV for some V ∈
⋂
a∈S τ(δ

a
). Since δ′

a
< δ

a
for any a ∈ S, by Theorem

(3.5), we have τ(δ
a
) ⊆ τ(δ

a
) for any a ∈ S, and hence

⋂
a∈S τ(δ

a
) ⊆

⋂
a∈S τ(δ′

a
).

Consequently, we have EδV with V ∈
⋂
a∈S τ(δ′

a
). Theorem (3.8) asserts that

E ∈ L n
S −O(X)(δ′). Therefore, L n

S −O(X)(δ) ⊆ L n
S −O(X)(δ′). 2

Definition 3.12. Let (X, δ) and (Y, δ′) be an L n
S –proximity spaces induced by

δ
1
, · · · , δ

n
and δ′

1
, · · · , δ′

n
respectively. A map f : (X, δ) → (Y, δ′) is said to be an

L n
S –proximity map if any B ⊆ Y with {y ∈ Y : yδ′

a
(Y \B)} = Y \B for any a ∈ S

implies f−1(B)δV , for some V ⊆ X with {x ∈ X : xδ
a
(X \ V )} = X \ V for any

a ∈ S in X.

Theorem 3.13. Let (X, δ) and (Y, δ′) be an L n
S –proximity spaces induced by

δ
1
, · · · , δ

n
and δ′

1
, · · · , δ′

n
respectively, and let f : X → Y be a map. Then f :

(X, δ)→ (Y, δ′) is an L n
S –proximity map iff f : (X, τ(δ

1
), · · · , τ(δ

n
))→ (Y, τ(δ′

1
), · · · , τ(δ′

n
))

is L n
S –continuous.

Proof. Suppose that f : (X, δ) → (Y, δ′) is an L n
S –proximity map. Let Y \W ∈⋂

a∈S τ(δ′
a
). So, W is

⋂
a∈S τ(δ′

a
)–closed and hence τ(δ′

a
)–closed for any a ∈ S.

It follows that the set {y ∈ Y : yδ′
a
(Y \ W )} = Y \ W for any a ∈ S. Since

f : (X, δ) → (Y, δ′) is an L n
S –proximity map, f−1(W )δV , for some V ⊆ X with

{x ∈ X : xδa(X \ V )} = X \ V for any a ∈ S in X. As a consequence, f−1(W )δV ,
for some V ⊆ X. By Theorem (3.8), f−1(W ) ∈ L n

S − O(X, τ(δ
1
), · · · , τ(δ

n
)).

Thus, f : (X, τ(δ
1
), · · · , τ(δ

n
)) → (Y, τ(δ′

1
), · · · , τ(δ′

n
)) is L n

S –continuous. For the
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other direction, suppose that f : (X, τ(δ
1
), · · · , τ(δ

n
)) → (Y, τ(δ′

1
), · · · , τ(δ′

n
)) is

L n
S –continuous. Let B ⊆ Y with {y ∈ Y : yδ′

a
(Y \B)} = Y \B for any a ∈ S. This

implies that B is τ(δ′
a
)–closed for any a ∈ S and hence Y \B ∈ τ(δ′

a
) for any a ∈ S.

So, Y \ B ∈
⋂
a∈S τ(δ′

a
). Since f : (X, τ(δ

1
), · · · , τ(δ

n
)) → (Y, τ(δ′

1
), · · · , τ(δ′

n
))

is L n
S –continuous, f−1(W ) ∈ L n

S − O(X, τ(δ
1
), · · · , τ(δ

n
)). By Theorem (3.8),

f−1(W )δV , for some V ⊆ X, and this completes the proof. 2

4. Descriptive L n
S –proximity Spaces

Following [3] and [4], we recall some basic concepts of digital topology. A probe
Φ maps a member of a set to a value in R (reals). Probe function values define
feature vectors useful in comparing, clustering and classifying members of a set.
One can find open sets in digital images. Let Φ(x) denote a feature vector for the
object x, i.e., a vector of feature values that describe x. A feature vector provides
a description of an object and subsets of X. Let Φ denote a set of n real-valued
probe functions Φ : X → R representing features such as greylevel intensity, colour,
shape or texture of a point x (picture element) in a digital image X, i.e.,

Φ = {φ1, · · · , φn}.
And let Φ(x) denote a feature vector containing numbers representing feature values
extracted from x. Then, for a set of n probe functions, a feature vector has the
following form:

Φ(x) = {φ1(x), · · · , φn(x)},
where φi(x) is the ith feature value. To obtain a descriptive proximity relation
(denoted by δ

Φ
), one first chooses a set of probe functions, which provides a basis

for describing points in a set. Let A,B ∈ P(X). Let Q(A),Q(B) denote sets of
descriptions of points in A,B, respectively. That is,

Q(A) = {Φ(a) : a ∈ A}, Q(B) = {Φ(b) : b ∈ B}.
The expression AδΦB reads A is descriptively near B. The relation δΦ is called a
descriptive proximity relation. Similarly, Aδ

