FINITE ELEMENTS APPROXIMATION FOR LINEAR ELLIPTIC EQUATIONS WITH L^{1}-DATA

YIBOUR CORENTIN BASSONON, AROUNA OUÉDRAOGO

Abstract

In this paper we consider, in dimension $d \geq 2$, the \mathbb{P}_{1} finite elements approximation of the linear elliptic equation which generalizes Laplace's equation. When the right-hand side belongs to $L^{1}(\Omega)$, we prove that the unique solution of the discrete problem converges in $L^{1}(\Omega)$ to the unique renormalized solution of the problem.

1. Introduction

In this paper we consider the \mathbb{P}_{1} finite elements approximation of the boundary value problem

$$
\left\{\begin{array}{ccc}
\lambda u-\operatorname{div}(A \nabla u+\Phi(u)) & =f & \text { in } \Omega \tag{1.1}\\
u & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

where Ω is an open bounded set of $\mathbb{R}^{d}, d \geq 2, A$ is a coercive matrix with coefficients in $L^{\infty}(\Omega), \lambda>0, \Phi$ is a linear function which belongs to $W_{l o c}^{1, \infty}(\mathbb{R})^{d}$.
The fact that f belongs to $L^{1}(\Omega)$ is the outstanding feature of the present paper. For this problem the standard \mathbb{P}_{1} finite elements approximation, namely

$$
\left\{\begin{align*}
& u_{h} \in V_{h}, \tag{1.2}\\
& \forall v_{h} \in V_{h}, \int_{\Omega} A \nabla u_{h} \nabla v_{h} d x+\int_{\Omega} \Phi\left(u_{h}\right) \nabla v_{h} d x \\
&+\lambda \int_{\Omega} u_{h} v_{h} d x=\int_{\Omega} f v_{h} d x
\end{align*}\right.
$$

where

$$
\begin{equation*}
V_{h}=\left\{v_{h} \in \mathcal{C}^{0}(\bar{\Omega}): \forall T \in \mathcal{T}_{h}, v_{h \mid T} \in \mathbb{P}_{1}, v_{h \mid \partial \Omega}=0\right\} \tag{1.3}
\end{equation*}
$$

has a unique solution (see Proposition 2.3 below).
More details on finite elements methods can be found in [3, 6, 7, 11, 12, 13, 16.
Actually, in order to correctly define the solution of 1.1), one has to consider a

[^0]specific framework, the concept of renormalized solution. The definition of these solutions (see Section 2 below) has been introduced by P. Bénilan and L. Boccardo in [1]. These definitions allow one to prove that in this new sense problem 1.1) is well posed in the terminology of Hadamard, namely that the solution of 1.1 exists, is unique and depends continuously on the right-hand side f (see [14).
Using the ideas which are the root of the definition of renormalized solution, we are able to prove in Section 3 (Theorem 3.1 below) that the unique solution u_{h} of 1.2) converges to the unique renormalized solution u of (1.1) in the following sense
\[

\left\{$$
\begin{array}{c}
u_{h} \longrightarrow u \text { strongly in } L^{1}(\Omega) \tag{1.4}\\
\Pi_{h}\left(T_{k}\left(u_{h}\right)\right) \longrightarrow T_{k}(u) \text { strongly in } H_{0}^{1}(\Omega)
\end{array}
$$\right.
\]

for every $k>0$, where Π_{h} is the usual Lagrange interpolation operator in V_{h} and where T_{k} is the usual truncation at height k.
To prove $\sqrt{1.4}$, we assume that the family of triangulations is regular in the sense of P.G. Ciarlet [5], and that it satisfies an assumption which is close to the assumption which is usually made to ensure that the discrete maximum principle holds true. More precisely, denoting by φ_{i} the basis functions of V_{h}, we assume that the matrix with coefficients $Q_{i j}$ and $H_{i j}$ defined respectively by

$$
Q_{i j}=\int_{\Omega} A \nabla \varphi_{i} \nabla \varphi_{j} d x
$$

and

$$
H_{i j}=\int_{\Omega} \varphi_{i} \varphi_{j} d x
$$

is a diagonally dominant matrix (hypothesis (2.18). This allows us to prove (Theorem 3.8) that the solution u_{h} of 1.2 satisfies

$$
\alpha \int_{\Omega}\left|\nabla \Pi_{h}\left(T_{k}\left(u_{h}\right)\right)\right|^{2} d x+\lambda \int_{\Omega}\left|\Pi_{h}\left(T_{k}\left(u_{h}\right)\right)\right|^{2} d x \leq k\|f\|_{L^{1}(\Omega)}
$$

and

$$
\frac{1}{n} \int_{\left\{n \leq u_{h} \leq 2 n\right\}}\left|\nabla u_{h}\right|^{2} d x \leq \frac{1}{\alpha} \int_{\left\{\left|u_{h}\right| \geq n\right\}}|f| d x
$$

for every $h>0$ and every $k>0, n>1$. This is the main estimates of the present paper.
The assumption that Q and H are a diagonally dominant matrix is unfortunately a restriction on the coercive matrices A with $L^{\infty}(\Omega)$ coefficients and on the triangulations \mathcal{T}_{h} of Ω.

