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ABSOLUTE DERIVATIVE OF SET-VALUED MAPS

MOHAMAD MUSLIKH, ADEM KILICMAN

Abstract. The aim of this article is to develop a differential calculus for set-

valued functions with values in metric spaces of the family of all compact and

convex subsets. Using only the metric Hausdorff on metric spaces and without
using the Hukuhara difference, a concept of the derivative is introduced for

set-valued functions in such metric spaces. The comparison with the other de-

rivative definitions of the set-valued functions and the relation to the Lipschitz
conditions was also investigated in this paper.

1. Introduction

Differential calculus for set-valued functions with compact and convex values
was introduced by M. Hukuhara in 1967 [6]. He is using the concept of difference
of two sets in Rk that was introduced. Thenceforth many researchers develop it
with various different points of view. In 1970, Banks and Jacobs are using the
embedding technique to define the derivative of set-valued functions on Banach
spaces [2]. Whereas, either Bridgland Jr [3] or De Blasi [5] utilizes the Hausdorff
metric induced by the norm on the Banach spaces. In [9], Lasota and Strauss gave
the definition of a set-valued derivative for single-valued map from f : Rk → Rk.
Furthermore, S. Markov introduces the generalization of the Hukuhara differential
[10]. Generally, all of the results obtained by researchers are the differential calculus
on the normed linear spaces.

The study on derivative for set-valued functions with values in abstract metric
space is still undeveloped. Motivated by this considerations, the purpose of this
article is to generalize a differential calculus for set-valued functions from abstract
metric space to the other abstract metric spaces. The concept that we introduce has
the advantage that is avoiding the use of the arithmetic operation that indeed have
not in metric spaces. The notion of derivative in this article extends the concept of
metric derivative of set-valued function introduced by author et.al in [11].

In 1971 E. Braude (see [13]), K. Skaland [14] in 1975, and Charatonic in 2012 in-
troduce absolute derivatives for single-valued functions from abstract metric space
to the other abstract metric spaces. Base on their results, we apply them for the
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Submitted September 18, 2021. Published July 7, 2022.
Communicated by M. Mursaleen.

20



ABSOLUTE DERIVATIVE OF SET-VALUED MAPS 21

set-valued functions.

2. Preliminaries

In 1971, E. Braude has been introduced the derivative for functions with values
in a metric spaces. (see [13]).

Definition 2.1. Let (X, d) and (Y, ρ) be two metric spaces and let p ∈ X be a limit
point of X. Then f : X −→ Y is said to be metrically differentiable at p if
there is a real number f ′(p) and for every ε > 0 there exists δ > 0 such that∣∣∣∣ρ(f(x), f(y))

d(x, y)
− f ′(p)

∣∣∣∣ < ε, (2.1)

for all x 6= y ∈ X with 0 < d(x, p) < δ and 0 < d(y, p) < δ.

In 1975, K. Skaland defined the same things, but it was weaker than Braude’s
definition [14].

Definition 2.2. Let (X, d) and (Y, ρ) be two metric spaces and let p ∈ X be a limit
point. The function f : X −→ Y is said to be differentiable at p if there is a real
number f ′(p) and for every ε > 0 there exists δ > 0 such that∣∣∣∣ρ(f(x), f(p))

d(x, p)
− f ′(p)

∣∣∣∣ < ε, (2.2)

for every x ∈ X with 0 < d(x, p) < δ.

A non-negative real number f ′(p) is called the metrically derivative or the
quasiderivative of the function f at the point p ∈ X (see [13], [14] ). Recently,
differentiation in metric spaces, as discussed in [4], explain two kinds derivative,
namely the absolute derivative (Definition 2.2) and the strongly absolute derivative
(Definition 2.1).

Suppose (X, d) and (Y, ρ) are two metric spaces. Then we use the notation
P0(X) (resp. CB(X), K(X) and KC(X)) as the family of all non-empty (resp.
closed-bounded, compact and compact-convex ) subsets of X.

The mapping F : X −→ P0(Y ) is called set-valued functions if the map
F (x) ∈ P0(Y ) for each x ∈ X. The function f : X −→ Y is said to be selection
of F if f(x) ∈ F (x) for all x ∈ X. The image of the set A ⊂ X is of the form as
follows,

F (A) =
⋃
x∈A

F (x).

Suppose A and B are two subsets of a metric space (X, d). The Hausdorff
distance between A and B is the distance function H : P0(X) × P0(X) −→ R+

defined as

H(A,B) = max {d(A,B), d(B,A)} , (2.3)

where d(A,B) = supa∈A d(a,B). It is clear that d(A,B) 6= d(B,A).

