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INFINITE PRODUCTS, SERIES WITH LOGARITHMS, AND

SERIES WITH ZETA VALUES

KHRISTO N. BOYADZHIEV

Abstract. In this note, we point out an interesting connection between series
with zeta values, series with logarithm values, and certain infinite products.

Using this connection, we give a closed-form evaluation of various series with

zeta values in the coefficients.

1. Introduction

In [3] the author studied the special constant

M =

∫ 1

0

ψ(t+ 1) + γ

t
dt ≈ 1.257746 (1.1)

and proved, among other things, the identity [7, p.142].

M =

∞∑
n=1

1

n
ln

(
1 +

1

n

)
=

∞∑
n=1

(−1)n−1ζ(n+ 1)

n
(1.2)

where ψ(s) = d
ds ln Γ(s) is the digamma function and ζ(s) =

∑∞
n=1

1
ns (Res > 1)

is Riemann’s zeta function.
In this note, we will extend equation (1.2) to the identity with parameters

∞∑
n=1

1

na
ln

(
1 +

λ

nz

)
=

∞∑
n=1

(−1)n−1λn−1ζ(nz + a)

n
(1.3)

and provide several explicit evaluations of such series.
When λ = z = a = 1 equation (1.3) turns into (1.2).
The results in this paper complement those in [4].

2. Results and proofs

We start by considering series of the form
∞∑
p=1

1

pa(λ+ pz)
, Re (z) > 1, |λ| < 1, a ≥ 0.
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They will be related to series with zeta values.

Let H
(s)
m be the generalized harmonic numbers

H (s)
m = 1 +

1

2s
+ ...+

1

ms
, H

(s)
0 = 0

which are partial sums of the Riemann zeta function ζ(s)

ζ(s) =

∞∑
n=1

1

ns
, Res > 1.

We prove the theorem:

Theorem 2.1. For every integer m ≥ 1, |λ| < 1, a ≥ 0, Re (z) > 1
m∑
p=1

1

pa(λ+ pz)
=

∞∑
n=1

(−1)n−1λn−1H (n z+a)
m (2.1)

and also,
m∑
p=1

1

pa
ln

(
1 +

λ

pz

)
=

∞∑
n=1

(−1)n−1

n
λnH (nz+a)

m . (2.2)

Changing λ to −λ we have as well
m∑
p=1

1

pa
ln

(
1− λ

pz

)
= −

∞∑
n=1

λn

n
H (nz+a)
m .

Proof. Using geometric series, we write
m∑
p=1

1

pa(λ+ pz)
=

m∑
p=1

1

pz+a
(
1− (−λp−z)

)−1
=

m∑
p=1

1

pz+a

{ ∞∑
k=0

(−1)kλk

pkz

}

=

m∑
p=1

{ ∞∑
k=0

(−1)kλk

p(k+1)z+a

}
=

∞∑
k=0

(−1)kλk

{
m∑
p=1

1

p(k+1)z+a

}
=

∞∑
k=0

(−1)kλkH((k+1)z+a)
m

Changing the index in the last sum k + 1 = n, we obtain equation (2.1). Next, we
integrate both sides in (2.1) with respect to λ. This gives

m∑
p=1

1

pa
ln (λ+ pz) =

∞∑
n=1

(−1)n−1

n
λnH (n z+a)

m + C.

Setting λ = 0 we find C =
∑m
p=1

ln(pz)
pa , so that

m∑
p=1

1

pa
ln (λ+ pz)−

m∑
p=1

1

pa
ln(pz) =

m∑
p=1

1

pa
ln

(
1 +

λ

pz

)
=

∞∑
n=1

(−1)n−1

n
λnH (nz+a)

m

and the theorem is proved. �

For example, for a = 0, z = 1 in (2.2) we have from [8]
m∏
p=1

(
1 +

λ

p

)
=

Γ(m+ λ+ 1)

m!Γ(λ+ 1)
.