2. Preliminaries

2.1. Notations. In the present paper, Ω denotes an open bounded subset of \mathbb{R}^{d} with $d \geq 2$.
For a measurable set $\mathcal{B} \subset \Omega$, we denote by $|\mathcal{B}|$ the measure of \mathcal{B}, by \mathcal{B}^{c} the complement $\Omega \backslash \mathcal{B}$ of \mathcal{B}, and by $\chi_{\mathcal{B}}$ the characteristic function of \mathcal{B}.
For $1 \leq p<+\infty$, we denote by $W^{1, p}(\Omega)$ the standard Sobolev space

$$
W^{1, p}(\Omega)=\left\{u \in L^{p}(\Omega): \nabla u \in L^{p}(\Omega)^{d}\right\}
$$

equipped with the norm

$$
\|u\|_{W^{1, p}(\Omega)}=\left(\|u\|_{L^{p}(\Omega)}^{p}+\|\nabla u\|_{L^{p}(\Omega)^{d}}^{p}\right)^{\frac{1}{p}}
$$

and by $W_{0}^{1, p}(\Omega)$ the closure in $W^{1, p}(\Omega)$ of $C_{c}^{\infty}(\Omega)$, the space of those C^{∞} functions whose support is contained in Ω. Since Ω is bounded, $W_{0}^{1, p}(\Omega)$ will be equipped with the equivalent norm

$$
\|u\|_{W_{0}^{1, p}(\Omega)}=\|\nabla u\|_{L^{p}(\Omega)^{d}} .
$$

We denote by $W^{-1, p^{\prime}}(\Omega)$, with $p^{\prime}=\frac{p}{p-1}$, the dual of $W_{0}^{1, p}(\Omega)$, and when $p=2$, we denote as usual.

$$
H^{1}(\Omega)=W^{1,2}(\Omega), H_{0}^{1}(\Omega)=W_{0}^{1,2}(\Omega) \text { and } H^{-1}(\Omega)=W^{-1,2}(\Omega)
$$

For every r with $1<r<+\infty$, we denote by $L^{r, \infty}(\Omega)$ the Marcinkiewicz space whose norm is defined by

$$
\|v\|_{L^{r, \infty}(\Omega)}=\sup _{\lambda>0} \lambda|\{x \in \Omega:|v(x)| \geq \lambda\}|^{\frac{1}{r}} .
$$

For every real number $k>0$ we define the truncation $T_{k}: \mathbb{R} \longrightarrow \mathbb{R}$ by

$$
T_{k}(s)=\left\{\begin{array}{ccc}
s & \text { if } & |s| \leq k \\
k \frac{s}{|s|} & \text { if } & |s|>k
\end{array}\right.
$$

2.2. Setting of the problems. We consider a matrix A such that

$$
\begin{gather*}
A \in L^{\infty}(\Omega)^{d \times d} \tag{2.1}\\
\text { a.e } x \in \Omega, \forall \xi \in \mathbb{R}^{d}, A(x) \xi \xi \geq \alpha|\xi|^{2} \tag{2.2}
\end{gather*}
$$

for some $\alpha>0$, and

$$
\left\{\begin{array}{c}
\lambda>0, \quad f \in L^{1}(\Omega) \tag{2.3}\\
\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \text { is a linear function which belongs to } W_{l o c}^{1, \infty}(\mathbb{R})^{d}
\end{array}\right.
$$

Let us recall the definition of the renormalized solution of the problem 1.1).
Definition 2.1. A function u is a renormalized solution of (1.1) if u satisfies

$$
\begin{gather*}
u \in L^{1}(\Omega), \tag{2.4}\\
\forall k>0, T_{k}(u) \in H_{0}^{1}(\Omega), \tag{2.5}\\
\lim _{n \longrightarrow \infty} \frac{1}{n} \int_{\{n \leq u \leq 2 n\}}|\nabla u|^{2} d x=0 \tag{2.6}\\
\forall k>0, \forall S \in C_{c}^{1}(\mathbb{R}) \text { with } \operatorname{supp} S \subset[-k, k], \forall v \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega), \tag{2.7}\\
\int_{\Omega}\left(A \nabla T_{k}(u) \cdot \nabla v\right) S(u) d x+\int_{\Omega} S^{\prime}(u)\left(A \nabla T_{k}(u) \cdot \nabla T_{k}(u)\right) v d x \\
+\int_{\Omega} S(u)(\Phi(u) \cdot \nabla v) d x+\int_{\Omega} S^{\prime}(u)\left(\Phi(u) \cdot \nabla T_{k}(u)\right) v d x \\
+\lambda \int_{\Omega} T_{k}(u) S(u) v d x=\int_{\Omega} f S(u) v d x
\end{gather*}
$$

In 2.7) every term makes sense since $T_{k}(u)$ belongs to $H_{0}^{1}(\Omega)$. Equation 2.7) is the correct way to write the result which is obtained formally when using $v S(u)$ as test function in (1.1) and noting that $\nabla u=\nabla T_{k}(u)=0$ in $\{|S|>k\}$.

