INFINITE PRODUCTS, SERIES WITH LOGARITHMS, AND SERIES WITH ZETA VALUES

KHRISTO N. BOYADZHIEV

Abstract

In this note, we point out an interesting connection between series with zeta values, series with logarithm values, and certain infinite products. Using this connection, we give a closed-form evaluation of various series with zeta values in the coefficients.

1. Introduction

In [3] the author studied the special constant

$$
\begin{equation*}
M=\int_{0}^{1} \frac{\psi(t+1)+\gamma}{t} d t \approx 1.257746 \tag{1.1}
\end{equation*}
$$

and proved, among other things, the identity [7] p.142].

$$
\begin{equation*}
M=\sum_{n=1}^{\infty} \frac{1}{n} \ln \left(1+\frac{1}{n}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \zeta(n+1)}{n} \tag{1.2}
\end{equation*}
$$

where $\psi(s)=\frac{d}{d s} \ln \Gamma(s)$ is the digamma function and $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad($ Res $>1)$ is Riemann's zeta function.

In this note, we will extend equation (1.2) to the identity with parameters

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{a}} \ln \left(1+\frac{\lambda}{n^{z}}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \lambda^{n-1} \zeta(n z+a)}{n} \tag{1.3}
\end{equation*}
$$

and provide several explicit evaluations of such series.
When $\lambda=z=a=1$ equation (1.3) turns into 1.2 .
The results in this paper complement those in 4].

2. Results and proofs

We start by considering series of the form

$$
\sum_{p=1}^{\infty} \frac{1}{p^{a}\left(\lambda+p^{z}\right)}, \quad \operatorname{Re}(z)>1, \quad|\lambda|<1, \quad a \geq 0
$$

[^0]They will be related to series with zeta values.
Let $H_{m}^{(s)}$ be the generalized harmonic numbers

$$
H_{m}^{(s)}=1+\frac{1}{2^{s}}+\ldots+\frac{1}{m^{s}}, H_{0}^{(s)}=0
$$

which are partial sums of the Riemann zeta function $\zeta(s)$

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \quad \text { Res }>1
$$

We prove the theorem:
Theorem 2.1. For every integer $m \geq 1,|\lambda|<1, a \geq 0, \operatorname{Re}(z)>1$

$$
\begin{equation*}
\sum_{p=1}^{m} \frac{1}{p^{a}\left(\lambda+p^{z}\right)}=\sum_{n=1}^{\infty}(-1)^{n-1} \lambda^{n-1} H_{m}^{(n z+a)} \tag{2.1}
\end{equation*}
$$

and also,

$$
\begin{equation*}
\sum_{p=1}^{m} \frac{1}{p^{a}} \ln \left(1+\frac{\lambda}{p^{z}}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \lambda^{n} H_{m}^{(n z+a)} \tag{2.2}
\end{equation*}
$$

Changing λ to $-\lambda$ we have as well

$$
\sum_{p=1}^{m} \frac{1}{p^{a}} \ln \left(1-\frac{\lambda}{p^{z}}\right)=-\sum_{n=1}^{\infty} \frac{\lambda^{n}}{n} H_{m}^{(n z+a)} .
$$

Proof. Using geometric series, we write

$$
\begin{aligned}
& \sum_{p=1}^{m} \frac{1}{p^{a}\left(\lambda+p^{z}\right)}=\sum_{p=1}^{m} \frac{1}{p^{z+a}}\left(1-\left(-\lambda p^{-z}\right)\right)^{-1}=\sum_{p=1}^{m} \frac{1}{p^{z+a}}\left\{\sum_{k=0}^{\infty} \frac{(-1)^{k} \lambda^{k}}{p^{k z}}\right\} \\
= & \sum_{p=1}^{m}\left\{\sum_{k=0}^{\infty} \frac{(-1)^{k} \lambda^{k}}{p^{(k+1) z+a}}\right\}=\sum_{k=0}^{\infty}(-1)^{k} \lambda^{k}\left\{\sum_{p=1}^{m} \frac{1}{p^{(k+1) z+a}}\right\}=\sum_{k=0}^{\infty}(-1)^{k} \lambda^{k} H_{m}^{((k+1) z+a)}
\end{aligned}
$$

Changing the index in the last sum $k+1=n$, we obtain equation 2.1. Next, we integrate both sides in 2.1 with respect to λ. This gives

$$
\sum_{p=1}^{m} \frac{1}{p^{a}} \ln \left(\lambda+p^{z}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \lambda^{n} H_{m}^{(n z+a)}+C
$$