The Hausdorff distance H is a metric on the family CB(X) called Hausdorff met-
ric. If X is a complete, then metric space (CB(X), H) is also complete.
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Let A = {x}, B = {y} ⊂ X and let C be a nonempty subset of X. The Hausdorff
metric of the subsets is defined as

(i) H(A,B) = H({x}, {y}) = d(x, y)
(ii) H({z}, C) = d(z, C).

The concept of continuous set-valued maps on the metric space (X, d) is defined
as follow. Let A ⊂ X and let F : A −→ CB(Y ) be a set-valued mapping. We say
that F is continuous at p ∈ A if for every ε > 0 there exists δ > 0 such that

H(F (x), F (p)) < ε,

for all x ∈ Nδ(p).
Let A ⊂ X and let F : A −→ K(Y ) be a set-valued mapping. F is said to be

Lipschitz with respect to Hausdorff metric H in K(Y ) if there exists L ≥ 0 such
that

H(F (x), F (y)) ≤ Ld(x, y),

for all x, y ∈ A. The infimum of all real numbers L satisfying the above condition is
called the Lipschitz constant of F that denoted by Lip(F ). A Lipschitz continuous
mapping is obviously continuous. For a fixed set A ⊂ X, the distance function
dA(x) = d(A, x) for all x ∈ X is a Lipschitz continuous function with Lip(dA) ≤ 1.

Suppose I(R) = {[a, b] | a, b ∈ R, a < b}. In [12], R.E. Moore et al introduced
an absolute value of the interval. The absolute value of an interval [a, b] is the
maximum of the absolute values of its endpoints.

|[a, b]| = max{|a|, |b|}.

The Hausdorff distance function on I(R) is a metric defined as H : I(R) ×
I(R) −→ [0,∞) by

H(I, J) = max{|a− c|, |b− d|}, (2.4)

where I = [a, b] and J = [c, d] . The pair (I(R), H) is a complete and separable
metric spaces.

Suppose U, V is subsets of Rk. The form U + V = {u+ v | u ∈ U, v ∈ V } and
αU = {α · u | u ∈ U,α ∈ R} defines the Minkowski sum and the scalar multiplica-
tion. It is well known that addition is commutative, associative and with neutral
element {Θ}. If α = 1, scalar multiplication gives the ”inverse” −U = (−1)U =
{−u | u ∈ U} but, in general, U − U 6= {Θ}, namely −U does not give the inverse
with respect to Minkowski sum (unless U = {u} is singleton). The implication
of this fact that Minkowski sum is not valid (The Minkowski difference written as
U − V = U + (−1)V ).

To solve of such problem has been introduced the Hukuhara difference (h-

difference) by M. Hukuhara in 1967 and defined U
h
− V = W ⇐⇒ U = V + W

for each U, V,W ∈ KC(Rk). An important properties of the Hukuhara difference is

that U
h
− U = {Θ} and (U +V )

h
− V = U . The Hukuhara difference is unique, but

it does not always exists [6].
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Proposition 2.3. Let U, V ∈ KC(Rk). The necessary and sufficient conditions of

the difference U
h
− V exists if u ∈ δ(U) there exists at least a point w such that

u ∈ V + {w} ⊂ U .

The h-difference U
h
− V exists if Diam(U) ≥ Diam(V), where Diam(U) =

sup{‖u− v‖ | u, v ∈ U}.

In 1969, S Markov [10] introduced to the concept of the Hukuhara difference
which more general is called generalization Hukuhara difference (gh-difference) and
it is defined as follows.

Definition 2.4. Let U, V ∈ KC(Rk). The gh-difference of two sets U and V defined

as U
gh
− V = W if it satisfies (a) U = V +W or (b) V = U + (−1)W .

It is also possible that U = V + W and V = U + (−1)W holds simultaneously.
In the case part (a) the gh-difference is equivalent to the h-difference.

Proposition 2.5. Let U, V ∈ KC(Rk). If U
gh
− V exists, it has the following

properties:

(i) U
gh
− U = {Θ};

(ii) If U
gh
− V exists, then V

gh
− U exists and V

gh
− U = −(U

gh
− V );

(iii) If U
gh
− V exists then also (−U)

gh
− (−V ) does and −(U

gh
− V ) = (−U)

gh
−

(−V ) ;

(iv) (U
gh
− V ) = (V

gh
− U) = W if and only if W = {Θ} and U = V .

The gh-difference always exists for any two intervals in I(R).

Proposition 2.6. Suppose I = [x−, x+] and J = [y−, y+] are intervals in I. The
gh-difference of two intervals I and J always exists and

I
gh
− J = [x−, x+]

gh
− [y−, y+] = [z−, z+] (2.5)

where z− = min{(x− − y−), (x+ − y+)} and z+ = max{(x− − y−), (x+ − y+)}.