When $\Phi \equiv 0$ and f belongs to $L^{1}(\Omega) \cap H^{-1}(\Omega)$, the usual weak solution of (1.1), namely

$$
\left\{\begin{array}{c}
u \in H_{0}^{1}(\Omega) \tag{2.8}\\
v \in H_{0}^{1}(\Omega), \int_{\Omega} A \nabla u \cdot \nabla v d x+\lambda \int_{\Omega} u v d x=\int_{\Omega} f v d x
\end{array}\right.
$$

is also a renormalized solution of (1.1) and conversely (see [14, Remark 2.5).
The above definition of renormalized solution was introduced by DiPerna and Lions in [10] (see also [2, 8, [15]). Two others definitions of solutions, the entropy solution and the solution obtained as limit of approximations, were introduced as the same time respectively in [1] and [9]. The three definitions can be proved to be equivalent (see e.g. [12]).
The main interest of the definition of renormalized solution is the following existence, uniqueness and continuity theorem.

Theorem 2.2. [see [14], Theorem 1.1] Assume that A, Φ, λ and f satisfy (2.1)(2.3). Then there exists a unique renormalized solution u of 1.1). Moreover, this unique solution depends continuously on the right-hand side f in the following sense:
if f_{1} and f_{2} belong to $L^{1}(\Omega)$, and if u_{1} and u_{2} are the renormalized solutions of (1.1) for the right-hand sides f_{1} and f_{2}, then

$$
\begin{equation*}
\lambda\left\|u_{1}-u_{2}\right\|_{L^{1}(\Omega)} \leq\left\|f_{1}-f_{2}\right\|_{L^{1}(\Omega)} . \tag{2.9}
\end{equation*}
$$

Now we consider a family of triangulations \mathcal{T}_{h} satisfying for each $h>0$, the following assumption:
the triangulation \mathcal{T}_{h} is made of a finite number of closed d-simplices T
(namely triangles when $d=2$, tetrahedra when $d=3$, etc.) such that:
(i) $\Omega_{h}=\bigcup\left\{T: T \in \mathcal{T}_{h}\right\} \subset \bar{\Omega}$,
(ii) for every compact set K with $K \subset \Omega$, there exists $h_{0}(K)>0$ such that, for every h with $h<h_{0}(K), \quad K \subset \Omega_{h}$,
(iii) For T_{1} and T_{2} of \mathcal{T}_{h} with $T_{1} \neq T_{2}$, one has $\left|T_{1} \cap T_{2}\right|=0$,
((iv) every face of every T of \mathcal{T}_{h} is either a subset of $\partial \Omega_{h}$, or a face of another T^{\prime} of \mathcal{T}_{h}.

Note that because of $(i v)$ the triangulations are conforming. A particular case is where Ω is a polyhedron of \mathbb{R}^{d}, and where Ω_{h} coincides with Ω for every h.
The vertices of the d-simplexes T of \mathcal{T}_{h} are denoted by a_{i}. There are interior and boundary vertices, namely vertices which belong to \AA_{h} and vertices which belong to $\partial \Omega_{h}$. We denote by I the set of indices corresponding to interior vertices and by B the set of indices corresponding to boundary vertices.

For every $T \in \mathcal{T}_{h}$, we denote by h_{T} the diameter of T and by ρ_{T} the diameter of the ball inscribed in T. We set

$$
\begin{equation*}
h=\sup _{T \in \mathcal{T}_{h}} h_{T} \tag{2.11}
\end{equation*}
$$

and we consider this h as the parameter of the triangulation \mathcal{T}_{h} and let it tend to zero. We also assume that the family of triangulations \mathcal{T}_{h} is regular in the sense of P.G. Ciarlet [5] namely that there exists a constant σ such that

$$
\begin{equation*}
\forall h, \forall T \in \mathcal{T}_{h}, \frac{h_{T}}{\rho_{T}} \leq \sigma \tag{2.12}
\end{equation*}
$$