Setting $\lambda=0$ we find $C=\sum_{p=1}^{m} \frac{\ln \left(p^{z}\right)}{p^{a}}$, so that
$\sum_{p=1}^{m} \frac{1}{p^{a}} \ln \left(\lambda+p^{z}\right)-\sum_{p=1}^{m} \frac{1}{p^{a}} \ln \left(p^{z}\right)=\sum_{p=1}^{m} \frac{1}{p^{a}} \ln \left(1+\frac{\lambda}{p^{z}}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \lambda^{n} H_{m}^{(n z+a)}$
and the theorem is proved.
For example, for $a=0, z=1$ in 2.2 we have from [8]

$$
\prod_{p=1}^{m}\left(1+\frac{\lambda}{p}\right)=\frac{\Gamma(m+\lambda+1)}{m!\Gamma(\lambda+1)}
$$

This gives

$$
\sum_{p=1}^{m} \ln \left(1+\frac{\lambda}{p}\right)=\ln \prod_{p=1}^{m}\left(1+\frac{\lambda}{p}\right)=\ln \frac{\Gamma(m+\lambda+1)}{m!\Gamma(\lambda+1)}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \lambda^{n} H_{m}^{(n z)}
$$

Corollary 2.2. With a, z, λ as in Theorem 2.1.

$$
\begin{array}{r}
\sum_{p=1}^{\infty} \frac{1}{p^{a}\left(\lambda+p^{z}\right)}=\sum_{n=1}^{\infty}(-1)^{n-1} \lambda^{n-1} \zeta(n z+a) \\
\sum_{p=1}^{\infty} \frac{1}{p^{a}} \ln \left(1+\frac{\lambda}{p^{z}}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \lambda^{n} \zeta(n z+a) \tag{2.4}\\
\sum_{p=1}^{\infty} \frac{1}{p^{a}} \ln \left(1-\frac{\lambda}{p^{z}}\right)=-\sum_{n=1}^{\infty} \frac{\lambda^{n}}{n} \zeta(n z+a)(\text { changing } \lambda \text { to }-\lambda)
\end{array}
$$

Proof. The result follows from Theorem 2.1 by letting $m \rightarrow \infty$. The limit can go through the sum because the series is absolutely convergent.

For $a=\lambda=z=1$ in (2.4) we get equation (1.2).
With $a=1$ we find from (2.4) the series identity

$$
\sum_{p=1}^{\infty} \frac{1}{p} \ln \left(1+\frac{\lambda}{p^{z}}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \lambda^{n} \zeta(n z+1)
$$

The series are convergent also for $\lambda=1$ (see argument below after equation 2.6).
The case $z=\lambda=1$ in (2.4) appeared in the papers [2, 5, (6)

$$
\sum_{p=1}^{\infty} \frac{1}{p^{a}} \ln \left(1+\frac{1}{p}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \zeta(n+a)
$$

When $a>1$ we can write
$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \zeta(n+a)=\sum_{p=1}^{\infty} \frac{1}{p^{a}} \ln \left(1+\frac{1}{p}\right)=\sum_{p=1}^{\infty} \frac{1}{p^{a}} \ln \left(\frac{p+1}{p}\right)=\sum_{p=1}^{\infty} \frac{\ln (p+1)}{p^{a}}-\sum_{p=1}^{\infty} \frac{\ln (p)}{p^{a}}$
and since $-\sum_{p=1}^{\infty} \frac{\ln (p)}{p^{a}}=\zeta^{\prime}(a)$ this becomes

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \zeta(n+a)}{n}=\sum_{p=1}^{\infty} \frac{1}{p^{a}} \ln \left(1+\frac{1}{p}\right)=\sum_{p=1}^{\infty} \frac{\ln (p+1)}{p^{a}}+\zeta^{\prime}(a)
$$

([2, Theorem 4] and [6, equation 4]).
The above series resist evaluation in closed form. Anyway, we want to mention one interesting identity from [5, Theorem 10] related to the above result. First, following the notations in [5], let

$$
\lambda_{1}=\frac{1}{2}, \lambda_{n+1}=\int_{0}^{1} x(1-x) \ldots(n-x) d x
$$

be the non-alternating Cauchy numbers. Let also $H_{m}^{(1)}=H_{n}=1+\frac{1}{2}+\ldots+\frac{1}{n}$ be the ordinary harmonic numbers. Then for integers $a>1$, we have the representation

$$
\begin{aligned}
\sum_{p=1}^{\infty} \frac{1}{p^{a}} \ln \left(1+\frac{1}{p}\right)= & \zeta^{\prime}(a)-\gamma \zeta(a)-\zeta(a+1)+\sum_{n=1}^{\infty} \frac{H_{n}}{n^{a}}-\sum_{k=1}^{a-1} \frac{1}{k} \sum_{n=1}^{\infty} \frac{1}{(n+1)^{k} n^{a-k}} \\
& +\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!n^{2}} P_{a-1}\left(H_{n},, H_{n}^{(2)}, \ldots H_{n}^{(a-1)}\right)
\end{aligned}
$$

where P_{m} are the modified Bell polynomials defined by the generating function

$$
\exp \left(\sum_{k=1}^{\infty} x_{k} \frac{z^{k}}{k}\right)=\sum_{m=0}^{\infty} P_{m}\left(x_{1}, x_{2}, \ldots, x_{m}\right) z^{m}
$$