By making use of generalization of the Hukuhara difference, we can define the
Hausdorff distance function as: H : KC(Rk) × KC(Rk) −→ [0,∞) by following
formula

H(U, V ) = ‖U
gh
− V ‖ (2.6)

for all U, V ∈ KC(Rk) as long as U
gh
− V exists.

Proposition 2.7. The Hausdorff distance on the equation 2.6 is a metric on
K(Rk).
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Proof. It is clear that H(U, V ) ≥ 0 and H(U, V ) = 0 if and only if U = V .
Whereas,the symmetry property is following

H(U, V ) = ‖U
gh
− V ‖ = | − 1|‖U

gh
− V ‖ = ‖ − (U

gh
− V )‖

= ‖V
gh
− U‖ (Proposition 2.5(ii))

= H(V,U).

By the definition 2.4, we have A = U
gh
− V ⇔ (a).V = U + (−A) , B = U

gh
−

W ⇔ (b).W = U + (−B) and C = V
gh
− W ⇔ (c).W = V + (−C). From

(b) and (c), we obtain the equation (I). U + (−B) = V + (−C). If both side
of the equation (a) V = U + (−A) added by the set (−C), then we obtain the
equation (II). V + (−C) = U + (−A) + (−C). Since V + (−C) = U + (−B), the
equation (II) to be U + (−B) = U + (−A) + (−C) or (-B)=(-A)+(-C). It means

−(U
gh
− W ) = −(U

gh
− V ) + (−(V

gh
− W )) so that we obtain

H(U,W ) = ‖U
gh
− W‖ = ‖(−1)(U

gh
− W )‖ = ‖(−1)(U

gh
− V ) + (−1)(V

gh
− W )‖

= | − 1|‖(U
gh
− V ) + (V

gh
− W )‖ = ‖(U

gh
− V ) + (V

gh
− W )‖

≤ ‖U
gh
− V ‖+ ‖V

gh
− W‖

= H(U, V ) +H(V,W ).

�

Proposition 2.8. If U, V, U ′, V ′ ∈ KC(Rk) then

H(tU, tV ) = tH(U, V ) ∀t ≥ 0, (2.7)

H(U + U ′, V + V ′) ≤ H(U, V ) +H(U ′, V ′), (2.8)

further,

H(U − U ′, V − V ′) ≤ H(U, V ) +H(U ′, V ′), (2.9)

provided the difference U −U ′ and V −V ′ exist. Moreover β = max{λ, µ}, we have

H(λU, µV ) ≤ βH(U, V ) + |λ− µ| [H(U,Θ) +H(V,Θ)] (2.10)

and

H(λU, λV ) = λH(U − V,Θ) (2.11)

if U − V exists.

Next, we define the magnitude of a nonempty subset of U of Rk by

‖U‖ = sup{‖u‖ | u ∈ U}, (2.12)

or equivalent,

‖U‖ = H(U,Θ). (2.13)

The norm ‖U‖ is finite and the supremum in the equation 2.12 can be achieved
because of U ∈ K(Rk).
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3. Derivative of Set-Valued

We begin by the notion of the derivative in the sense of the Hukuhara difference.
M. Hukuhara in [6] introduced the definition as follows.

Definition 3.1. Let I ∈ I(R) and let F : I −→ KC(Rk) be a set-valued function.
F is Hukuhara differentiable at t0 ∈ I if there exists F ′h(t0) ∈ KC(Rk) such that
the limit

lim
∆t→0+

F (t0 + ∆t)
h
− F (t0)

∆t
(3.1)

and

lim
∆t→0+

F (t0)
h
− F (t0 −∆t)

∆t
, (3.2)

both exists and equals to F ′h(t0).

We note that using the difference quotient in (3.2) is not equivalent to using the
difference quotient in

lim
∆t→0−

F (t0 + ∆t)
h
− F (t0)

∆t
. (3.3)

Example 3.2. Suppose F : [0, 1]→ I(R) is an interval-valued function with F (t) =
[t, 2t] for all t ∈ [0, 1]. F is Hukuhara differentiable for each t ∈ (0, 1) with Hukuhara
derivative F ′h(t) = [1, 2] since

lim
∆t→0+

F (t+ ∆t)
h
− F (t)

∆t
= lim

∆t→0+

[t+ ∆t, 2(t+ ∆t)]
h
− [t, 2t]

∆t

= lim
∆t→0+

[∆t, 2∆t]

∆t

= [1, 2]

and

lim
∆t→0+

F (t)
h
− F (t−∆t)

∆t
= lim

∆t→0+

[t, 2t]
h
− [(t−∆t), 2(t−∆t)]

∆t

= lim
∆t→0+

[∆t, 2∆t]

∆t

= [1, 2].