For every triangulation \mathcal{T}_{h}, we define the space V_{h} of those continuous functions which are affine on each d-simplex of \mathcal{T}_{h} and which vanish on $\bar{\Omega} \backslash \Omega_{h}$, namely

$$
\begin{equation*}
V_{h}=\left\{v_{h} \in \mathcal{C}^{0}(\bar{\Omega}): v_{h}=0 \text { in } \bar{\Omega} \backslash \AA_{h}, \forall T \in \mathcal{T}_{h}, v_{h \mid T} \in \mathbb{P}_{1}\right\} \tag{2.13}
\end{equation*}
$$

One has

$$
V_{h} \subset H_{0}^{1}(\Omega)
$$

For every (interior or boundary) vertex a_{i} of \mathcal{T}_{h}, i.e. for every $i \in I \cup B$, we define the function φ_{i} by:

$$
\left\{\begin{array}{c}
\varphi_{i} \in C^{0}\left(\Omega_{h}\right), \varphi_{i \mid T} \in \mathbb{P}_{1} \text { for every } T \in \mathcal{T}_{h} \tag{2.14}\\
\varphi_{i}\left(a_{i}\right)=1, \varphi_{i}\left(a_{j}\right)=0 \text { for every vertex } a_{j} \text { of } \mathcal{T}_{h} \text { with } a_{j} \neq a_{i}
\end{array}\right.
$$

One has

$$
\begin{equation*}
\sum_{i \in I \cup B} \varphi_{i}=1 \text { in } \Omega_{h} . \tag{2.15}
\end{equation*}
$$

When a_{i} is an interior vertex, i.e. when $i \in I$, then the function φ_{i} belongs to $H_{0}^{1}\left(\AA_{h}\right)$, and extending φ_{i} by zero to $\bar{\Omega} \backslash \AA_{h}$, we obtain a function of V_{h}, still denoted by φ_{i}. The functions $\varphi_{i}, i \in I$, are a basis of the space V_{h}.
We define the interpolation operator Π_{h} by:

$$
\left\{\begin{array}{c}
\forall v \in C^{0}(\bar{\Omega}) \text { with } v=0 \text { in } \bar{\Omega} \backslash \stackrel{\circ}{\Omega}_{h} \\
\Pi_{h}(v) \in V_{h},\left(\Pi_{h}(v)\right)\left(a_{i}\right)=v\left(a_{i}\right) \text { for every vertex } a_{i} \text { of } \mathcal{T}_{h}
\end{array}\right.
$$

or equivalently by

$$
\Pi_{h}(v)=\sum_{i \in I} v\left(a_{i}\right) \varphi_{i}
$$

For all interior vertices a_{i} and a_{j} of \mathcal{T}_{h}, i.e. for every i and j of I, we define two real numbers $Q_{i j}$ and $H_{i j}$ respectively by

$$
\begin{array}{r}
Q_{i j}=\int_{\Omega} A \nabla \varphi_{i} \cdot \nabla \varphi_{j} d x \\
H_{i j}=\int_{\Omega} \varphi_{i} \varphi_{j} d x \tag{2.17}
\end{array}
$$

this defines an $I \times I$ matrix Q.
The $I \times I$ matrix H is a diagonally dominant matrix.

The main assumption of the present paper is that Q and H satisfies:

$$
\begin{cases} & Q_{i i}-\sum_{j \in I j \neq i}\left|Q_{i j}\right| \geq 0 \tag{2.18}\\ \forall i \in I, & \\ & H_{i i}-\sum_{j \in I j \neq i}\left|H_{i j}\right| \geq 0\end{cases}
$$

In other words, Q and H are assumed to be a diagonally dominant matrix. This assumption is close to the usual assumption which ensures that the discrete maximum principle holds true.
We have the following.
Proposition 2.3. For every triangulation \mathcal{T}_{h}, the problem

$$
\left\{\begin{array}{l}
u_{h} \in V_{h} \tag{2.19}\\
\int_{\Omega} A \nabla u_{h} \cdot \nabla v_{h} d x+\int_{\Omega} \Phi\left(u_{h}\right) \cdot \nabla v_{h} d x \\
+\lambda \int_{\Omega} u_{h} v_{h} d x=\int_{\Omega} f v_{h} d x, \quad \forall v_{h} \in V_{h}
\end{array}\right.
$$

has a unique solution u_{h}.
Proof. Note that the right-hand side of 2.19 makes sense since f belongs to $L^{1}(\Omega)$ and $v_{h} \in V_{h} \subset L^{\infty}(\Omega)$. We define the form $a_{h}: V_{h} \times V_{h} \mapsto \mathbb{R}$ as

$$
a_{h}\left(u_{h}, v_{h}\right)=\int_{\Omega} A \nabla u_{h} \cdot \nabla v_{h} d x+\int_{\Omega} \Phi\left(u_{h}\right) \cdot \nabla v_{h} d x+\lambda \int_{\Omega} u_{h} v_{h} d x
$$