Corollary 2.3. With $a=0$ in (2.2 we have

$$
\begin{equation*}
\sum_{p=1}^{m} \ln \left(1+\frac{\lambda}{p^{z}}\right)=\ln \prod_{p=1}^{m}\left(1+\frac{\lambda}{p^{z}}\right)=\sum_{n=1}^{m} \frac{(-1)^{n-1}}{n} \lambda^{n} H_{m}^{(n z)} \tag{2.5}
\end{equation*}
$$

and with $m \rightarrow \infty$

$$
\begin{equation*}
\sum_{p=1}^{\infty} \ln \left(1+\frac{\lambda}{p^{z}}\right)=\ln \prod_{p=1}^{\infty}\left(1+\frac{\lambda}{p^{z}}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \lambda^{n} \zeta(n z) \tag{2.6}
\end{equation*}
$$

Note that the series with zeta values in 2.6 converges also for $\lambda=1$, that is

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \zeta(n z)=\sum_{p=1}^{\infty} \ln \left(1+\frac{1}{p^{z}}\right)=\ln \prod_{p=1}^{\infty}\left(1+\frac{1}{p^{z}}\right)
$$

as $\lim _{n \rightarrow \infty}|\zeta(n z)|=1$ and the series is alternating.
With $\lambda=x^{2}$ and $z=2$ in 2.6 we come to the known identity

$$
\begin{equation*}
\sum_{p=1}^{\infty} \ln \left(1+\frac{x^{2}}{p^{2}}\right)=\ln \prod_{p=1}^{\infty}\left(1+\frac{x^{2}}{p^{2}}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{2 n} \zeta(2 n)=\ln \frac{\sinh (\pi x)}{\pi x} \tag{2.7}
\end{equation*}
$$

by using the classical representation

$$
\frac{\sinh (\pi x)}{\pi x}=\prod_{p=1}^{\infty}\left(1+\frac{x^{2}}{p^{2}}\right)
$$

In particular, with $x=1$

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \zeta(2 n)=\ln \frac{\sinh \pi}{\pi}
$$

(see also [10, p. 161]) while the series $\sum_{n=1}^{\infty} \frac{\zeta(2 n)}{n}$ is divergent.
With $x=1 / \mu, \mu>1$ identity (2.7) implies

$$
\begin{equation*}
\ln \prod_{p=1}^{\infty}\left(1+\frac{1}{\mu^{2} p^{2}}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\mu^{2 n} n} \zeta(2 n)=\ln \frac{\mu \sinh (\pi / \mu)}{\pi} \tag{2.8}
\end{equation*}
$$

In particular, with $\mu=2$,

$$
\ln \prod_{p=1}^{\infty}\left(1+\frac{1}{4 p^{2}}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{4^{n} n} \zeta(2 n)=\ln \frac{2 \sinh (\pi / 2)}{\pi}
$$

From equation 2.6 and the above examples, we can make the following
Conclusion. When the infinite product $\prod_{p=1}^{\infty}\left(1+\frac{\lambda}{p^{z}}\right)$ can be evaluated in explicit closed form, then the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \lambda^{n} \zeta(n z)$ can be evaluated in closed form.

We will show here some more examples following this observation. First, we will use a formula for infinite products from Hansen's table [9 to evaluate explicitly certain series with zeta values.

INFINITE PRODUCTS, SERIES WITH LOGARITHMS, AND SERIES WITH ZETA VALUES 5
[9, Entry 89.6.8] reads (in corrected form)

$$
\prod_{p=1}^{\infty}\left(1+\frac{x^{3}}{p^{3}}\right)=\frac{1}{\Gamma(1+x) \Gamma\left(1-\frac{x}{2}-\frac{x \sqrt{3}}{2} i\right) \Gamma\left(1-\frac{x}{2}+\frac{x \sqrt{3}}{2} i\right)}
$$

With $\lambda=x^{3}, z=3$ in 2.6 we find

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{3 n} \zeta(3 n)=-\ln \left(\Gamma(1+x) \Gamma\left(1-\frac{x}{2}-\frac{x \sqrt{3}}{2} i\right) \Gamma\left(1-\frac{x}{2}+\frac{x \sqrt{3}}{2} i\right)\right) \tag{2.9}
\end{equation*}
$$

(this is the alternating variant of [4, equation (11)]). For $x=1$ this comes to

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \zeta(3 n)=\ln \left(\frac{1}{\pi} \cosh \frac{\pi \sqrt{3}}{2}\right)
$$

(4) equation (13)].