In [6] obtained the results as follows.

Proposition 3.3. If the set valued F : [a, b] −→ KC(Rk) is Hukuhara differentiable
on [a, b], then the real valued function t −→ diam(F (t)), t ∈ I is non decreasing on
I.

Proposition 3.4. The set valued function F : [a, b] −→ KC(Rk) is constant if, and
only ,if we have

F ′h(t) = 0

for all t ∈ I.

By the gh-difference, the derivative of a set-valued function has been introduced
by Markov [10] as follows.
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Definition 3.5. Let F : [a, b] −→ KC(Rk) be a set-valued function and suppose
t0, t0 + h ∈ (a, b). Then the gh-derivative of a set-valued function is defined as
follows:

F ′gh(t0) = lim
h→0

F (t0 + h)
gh
− F (t0)

h
. (3.4)

If F ′gh(t0) ∈ KC(Rk) exists and satisfies the equation (17), then F is said general-

ized Hukuhara differentiable (gh-differentiable) at the point t0 ∈ (a, b).

The gh-difference F (t0+h)
gh
− F (t0) always exists if KC(Rk) = I(R) (Proposition

2.6). For the interval-valued function has been resulted as follows.

Theorem 3.6. Let F : [a, b] −→ I be an interval-valued functions and F (x) =
[f(x), g(x)], where f, g : [a, b] −→ R. F is gh-differentiable on (a, b) if and only if
f and g are differentiable on (a, b) and

F ′gh(x) = [min{f ′(x), g′(x)},max{f ′(x), g′(x)}],

for all x ∈ (a, b)

This means that

F ′gh(x) =

{
[f ′(x), g′(x)] if f ′(x) < g′(x),

[g′(x), f ′(x)] if f ′(x) > g′(x) .

4. Absolute Derivative of Set-valued

In this section, we introduce the main result differential calculus for a set-valued
function defined on abstract metric spaces with values in hypermetric spaces (metric
spaces with subset elements). Definition of derivative, such as in the classical. In
this section, we introduce the absolute derivative,namely the derivative for a set-
valued function defined on abstract metric spaces with values on hypermetric spaces
(metric spaces with subset elements). The classical definition of the derivative
for single-valued function using the arithmetic structure. Likewise, a definition of
derivatives for set-valued functions, such as that mentioned in the introduction,
also involved arithmetic structure. Is it possible to define a derivative without
arithmetic structure? Indeed the metric spaces have no structure arithmetic. of
the derivative for single-valued function using the arithmetic structure. Likewise, a
definition of derivatives for set-valued functions was mentioned in the introduction
also involved arithmetic structure. Is it possible to define a derivative without
arithmetic structure? Because indeed metric space has not arithmetic structure.

This is possible since there is a concept of the derivative for the function de-
fined in differential manifolds and the manifolds involved do not generally have an
arithmetic structure on their definitions. Therefore we make sure can define the
”derivative” in the sense of the metric spaces. In this case, the role of arithmetic is
significantly diminished.

The following is the definition of the derivative in question.

Definition 4.1. Let (X, d) and (Y, ρ) be two metric spaces and let p ∈ X be a
limit point. The set-valued F : X −→ KC(Y ) is called absolutely differentiable
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at p ∈ X if there exists a non-negative real number F ′abs(p) with the property that
for each ε > 0 there exists δ > 0 such that∣∣∣∣H(F (x), F (p))

d(x, p)
− F ′abs(p)

∣∣∣∣ < ε, (4.1)

for every x ∈ Nδ(p) ⊂ X. This means that the limit

lim
x→p

H(F (x), F (p))

d(p, x)
(4.2)

axists and equals F ′abs(p). Where, H is Hausdorff metric on KC(Y ) induced by
metric ρ

A non-negative real number F ′abs(p) is called the ”absolute derivative” of the
set-valued functions F at the point p ∈ X. Furthermore, the absolute derivative of
set-valued functions F is denoted by F ′abs.

The following theorems state the absolute derivative F ′abs(p) is well-defined .

Theorem 4.2. If the absolute derivative F ′abs(p) is exist, then it is unique.