The form a_{h} is bilinear, symmetric and continuous.
It remains to prove the coerciveness of a_{h}. We have for $v_{h} \in V_{h}$,

$$
a_{h}\left(v_{h}, v_{h}\right)=\int_{\Omega} A \nabla v_{h} \cdot \nabla v_{h} d x+\int_{\Omega} \Phi\left(v_{h}\right) \cdot \nabla v_{h} d x+\lambda \int_{\Omega} v_{h} v_{h} d x .
$$

We claim that

$$
\int_{\Omega} \Phi\left(v_{h}\right) \cdot \nabla v_{h} d x=0
$$

Indeed, if we set

$$
\Psi_{i}(t)=\int_{0}^{t} \Phi_{i}(s) d s \quad \forall t \in \mathbb{R}
$$

and

$$
\Psi=\left(\Psi_{1}, \Psi_{2}, \cdots, \Psi_{d}\right)
$$

we get

$$
\Phi\left(u_{h}\right) \cdot \nabla u_{h}=\Psi^{\prime}\left(u_{h}\right) \cdot \nabla u_{h}=\nabla \cdot \Psi\left(u_{h}\right)
$$

which implies by the Divergence Theorem,

$$
\begin{equation*}
\int_{\Omega} \Phi\left(u_{h}\right) \cdot \nabla u_{h} d x=\int_{\Omega} \nabla \cdot \Psi\left(u_{h}\right) d x=\int_{\partial \Omega} \Psi\left(u_{h}\right) \cdot \mathbf{n} d S=0 \tag{2.20}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
a_{h}\left(v_{h}, v_{h}\right) & =\int_{\Omega} A \nabla v_{h} \cdot \nabla v_{h} d x+\lambda \int_{\Omega} v_{h} v_{h} d x \\
& \geq \int_{\Omega} A \nabla v_{h} \cdot \nabla v_{h} d x \\
& \geq \alpha \int_{\Omega}\left|\nabla v_{h}\right|^{2} d x \\
& =\alpha\left\|\nabla v_{h}\right\|_{2}^{2}
\end{aligned}
$$

i.e.

$$
\begin{equation*}
a_{h}\left(v_{h}, v_{h}\right) \geq \alpha\left\|\nabla v_{h}\right\|_{2}^{2}, \forall v_{h} \in V_{h} \tag{2.21}
\end{equation*}
$$

By Lax-Milgram Theorem, we conclude that problem (2.19) has a unique solution for $f=0$. Since the bilinear form is defined in the finite dimensional space $V_{h} \subset L^{\infty}(\Omega)$, the result remains true for $f \in L^{1}(\Omega)$.

3. Main Results

Our main result is the following.
Theorem 3.1. Assume that A, f, Φ and λ satisfy (2.1), 2.2), 2.3), 2.10, 2.11), (2.12), and 2.18) Then the unique solution u_{h} of 2.19) satisfies for every $k>0$

$$
\begin{align*}
\Pi_{h}\left(T_{k}\left(u_{h}\right)\right) & \longrightarrow T_{k}(u) \text { strongly in } H_{0}^{1}(\Omega), \tag{3.1}\\
u_{h} & \longrightarrow u \text { strongly in } L^{1}(\Omega), \tag{3.2}
\end{align*}
$$

when h tends to zero, where u is the unique renormalized solution of (1.1).
The proof of this Theorem will be made through Proposition 3.10 and Theorem 3.9 below. We begin by recalling various results which will be used in this proof.

3.1. A priori estimates and basic convergence.

The following result is a piecewise \mathbb{P}_{1} variant of a result of L. Boccardo and $T h$. Gallouët [2], 3].

Theorem 3.2. (see [4])
Assume that $v_{h} \in V_{h}$ satisfies

$$
\begin{equation*}
\forall k>0, \int_{\Omega}\left|\nabla \Pi_{h}\left(T_{k}\left(v_{h}\right)\right)\right|^{2} d x \leq k M \tag{3.3}
\end{equation*}
$$

for some $M>0$. Then, for every q avec $1 \leq q<\frac{d}{d-1}$

$$
\begin{equation*}
\left\|v_{h}\right\|_{W_{0}^{1, q}(\Omega)} \leq C_{2}(d,|\Omega|, q) M \tag{3.4}
\end{equation*}
$$

where the constant $C_{2}(d,|\Omega|, q)$ only depends on $d,|\Omega|$ and q.
The following lemmas show that when v_{h} satisfies 1.1, then $\Pi_{h}\left(T_{k}\left(v_{h}\right)\right)$ and $T_{k}\left(v_{h}\right)$ are close in measure.