This gives
m∑
p=1

ln

(
1 +

λ

p

)
= ln

m∏
p=1

(
1 +

λ

p

)
= ln

Γ(m+ λ+ 1)

m!Γ(λ+ 1)
=

∞∑
n=1

(−1)n−1

n
λnH (nz)

m .
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Corollary 2.2. With a, z, λ as in Theorem 2.1,

∞∑
p=1

1

pa(λ+ pz)
=

∞∑
n=1

(−1)n−1λn−1ζ(nz + a) (2.3)

∞∑
p=1

1

pa
ln

(
1 +

λ

pz

)
=

∞∑
n=1

(−1)n−1

n
λnζ(n z + a) (2.4)

∑∞
p=1

1
pa ln

(
1− λ

pz

)
= −

∑∞
n=1

λn

n ζ(n z + a) (changing λ to −λ)

Proof. The result follows from Theorem 2.1 by letting m → ∞. The limit can go
through the sum because the series is absolutely convergent. �

For a = λ = z = 1 in (2.4) we get equation (1.2).
With a = 1 we find from (2.4) the series identity

∞∑
p=1

1

p
ln

(
1 +

λ

pz

)
=

∞∑
n=1

(−1)n−1

n
λnζ(n z + 1).

The series are convergent also for λ = 1 (see argument below after equation (2.6)).
The case z = λ = 1 in (2.4) appeared in the papers [2, 5, 6]

∞∑
p=1

1

pa
ln

(
1 +

1

p

)
=

∞∑
n=1

(−1)n−1

n
ζ(n+ a).

When a > 1 we can write
∞∑
n=1

(−1)n−1

n
ζ(n+a) =

∞∑
p=1

1

pa
ln

(
1 +

1

p

)
=

∞∑
p=1

1

pa
ln

(
p+ 1

p

)
=

∞∑
p=1

ln (p+ 1)

pa
−
∞∑
p=1

ln (p)

pa

and since −
∑∞
p=1

ln (p)
pa = ζ ′ (a) this becomes

∞∑
n=1

(−1)n−1ζ(n + a)

n
=

∞∑
p=1

1

pa
ln

(
1 +

1

p

)
=

∞∑
p=1

ln (p+ 1)

pa
+ ζ ′ (a)

([2, Theorem 4] and [6, equation 4]).
The above series resist evaluation in closed form. Anyway, we want to mention

one interesting identity from [5, Theorem 10] related to the above result. First,
following the notations in [5], let

λ1 =
1

2
, λn+1 =

∫ 1

0

x(1− x)...(n− x)dx

be the non-alternating Cauchy numbers. Let also H
(1)
m = Hn = 1+ 1

2 +...+ 1
n be the

ordinary harmonic numbers. Then for integers a > 1, we have the representation

∞∑
p=1

1

pa
ln

(
1 +

1

p

)
= ζ ′ (a)− γ ζ(a)− ζ(a+ 1) +

∞∑
n=1

Hn

na
−
a−1∑
k=1

1

k

∞∑
n=1

1

(n+ 1)kna−k

+

∞∑
n=1

λn
n!n2

Pa−1(Hn, ,H
(2)
n , ...H(a−1)

n )
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where Pm are the modified Bell polynomials defined by the generating function

exp

( ∞∑
k=1

xk
zk

k

)
=

∞∑
m=0

Pm(x1, x2, ..., xm) zm.

Corollary 2.3. With a = 0 in (2.2) we have
m∑
p=1

ln

(
1 +

λ

pz

)
= ln

m∏
p=1

(
1 +

λ

pz

)
=

m∑
n=1

(−1)n−1

n
λnH (nz)

m (2.5)

and with m→∞
∞∑
p=1

ln

(
1 +

λ

pz

)
= ln

∞∏
p=1

(
1 +

λ

pz

)
=

∞∑
n=1

(−1)n−1

n
λnζ(nz). (2.6)

Note that the series with zeta values in (2.6) converges also for λ = 1, that is
∞∑
n=1

(−1)n−1

n
ζ(nz) =

∞∑
p=1

ln

(
1 +

1

pz

)
= ln

∞∏
p=1

(
1 +

1

pz

)
as lim

n→∞
|ζ(nz)| = 1 and the series is alternating.