Proof. Suppose ε > 0. There exists δ1, δ2 > 0 such that for all x ∈ Nδ1(p) we have∣∣∣∣H(F (x), F (p))

d(x, p)
− F ′abs(p)

∣∣∣∣ < ε

2
. (4.3)

and for all x ∈ Nδ2(p) we have∣∣∣∣H(F (x), F (p))

d(x, p)
−G′abs(p)

∣∣∣∣ < ε

2
(4.4)

respectively.
Let δ = max{δ1, δ2}. For all x ∈ Nδ(p) and from 4.3 and 4.4 we obtain

|F ′abs(p)−G′abs(p)| ≤
∣∣∣∣F ′abs(p)− H(F (x), F (p))

d(x, p)

∣∣∣∣+

∣∣∣∣H(F (x), F (p))

d(x, p)
−G′abs(p)

∣∣∣∣
<
ε

2
+
ε

2
= ε.

�

Some of the examples were given as follows : Suppose X = [a, b] is a closed
interval of real number and KC(Y ) = KC(R).

Example 4.3. Let F : [a, b] −→ KC(R) be a set-valued with F (t) = A is a constant
for all t ∈ [a, b]. F is absolutely differentiable on (a, b) with derivative

F ′abs(t) = lim
h→0

H(F (t+ h), F (t))

h
= lim
h→0

H(A,A)

h
= 0

for all t ∈ (a, b).

Example 4.4. Let F : [a, b] −→ KC(R) be a set-valued with F (t) = {t} for all
t ∈ [a, b]. F is absolutely differentiable at p ∈ (a, b) with derivative

F ′abs(p) = lim
t→p

H(F (t), F (p))

|t− p|
= lim
t→p

H({t}, {p})
|t− p|

= lim
t→p

|t− p|
|t− p|

= 1.

The following example is for the interval-valued function.
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Example 4.5. Let F : [0, 1] −→ I(R) be a interval-valued with F (t) = [t, 2t] for
all t ∈ [0, 1]. F is Hausdorff metrically differentiable at p ∈ (0, 1) with derivative

F ′abs(p) = lim
x→p

H(F (t), F (p))

|t− p|
= lim
t→p

H([t, 2t], [p, 2p])

|t− p|

= lim
t→p

max{|t− p|, |2t− 2p|}
|t− p|

= lim
t→p

|2t− 2p|
|t− p|

= 2.

The following example is a vector-valued function in the set form.

Example 4.6. Let F : [a, b] −→ KC(Rk) be a set-valued with F (t) = f(t)B̄ for all
t ∈ (a, b), where f is real valued function differentiable on (a, b) , f(t) ≥ 0 for all
t ∈ (a, b) and B̄ is the closed unit ball in Rk. Then F is absolutely differentiable
for each p ∈ (a, b) with derivative

F ′abs(p) = |f ′(p)|‖B̄‖.
Because the limit

F ′abs(p) = lim
t→p

H(F (t), F (p))

|x− p|
= lim
t→p

‖F (t)
gh
− F (p)‖
|x− p|

= lim
t→p

‖f(t)B̄
gh
− f(p)B̄‖
|x− p|

= lim
t→p

‖(f(t)
gh
− f(p))B̄‖
|x− p|

= lim
t→p

|f(t)
gh
− f(p)|‖B̄‖
|x− p|

= lim
t→p

|f(t)− f(p)|‖B̄‖
|x− p|

= |f ′(p)|‖B̄‖.
Let me several fundamental properties of absolutely differentiable set-valued

functions are reviewed.

Theorem 4.7. Let (X, d) and (Y, ρ) be two metric spaces. If set-valued F : X −→
KC(Y ) is absolutely differentiable at a point p ∈ X then F is continuous at p ∈ X.

Proof.

lim
x→p

H(F (x), F (p)) = lim
x→p

[
H(F (x), F (p))

d(x, p)
d(x, p)

]
=

[
lim
x→p

H(F (x), F (p))

d(x, p)

] [
lim
x→p

d(x, p)

]
= F ′abs(p) · 0 = 0.

�

Theorem 4.8. If F : X −→ KC(Y ) is absolutely differentiable at point p ∈ X and
G : Y −→ KC(Z) is absolutely differentiable on the set F (p) ∈ KC(Y ), then the
composition set-valued map G ◦ F : X −→ KC(Z) is also differentiable at the point
p ∈ X, and

(G ◦ F )′abs(p) = G′abs(F (p))F ′abs(p)
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Proof. We observe the limit

lim
d(x,p)→0

H((G ◦ F )(x), (G ◦ F )(p))

d(x, p)
= lim
d(x,p)→0

H(G(F (x)), G(F (p))

d(x, p)

= lim
d(x,p)→0

[
H(G(F (x)), G(F (p))

H(F (x), F (p))

H(F (x), (F (p))

d(x, p)

]
=

[
lim

d(x,p)→0

H(G(F (x)), G(F (p)))

H(F (x), F (p))

]
[

lim
d(x,p)→0

H(F (x), F (p))

d(x, p)

]
=

[
lim

H(F (x),F (p))→0

H(G(F (x)), G(F (p)))

H(F (x), F (p))

]
[

lim
d(x,p)→0

H(F (x), F (p))

d(x, p)

]
.