Lemma 3.3. (see [4, Lemma 2.4) Let $v_{h} \in V_{h}$. For every s and every k with $0<s<k$, the set $B(k, s)$ defined by

$$
\begin{equation*}
B(k, s)=\bigcup\left\{T \in \mathcal{T}_{h}: \exists(x, y) \in T \times T,\left|v_{h}(x)\right| \geq k,\left|v_{h}(y)\right| \leq s\right\} \tag{3.5}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
|B(k, s)| \leq \frac{h^{2}}{(k-s)^{2}} \int_{\Omega}\left|\nabla \Pi_{h}\left(T_{k}\left(v_{h}\right)\right)\right|^{2} d x \tag{3.6}
\end{equation*}
$$

Lemma 3.4. (see [4, Lemma 2.5) Let $v_{h} \in V_{h}$. For every s and every k with $0<s<k$, one has

$$
\begin{equation*}
T_{s}\left(\Pi_{h}\left(T_{k}\left(v_{h}\right)\right)\right)=T_{s}\left(v_{h}\right) \text { in } B(k, s)^{c} \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla T_{s}\left(\Pi_{h}\left(T_{k}\left(v_{h}\right)\right)\right)=\nabla T_{s}\left(v_{h}\right) \text { almost everywhere in } B(k, s)^{c} \tag{3.8}
\end{equation*}
$$

In view of (3.6), $|B(k, s)|$ tends to zero when h tends to zero if estimate (3.3) holds. The following result is therefore an immediate consequence of Lemmas 3.3 and 3.4 .

Proposition 3.5. (see [4], Proposition 2.6) Assume that $v_{h} \in V_{h}$ satisfies (1.1). Then for every s and every k, with $0<s<k$, one has

$$
\begin{gather*}
T_{s}\left(\Pi_{h}\left(T_{k}\left(v_{h}\right)\right)\right)-T_{s}\left(v_{h}\right) \longrightarrow 0 \text { in measure } \tag{3.9}\\
\nabla T_{s}\left(\Pi_{h}\left(T_{k}\left(v_{h}\right)\right)\right)-\nabla T_{s}\left(v_{h}\right) \longrightarrow 0 \text { in measure } \tag{3.10}
\end{gather*}
$$

when h tends to zero.
The following proposition gives an analogue in V_{h} of the fact that in the continuous case, for every $v \in H_{0}^{1}(\Omega)$ and every $k>0$, one has

$$
A \nabla\left(v-T_{k}(v)\right) \cdot \nabla T_{k}(v)+\lambda\left(v-T_{k}(v)\right) T_{k}(v)=0 \text { a. e. in } \Omega
$$

Proposition 3.6. Under assumption 2.18, one has for every $v_{h} \in V_{h}$ and every $k>0$

$$
\begin{gather*}
A_{1}=\int_{\Omega} A \nabla\left(v_{h}-\Pi_{h}\left(T_{k}\left(v_{h}\right)\right)\right) \cdot \nabla \Pi_{h}\left(T_{k}\left(v_{h}\right)\right) d x \geq 0 \\
A_{2}=\lambda \int_{\Omega}\left(v_{h}-\Pi_{h}\left(T_{k}\left(v_{h}\right)\right)\right)\left(\Pi_{h}\left(T_{k}\left(v_{h}\right)\right)\right) d x \geq 0 \tag{3.11}
\end{gather*}
$$

Proof. The proof is carried out in several steps.

- We show firstly, that $A_{1} \geq 0$

Using Definition 2.16 of $Q_{i j}$, the fact that $v_{h}=\sum_{i \in I} v_{h}\left(a_{i}\right) \varphi_{i}$ and $\Pi_{h}\left(T_{k}\left(v_{h}\right)\right)=\sum_{i \in I} T_{k}\left(v_{h}\right)\left(a_{i}\right) \varphi_{i}$, we have
$\int_{\Omega} A \nabla\left(v_{h}-\Pi_{h} T_{k}\left(v_{h}\right)\right) \cdot \nabla \Pi_{h}\left(T_{k}\left(v_{h}\right)\right) d x=\sum_{i, j \in I} Q_{i j}\left(v_{h}\left(a_{i}\right)-T_{k}\left(v_{h}\left(a_{i}\right)\right)\right) T_{k}\left(v_{h}\left(a_{j}\right)\right)$

$$
=\sum_{i \in I} S_{i}
$$

where

$$
S_{i}=Q_{i i}\left(v_{h}\left(a_{i}\right)-T_{k}\left(v_{h}\left(a_{i}\right)\right)\right) T_{k}\left(v_{h}\left(a_{i}\right)\right)+\sum_{j \in I, j \neq i} Q_{i j}\left(v_{h}\left(a_{i}\right)-T_{k}\left(v_{h}\left(a_{i}\right)\right)\right) T_{k}\left(v_{h}\left(a_{j}\right)\right)
$$

Fix $i \in I$.
If $\left|v_{h}\left(a_{i}\right)\right| \leq k$, then $v_{h}\left(a_{i}\right)-T_{k}\left(v_{h}\left(a_{i}\right)\right)=0$ and $S_{i}=0$.