The case $z=4$ was considered in [4]. For $z=5$ we use [12, equation (33)]

$$
\prod_{p=1}^{\infty}\left(1+\frac{1}{p^{5}}\right)=|\Gamma[\exp (2 \pi i / 5)] \Gamma[\exp (6 \pi i / 5)]|^{-2}
$$

which provides the evaluation

$$
\begin{equation*}
\sum_{p=1}^{\infty} \ln \left(1+\frac{1}{p^{5}}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \zeta(5 n)=\ln \left(|\Gamma[\exp (2 \pi i / 5)] \Gamma[\exp (6 \pi i / 5)]|^{-2}\right) \tag{2.10}
\end{equation*}
$$

For $z=6$ we use [12, equation 34] that says

$$
\prod_{p=1}^{\infty}\left(1+\frac{1}{p^{6}}\right)=\frac{\sinh \pi(\cosh (\pi)-\cos (\pi \sqrt{3}))}{2 \pi^{3}}
$$

and it gives

$$
\begin{equation*}
\sum_{p=1}^{\infty} \ln \left(1+\frac{1}{p^{6}}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \zeta(6 n)=\ln \frac{\sinh \pi(\cosh (\pi)-\cos (\pi \sqrt{3}))}{2 \pi^{3}} \tag{2.11}
\end{equation*}
$$

It is appropriate to mention here [10, Proposition 3.2] where it was shown by a different method that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}[\zeta(k n)-1]=\ln \prod_{j=1}^{k-1} \Gamma\left(2-(-1)^{(2 j+1) / k}\right) \tag{2.12}
\end{equation*}
$$

(a result previously obtained by Adamchik and Srivastava 1, Proposition 1, p. 135]; see also [11, Proposition 3.5, p. 262]). The series on the left-hand side can be split into two series, the second one of which represents- $\ln 2$. This way equation 2.12) can be written in the form

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \zeta(k n)=\ln 2+\ln \prod_{j=1}^{k-1} \Gamma\left(2-(-1)^{(2 j+1) / k}\right)=\ln 2 \prod_{j=1}^{k-1} \Gamma\left(2-(-1)^{(2 j+1) / k}\right) \tag{2.13}
\end{equation*}
$$

that is,

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \zeta(k n)=-\ln 2 \prod_{j=1}^{k-1} \Gamma\left(2-(-1)^{(2 j+1) / k}\right)
$$

The author is thankful to the referee for his/her valuable remarks.

References

[1] V.S. Adamchik, H.M. Srivastava, Some series of the Zeta and related functions, Analysis, 18 (1998), 131-144
[2] Ayhan Dil, Khristo N. Boyadzhiev, and Ilham A. Aliev,On values of the Riemann zeta function at positive integers, Lith. Math. J., 60, No. 1, 2020, pp. 9-24.
[3] Khristo N. Boyadzhiev, A special constant and series with zeta values and harmonic numbers, Gazeta Matematica, Seria A, vol. 115 (3-4) (2018), 1-16.
[4] Khristo N. Boyadzhiev Series with zeta values and infinite products. Integral Transforms Spec. Funct., 26 (2015), no. 3, 173-176.
[5] Bernard Candelpergher, Marc-Antoine Coppo, A new class of identities involving Cauchy numbers, harmonic numbers and zeta values, Ramanujan J. 27 (2012), 305-328.
[6] Marc-Antoine Coppo, Bernard Candelpergher, On some formulae related to Euler sums (submitted). https://hal.inria.fr/hal-03170892/
[7] H. Cohen, Number Theory. Volume II: Analytic and modern tools. Springer, 2007.
[8] A. Dieckmann, Collection of Infinite Products and Series (online publication). _http://www-elsa.physik.uni-bonn.de/~dieckman/InfProd/InfProd.html\#InfinitexProducts [9] Eldon R. Hansen, A Table of Series and Products, Prentice Hall, 1975.
[10] Hari M. Srivastava and Junesang Choi, Series Associated with the Zeta and Related Functions, Kluwer, 2001.
[11] Hari M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
[12] E. W. Weisstein, Infinite Product. From MathWorld-A Wolfram Web Resource. https://mathworld.wolfram.com/InfiniteProduct.html

Department of Mathematics, Ohio Northern University, Ada, OH 45810, USA
E-mail address: k-boyadzhiev@onu.edu

[^0]: 2000 Mathematics Subject Classification. 11M06, 33B15. 40A05.
 Key words and phrases. Riemann's zeta function; infinite products; gamma function. © 2023 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted November 25, 2022. Published December 23, 2022.
 Communicated by R.K. Raina.