(4.5)

The last equality holds since d(x, p) → 0 implies H(F (x), F (p)) → 0 (Theorem
4.7). By the hypothesis, we have the equality

lim
H(F (x),F (p))→0

H(G(F (x)), G(F (p)))

H(F (x), F (p))
= G′abs(F (p))

and

lim
d(x,p)→0

H(F (x), F (p))

d(x, p)
= F ′abs(p).

This means the limit 4.5 exists and equals (G ◦ F )′abs(p) so that (G ◦ F )′abs(p) =
G′abs(F (p))F ′abs(p), and the proof is complete. �

It is well known fact that for a function f : R −→ R this statement holds: if
f ′ = 0 then f is constant. In general, this is not true if R space is replaced topo-
logical space (see [4]). However, our result show that the derivative of set-valued
function in the sense of the metric space is zero if and only if set-valued function is
constant provided its metric space has the geometric property of being rectifiably
connected.

In [1] be given the notion as follow. The metric space X is said to be path
connected if for any two points x and y in X there exists a homeomophism
γ : [0, 1] −→ X with γ(0) = x and γ(1) = y. This function is called a path
from x to y. A path is said rectifiable if its length is a finite number.

We now proceed to prove the following as standard result on the real line for the
absolute derivative.

Theorem 4.9. Let X be rectifiably connected metric space, and let Y be any metric
space. The set-valued F : X −→ KC(Y ) is absolutely differentiable on X. Then F
is constant if and only if, F ′abs(x) = 0 for every x ∈ X.

Proof. If F is constant, it is trivial by definition direct. Conversely, suppose that
F is not a constant, namely for every point p 6= q ∈ X, F (p) 6= F (q).
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Let E be a rectifiable arc from p to q in X, with length l > 0. We take the real
number ε > 0 with

ε =
H(F (p), F (q))

l
. (4.6)

Since F ′abs(x) = 0, for all x ∈ X, of course for each x ∈ E there exists δx > 0 such
that for all y ∈ N(x, δx) we have

H(F (x), F (y))

d(x, y)
< ε. (4.7)

Let N = {N(x, δx) | x ∈ E} and the collection C = {C | C is path component
of some members of N} is an open cover of E. Since E is compact there exists
the points c1, c2, . . . cm ∈ E such that {Cj | cj ∈ Cj , 1 ≤ j ≤ m} ⊂ C be a
finite cover of E. Since for each members of C is connected, it follow that for each
j = 1, 2, . . .m,Cj ∩ Cj+1 6= ∅.
Let p0, p1, . . . pm ∈ E such that p0 = p, pm = q and pj ∈ Cj ∩ Cj+1 for each
1 ≤ j ≤ m. Then for each j,

H(F (pj), F (cj+1)) +H(F (F (cj+1), pj)) < ε [d(pj , cj+1) + d(cj+1, pj)] (4.8)

by inequalities 4.7. From the equality 4.6 and the inequality 4.7 and 4.8, we obtain

H(F (p), F (q)) = H(F (p0), F (pm))

≤
m−1∑
j=0

H(F (pj), F (cj+1)) +H(F (cj+1), F (pj))

<

m−1∑
j=0

ε [d(pj , cj+1) + d(cj+1, pj)]

= ε

m−1∑
j=0

[d(pj , cj+1) + d(cj+1, pj)] = εl = H(F (p), F (q)),

a contradiction and should be F (p) = F (q) is a constant �

4.1. Comparison with another definition of derivative. In this subsection,
we will comparisons our concept with the concept differentiability introduced by
M. Hukuhara [6] and L. Stefanini [15].

Theorem 4.10. If F : [a, b] −→ KC(Rk) is Hukuhara differentiable at t ∈ (a, b),
then F is absolutely differentiable at t ∈ (a, b), and in this case

F ′abs(t) = ‖F ′h(t)‖.

Proof. Suppose x = t+ ∆t. If x→ t then ∆t→ 0. One obtain for ∆t > 0

lim
x→t

H(F (x), F (t))

|x− t|
= lim

∆t→0+

H(F (t+ ∆t), F (t))

∆t
.