If $\left|v_{h}\left(a_{i}\right)\right|>k$, then $\left(v_{h}\left(a_{i}\right)-T_{k}\left(v_{h}\left(a_{i}\right)\right)\right) T_{k}\left(v_{h}\left(a_{i}\right)\right)=\left|v_{h}\left(a_{i}\right)-T_{k}\left(v_{h}\left(a_{i}\right)\right)\right| k$. Since $\left|T_{k}\left(v_{h}\left(a_{j}\right)\right)\right| \leq k$ for every j, one has:

$$
\begin{aligned}
S_{i} & \geq Q_{i i}\left|v_{h}\left(a_{i}\right)-T_{k}\left(v_{h}\left(a_{i}\right)\right)\right| k-\sum_{j \in I, j \neq i}\left|Q_{i j}\right|\left|v_{h}\left(a_{i}\right)-T_{k}\left(v_{h}\left(a_{i}\right)\right)\right| k \\
& =\left|v_{h}\left(a_{i}\right)-T_{k}\left(v_{h}\left(a_{i}\right)\right)\right| k\left(Q_{i i}-\sum_{j \in I, j \neq i}\left|Q_{i j}\right|\right) \geq 0
\end{aligned}
$$

owing to hypothesis 2.18). This proves that for all $i \in I, S_{i} \geq 0$.

- Secondly, we prove that A_{2} is positive.

Using the definition 2.17 of $H_{i j}$, we have

$$
\begin{aligned}
A_{2} & \left.=\sum_{i, j \in I} H_{i j}\left(v_{h}\left(a_{i}\right)-T_{k}\left(v_{h}\right)\right)\right) T_{k}\left(v_{h}\left(a_{i}\right)\right) \\
& =\sum_{i \in I} R_{i}
\end{aligned}
$$

where

$$
R_{i}=H_{i i}\left(v_{h}\left(a_{i}\right)-T_{k}\left(v_{h}\left(a_{i}\right)\right)\right) T_{k}\left(v_{h}\left(a_{i}\right)\right)+\sum_{\substack{j \in I \\ i \neq j}} H_{i j}\left(v_{h}\left(a_{i}\right)-T_{k}\left(v_{h}\left(a_{i}\right)\right)\right) T_{k}\left(v_{h}\left(a_{j}\right)\right)
$$

Fix $i \in I$.
If $\left|v_{h}\right| \leq k$, then $v_{h}\left(a_{i}\right)-T_{k}\left(v_{h}\left(a_{i}\right)\right)=0$ and $R_{i}=0$.
If $\left|v_{h}\left(a_{i}\right)\right|>k$, then

$$
\left(v_{h}\left(a_{i}\right)-T_{k}\left(v_{h}\left(a_{i}\right)\right)\right) T_{k}\left(v_{h}\left(a_{i}\right)\right)=\left|v_{h}\left(a_{i}\right)-T_{k}\left(v_{h}\left(a_{i}\right)\right)\right| k .
$$

Since $\left|T_{k}\left(v_{h}\left(a_{i}\right)\right)\right| \leq k$ for every j, one has

$$
\begin{aligned}
R_{i} & \geq H_{i i}\left|v_{h}\left(a_{i}-T_{k}\left(v_{h}\left(a_{i}\right)\right)\right)\right| k-\sum_{\substack{j \in I \\
i \neq j}}\left|H_{i j}\right|\left|v_{h}\left(a_{i}\right)-T_{k}\left(v_{h}\left(a_{i}\right)\right)\right| k \\
& =\left|v_{h}\left(a_{i}\right)-T_{k}\left(v_{h}\left(a_{i}\right)\right)\right| k\left(H_{i i}-\sum_{\substack{j \in I \\
i \neq j}}\left|H_{i j}\right|\right) \geq 0
\end{aligned}
$$

owing to hypothesis (2.18). This proves that for all $i \in I, R_{i} \geq 0$.
The proof of Proposition 3.6 is then complete.