With λ = x2 and z = 2 in (2.6) we come to the known identity
∞∑
p=1

ln

(
1 +

x2

p2

)
= ln

∞∏
p=1

(
1 +

x2

p2

)
=

∞∑
n=1

(−1)n−1

n
x2nζ(2n) = ln

sinh (πx)

πx

(2.7)
by using the classical representation

sinh (πx)

πx
=

∞∏
p=1

(
1 +

x2

p2

)
.

In particular, with x = 1
∞∑
n=1

(−1)n−1

n
ζ(2n) = ln

sinhπ

π
,

(see also [10, p. 161]) while the series
∑∞
n=1

ζ(2n)
n is divergent.

With x = 1/µ, µ > 1 identity (2.7) implies

ln

∞∏
p=1

(
1 +

1

µ2p2

)
=

∞∑
n=1

(−1)n−1

µ2nn
ζ(2n) = ln

µ sinh (π/µ)

π
. (2.8)

In particular, with µ = 2,

ln

∞∏
p=1

(
1 +

1

4p2

)
=

∞∑
n=1

(−1)n−1

4nn
ζ(2n) = ln

2 sinh(π/2)

π

From equation (2.6) and the above examples, we can make the following

Conclusion.When the infinite product
∏∞
p=1

(
1 + λ

pz

)
can be evaluated in ex-

plicit closed form, then the series
∑∞
n=1

(−1)n−1

n λnζ(nz) can be evaluated in closed
form.

We will show here some more examples following this observation. First, we will
use a formula for infinite products from Hansen’s table [9] to evaluate explicitly
certain series with zeta values.
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[9, Entry 89.6.8] reads (in corrected form)

∞∏
p=1

(
1 +

x3

p3

)
=

1

Γ(1 + x)Γ
(

1− x
2 −

x
√
3

2 i
)

Γ
(

1− x
2 + x

√
3

2 i
) .

With λ = x3, z = 3 in (2.6) we find

∞∑
n=1

(−1)n−1

n
x3nζ(3n) = − ln

(
Γ(1 + x)Γ(1− x

2
− x
√

3

2
i)Γ(1− x

2
+
x
√

3

2
i)

)
(2.9)

(this is the alternating variant of [4, equation (11)]). For x = 1 this comes to

∞∑
n=1

(−1)n−1

n
ζ(3n) = ln

(
1

π
cosh

π
√

3

2

)
([4, equation (13)].

The case z = 4 was considered in [4]. For z = 5 we use [12, equation (33)]

∞∏
p=1

(
1 +

1

p5

)
= |Γ [exp(2πi/5)] Γ [exp(6πi/5)] |−2

which provides the evaluation

∞∑
p=1

ln

(
1 +

1

p5

)
=

∞∑
n=1

(−1)n−1

n
ζ(5 n) = ln

(
|Γ [exp(2πi/5)] Γ [exp(6πi/5)] |−2

)
.

(2.10)
For z = 6 we use [12, equation 34] that says

∞∏
p=1

(
1 +

1

p6

)
=

sinhπ(cosh (π)− cos (π
√

3))

2π3

and it gives

∞∑
p=1

ln

(
1 +

1

p6

)
=

∞∑
n=1

(−1)n−1

n
ζ(6 n) = ln

sinhπ(cosh (π)− cos (π
√

3))

2π3
. (2.11)

It is appropriate to mention here [10, Proposition 3.2] where it was shown by a
different method that

∞∑
n=1

(−1)n

n
[ζ(k n)− 1] = ln

k−1∏
j=1

Γ(2− (−1)(2j+1)/k) (2.12)

(a result previously obtained by Adamchik and Srivastava [1, Proposition 1, p.
135]; see also [11, Proposition 3.5, p. 262]). The series on the left-hand side can be
split into two series, the second one of which represents− ln 2. This way equation
(2.12) can be written in the form

∞∑
n=1

(−1)n

n
ζ(k n) = ln 2 + ln

k−1∏
j=1

Γ(2− (−1)(2j+1)/k) = ln 2

k−1∏
j=1

Γ(2− (−1)(2j+1)/k),

(2.13)
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that is,
∞∑
n=1

(−1)n−1

n
ζ(k n) = − ln 2

k−1∏
j=1

Γ(2− (−1)(2j+1)/k).

The author is thankful to the referee for his/her valuable remarks.
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