Since F is Hukuhara differentiable at t ∈ (a, b), this means the Hukuhara difference

F (t+∆t)
h
− F (t) exists. By using Proposition 2.8 of the part 2.11 and 2.13 obtained
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as follows

lim
x→t

H(F (x), F (t))

|x− t|
= lim

∆t→0+

H(F (t+ ∆t), F (t))

∆t

= lim
∆t→0+

H(F (t+ ∆t)
h
− F (t)),Θ)

∆t

= lim
∆t→0+

‖F (t+ ∆t)
h
− F (t))‖

∆t

= ‖F ′h(t)‖.

While for the real number ∆t < 0 obtained (with k = −∆t )

lim
x→t

H(F (x), F (t))

|x− t|
= lim

∆t→0−

H(F (t), F (t+ ∆t))

∆t

= lim
−∆t→0+

H(F (t), F (t− (−∆t))

−∆t

= lim
k→0+

H(F (t), F (t− k))

k

Since F is Hukuhara differentiable at t ∈ I this means the Hukuhara difference

F (t)
h
− F (t − k) exists. Therefore similarly, by using again the Proposition 2.8 of

the part 2.11 and 2.13 obtained as follows.

lim
x→t

H(F (x), F (t))

|x− t|
= lim
k→0+

H(F (t), F (t− k))

k

= lim
k→0+

H(F (t)
h
− F (t− k)),Θ)

k

= lim
k→0+

‖F (t)
h
− F (t− k))‖
k

= ‖F ′h(t)‖.

Thus F is absolutely differentiable at t ∈ (a, b) and F ′abs(t) = ‖F ′h(t)‖. �

Example 4.11. From Example 3.2, the Hukuhara derivative is F ′h(p) = [1, 2] and
from Example 4.5, the absolute derivative is F ′abs(p) = 2. This means

F ′abs(p) = 2 = sup{|x| | x ∈ [1, 2] = F ′h(p)} = ‖F ′h(p)‖.

The converse does not necessarily true. Suppose F : [−1, 1] −→ I(R) and F (t) =
(1 − t2)[−2, 1] for all t ∈ [−1, 1]. Then F is absolutely differentiable at t = 0 with
the derivative

F ′(0) = lim
t→0

H(F (t), F (0))

t
= lim
t→0

max{d(F (t), F (0)), d(F (0), F (t))}
t

= lim
t→0

max{d([−2(1− t2], [−2, 1]), d([−2, 1], [−2(1− t2])}
t

= lim
t→0

max{0,−2t2}
t

= 0.
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But F is not differentiable in the sense of Hukuhara at the point t = 0 because the

Hukuhara difference F (0+∆t)
h
− F (0) = (1− (∆t)2)[−2, 1]

h
− [−2, 1] does not exist

(as ∆t→ 0). Hence there is no value for F ′h(0).

The next main result shows that the Definition 3.5 is equivalent to our new
definitions in the context of an interval-valued function.

Theorem 4.12. The set-valued F : [a, b] −→ I(R) is gh-differentiable at t0 ∈ (a, b)
if and only if F is Hausdorff metrically differentiable at t0 ∈ (a, b), and

F ′abs(t0) = |F ′gh(t0)|.

Proof. Let F (t) = [f(t), g(t)] be an interval-valued function for all t ∈ [a, b], where
f and g are two real valued functions on [a, b]. Since F is gh-differentiable at
t0 ∈ (a, b), the real valued function f and g are differentiable at t0 ∈ (a, b) and

F ′gh(t0) = [min{f ′(t0), g′(t0)},max{f ′(t0), g′(t0)}]

by Theorem 3.6.
The absolute value of the interval F ′gh(t0) is

|F ′gh(t0) | = max{min{|f ′(t0)|, |g′(t0)|},max{|f ′(t0)|, |g′(t0)|}}
= max{|f ′(t0)|, |g′(t0)|}. (4.9)

By the limit ( as h −→ 0+) and from the equality 2.4 and the equality 4.9, we
obtained

lim
h→0+

H(F (t0 + h), F (t0))

|h|
= lim
h→0+

1

|h|
H ([f(t0 + h), g(t0 + h)], [f(t0), g(t0)])

= lim
h→0+

1

|h|
max {|f(t0 + h)− f(t0)|, |g(t0 + h)− g(t0)|}

= max

{
lim
h→0+

1

|h|
|f(t0 + h)− f(t0)| , lim

h→0+

1

|h|
|g(t0 + h)− g(t0)|

}
= max{|f ′(t0)|, |g′(t0)|}
= |F ′gh(t0) |.

So that F is Hausdorff metrically differentiable at t0 ∈ (a, b) and F ′abs(t0) =
|F ′gh(t0)|.