Φ
B denotes that A is descriptively far

(remote) from B. The descriptive proximity of A and B is defined by

AδΦB if and only if Q(A) ∩Q(B) 6= ∅. (4.1)

The descriptive intersection ∩
Φ

of A and B is defined by

A ∩
Φ
B = {x ∈ A ∪B : Q(x) ∈ Q(A) and Q(x) ∈ Q(B)}. (4.2)

The descriptive proximity relation δΦ is defined by

δΦ = {(A,B) ∈ (P(X)×P(X)) : clA ∩
Φ
clB 6= ∅}. (4.3)

Whenever sets A and B have no points with matching (or almost near) descriptions,
the sets are descriptively far from each other (denoted by Aδ

Φ
B), where

δ
Φ

= (P(X)×P(X)) \ δ
Φ
. (4.4)

In general, a binary relation δ
Φ

is a descriptive EF-proximity, provided the following
axioms are satisfied for A,B,C ∈P(X).
(EF

Φ
.1) A descriptively close to B implies A 6= ∅, B 6= ∅.

(EFΦ .2) A ∩
Φ
B implies A is descriptively close to B.

(EF
Φ

.3) A descriptively close to B implies B descriptively close to A (descriptive



16 A. ABDULWAHID, E. ELAMAMI

symmetry).
(EFΦ .4) A descriptively close to (B ∪ C), if and only if, A descriptively close to B
or A descriptively close to C.
(EF

Φ
.5) Descriptive Efremovic axiom: A descriptively far from B implies A de-

scriptively far from C and B descriptively far from X \ C for some C ∈P(X).
The descriptive proximity relation δ

Φ
reads descriptively close to (descriptively

near). The structure (X, δΦ) is a descriptive EF-proximity space (or, briefly, de-
scriptive EF space, or even descriptive space). The remoteness proximity relation
δ
Φ

reads descriptively far from (or descriptively remote from or descriptively not
close to). For basic concepts of descriptive spaces and digital topology, we refer the
reader to [3] and [4].

Definition 4.1. Let S & [n] and Φ
(i)

be a set of probe functions representing

features of picture points in X for any i ∈ [n]. Let (X, δ
(i)

Φ
(i)

) be a descriptive

proximity space for any i ∈ [n]. Then the L n
S –descriptive proximity space induced

by δ
(1)

Φ
(1)
, · · · , δ(n)

Φ
(n)

is the L n
S –proximity space (X, δ

Φ
) induced by δ

(1)

Φ
(1)
, · · · , δ(n)

Φ
(n)

.

The following is an immediate consequence of Theorem (3.8),

Theorem 4.2. Let (X, δΦ) be an L n
S –descriptive proximity space induced by δ

(1)

Φ
(1)
, · · · , δ(n)

Φ
(n)

,

where Φ
(i)

is a set of probe functions representing features of picture points in
X for any i ∈ [n]. Then (X, δ

Φ
) induces an L n

S –topological space on X with

L n
S −O(X)(δ

Φ
) = L n

S −O(X, τ(δ
(1)

Φ
(1)

), · · · , τ(δ
(n)

Φ
(n)

).

Example 4.3. We use Theorem (2.5) to calculate

A =
⋃

{i∈[6] : i 6=2}

U
i ∈ L 6

2 −O(X).

U ∈ τ(δ
(2)

Φ
(2)

)

(X, τ(δ
(1)

Φ
(1)

)) U
1
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(X, τ(δ
(3)

Φ
(3)

)) U
3

(X, τ(δ
(4)

Φ
(4)

)) U
4

(X, τ(δ
(5)

Φ
(5)

)) U
5

(X, τ(δ
(6)

Φ
(6)

)) U
6

A ∈ L 6
2 −O(X)(δ

Φ
)
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The proximity relations δ
(i)

Φ
(i)

are defined as in (4.1) for every i ∈ [6]. Here, a

black color corresponds to 0 = lowest intensity, and a white color represents 255 =
highest intensity.

Example 4.4. We use an image of Iowa “Hawkeyes Herky” and Theorem (2.5)
to calculate

A =
⋃

{i∈[6] : i6=4}

U
i ∈ L 6

4 −O(X).

U ∈ τ(δ
(4)

Φ
)

(X, τ(δ
(1)

Φ
(1)

)) U
1

(X, τ(δ
(2)

Φ
(2)

)) U
2

(X, τ(δ
(3)

Φ
(3)

)) U
3

(X, τ(δ
(5)

Φ
(5)

)) U
5

(X, τ(δ
(6)

Φ
(6)

)) U
6

A ∈ L 6
4 −O(X)(δΦ)

As in the previous example, the proximity relations δ
(i)

Φ
(i)

are defined as in (4.1)

for every i ∈ [6], a black color corresponds to 0 = lowest intensity, and a white
color represents 255 = highest intensity.
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