To the converse, the interval-valued function F is Hausdorff metrically differen-
tiable at the point t0 ∈ (a, b). This means the limit

lim
h→0+

H(F (t0 + h), F (t0))

|h|
= lim
h→0+

1

|h|
H ([f(t0 + h), g(t0 + h)], [f(t0), g(t0)])

= lim
h→0+

1

|h|
max {|f(t0 + h)− f(t0)|, |g(t0 + h)− g(t0)|}

exists and equals F ′abs(t0). Obviously that the limit both

lim
h→0+

1

|h|
|f(t0 + h)− f(t0)|
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and

lim
h→0+

1

|h|
|g(t0 + h)− g(t0)|

exist. In the other words the real valued functions f and g are differentiable at the
point t0 ∈ (a, b). By the Theorem 3.6, the set-valued functions F is gh-differentiable
at t0 ∈ (a, b). Furthermore, we will show the equality |F ′gh(t0)| = F ′abs(t0).

Since F is gh-differentiable at t0 ∈ (a, b), we obtain

|F ′gh(t0)| = lim
h→0

∣∣∣∣∣∣F (t0 + h)
gh
− F (t0))

h

∣∣∣∣∣∣
= lim
h→0+

1

|h|

∣∣∣∣[f(t0 + h), g(t0 + h)]
gh
− [f(t0), g(t0)]

∣∣∣∣
= lim
h→0+

1

|h|
|[min{(f(t0 + h)− f(t0)), (g(t0 + h)− g(t0))},

max{(f(t0 + h)− f(t0)), (g(t0 + h)− g(t0))}]| (4.10)

Without loss generality of the proof, we may assume f(t0 +h)−f(t0) ≤ g(t0 +h)−
g(t0) so that the equality 4.10 to be

|F ′gh(t0)| = lim
h→0+

1

|h|
|[f(t0 + h)− f(t0), g(t0 + h)− g(t0)] |

= lim
h→0+

1

|h|
max {|(f(t0 + h)− f(t0))| , |(g(t0 + h)− g(t0))|} .

= lim
h→0+

1

|h|
H ([f(t0 + h), g(t0 + h)], [f(t0), g(t0)])

= lim
h→0+

H(F (t0 + h), F (t0))

|h|
= F ′abs(t0).

Hence the proof is complete. �

Now, we can state as follows

Definition 4.13. Suppose F : [a, b] −→ I(R) is an interval-valued function with
F (t) = [f(t), g(t)] where f, g is real valued function for each t ∈ [a, b]. F is called
absolutely differentiable at t0 ∈ (a, b) if f and g are differentiable at t0 ∈ (a, b) and

F ′abs(t0) = max[|f ′(t0)|, |g′(t0)|].

The last of the main result we will be shown that the derivative F ′abs is Lipschitz
with to respect the functional α ( Lipshitz (α) ). Let us introduce the following [5].

Definition 4.14. Let X be a metric space and let A ∈ B(X). The measure α(A)
of non-compactness of A is defined by

α(A) = inf{ε > 0 | ∃K ∈ K(X), A ⊂ S̄ε(K)}.
where S̄ε(K) = {x ∈ X | d(x,K) ≤ ε}

The functional α is called Kuratowski’s measure of non-compactness. The func-
tional α has the properties

Lemma 4.15. Let A,B ∈ B(X)

(a) α(A) = 0 if and only if Ā is compact



34 M. MUSLIKH, A. KILICMAN

(b) if A ⊂ B then α(A) ≤ α(B)
(c) α(A ∪B) = max{α(A), α(B)}

This following by D. Blasi [5].

Definition 4.16. Let U a non-empty open subset of X. The set-valued F : U −→
K(X) is said to be Lipschitz (α) with constant L ≥ 0 if for every A ∈ B(X) with
A ⊂ U , we have

α(F (A)) ≤ Lα(A). (4.11)

Theorem 4.17. If set-valued F : U −→ K(X) is Hausdorff metrically differentiable
on U , then the derivative F ′abs(x) is a Lipschitz (α) with constant L > 0 for every
x ∈ U .

Proof. Let A ⊂ B(X) and A ⊂ U . By hypothesis there exists F ′abs(x) ∈ [0,∞) for
every x ∈ A. We have

F ′abs(A) =
⋃
x∈A

F ′abs(x)

Since F ′abs(x) is singleton for each x ∈ A (hence compact) and by Lemma 4.15 part
(c), we obtain

α(F ′abs(A)) = α

(⋃
x∈A

F ′abs(x)

)
= sup{α(F ′abs(x)) | x ∈ A} = sup{0} = 0 ≤ Lα(A).

It is proved that F ′abs Lipschitz (α) with the same constant L > 0 �
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