Proposition 3.7. Under the assumptions of Theorem 3.2, the solution u_{h} of 2.19 satisfies for every $h>0$ and every $k>0$

$$
\begin{align*}
\int_{\Omega} A \nabla \Pi_{h}\left(T_{k}\left(u_{h}\right)\right) \cdot \nabla \Pi_{h}\left(T_{k}\left(u_{h}\right)\right) d x+\lambda & \int_{\Omega}\left(\Pi_{h}\left(T_{k}\left(u_{h}\right)\right)\right)^{2} d x \\
& \leq \int_{\Omega} f \Pi_{h}\left(T_{k}\left(u_{h}\right)\right) d x \tag{3.12}
\end{align*}
$$

Proof. As $T_{k}\left(u_{h}\right)$ is continuous with $T_{k}(0)=0$, so the function $\Pi_{h}\left(T_{k}\left(u_{h}\right)\right)$ belongs to V_{h}. Then, we can take it as a test function in 2.19 to obtain

$$
\int_{\Omega} A \nabla u_{h} \cdot \nabla \Pi_{h}\left(T_{k}\left(u_{h}\right)\right) d x+\int_{\Omega} \Phi\left(u_{h}\right) \cdot \nabla \Pi_{h}\left(T_{k}\left(u_{h}\right)\right) d x
$$

$$
+\lambda \int_{\Omega} u_{h} \Pi_{h}\left(T_{k}\left(u_{h}\right)\right) d x=\int_{\Omega} f \Pi_{h}\left(T_{k}\left(u_{h}\right)\right) d x
$$

Recall that in Proposition 3.6 we proved that

$$
\begin{align*}
& \int_{\Omega} A \nabla \Pi_{h}\left(T_{k}\left(u_{h}\right)\right) \cdot \nabla \Pi_{h}\left(T_{k}\left(u_{h}\right)\right) d x \leq \int_{\Omega} A \nabla u_{h} \cdot \nabla \Pi_{h}\left(T_{k}\left(u_{h}\right)\right) d x \tag{3.13}\\
& \lambda \int_{\Omega}\left|\Pi_{h}\left(T_{k}\left(u_{h}\right)\right)\right|^{2} d x \leq \lambda \int_{\Omega} \lambda u_{h} \Pi_{h}\left(T_{k}\left(u_{h}\right)\right) d x \tag{3.14}
\end{align*}
$$

On the other hand, we claim that

$$
\begin{equation*}
\int_{\Omega} \Phi\left(u_{h}\right) \cdot \nabla \Pi_{h}\left(T_{k}\left(u_{h}\right)\right) d x=0 \tag{3.15}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
\nabla \Pi_{h}\left(T_{k}\left(u_{h}\right)\right) & =\Pi_{h}^{\prime}\left(T_{k}\left(u_{h}\right)\right) \nabla T_{k}\left(u_{h}\right) \\
& =\left\{\begin{array}{cll}
\Pi_{h}^{\prime}\left(u_{h}\right) \nabla u_{h} & \text { if } & \left|u_{h}\right|<k \\
0 & \text { if } & \left|u_{h}\right| \geq k
\end{array}\right.
\end{aligned}
$$

Therefore, if we set

$$
\left(\Psi_{h, k}\right)_{i}(t)=\int_{0}^{t} \Pi_{h}^{\prime}(s) \Phi_{i}(s) \chi_{\{|s|<k\}} d s, \quad \forall t \in \mathbb{R}
$$

and

$$
\Psi_{h, k}=\left(\left(\Psi_{h, k}\right)_{1},\left(\Psi_{h, k}\right)_{2}, \cdots,\left(\Psi_{h, k}\right)_{d}\right)
$$

we get

$$
\begin{aligned}
\Phi\left(u_{h}\right) \cdot \nabla \Pi_{h}\left(T_{k}\left(u_{h}\right)\right) & =\chi_{\{|s|<k\}} \Pi_{h}^{\prime}\left(u_{h}\right) \Phi\left(u_{h}\right) \cdot \nabla u_{h} \\
& =\left(\Psi_{h, k}\right)^{\prime}\left(u_{h}\right) \cdot \nabla u_{h} \\
& =\nabla \cdot \Psi_{h, k}\left(u_{h}\right)
\end{aligned}
$$

which implies by the Divergence Theorem,

$$
\int_{\Omega} \Phi\left(u_{h}\right) \cdot \nabla \Pi_{h}\left(T_{k}\left(u_{h}\right)\right) d x=\int_{\Omega} \nabla \cdot \Psi_{h, k}\left(u_{h}\right) d x=\int_{\partial \Omega} \Psi_{h, k}\left(u_{h}\right) \cdot \mathbf{n} d S=0
$$

From (3.13)-3.15, we deduce 3.12.
In the following theorem we prove a uniform estimate on the interpolation function Π_{h} and the truncated energy of u_{h}, which is crucial to pass to the limit in the approximate problem.

Theorem 3.8. Assume that $u_{h} \in V_{h}$ is a solution of 2.19), then

$$
\begin{array}{r}
\forall k>0, \alpha\left\|\Pi_{h}\left(T_{k}\left(u_{h}\right)\right)\right\|_{H_{0}^{1}(\Omega)}^{2}+\lambda\left\|\Pi_{h}\left(T_{k}\left(u_{h}\right)\right)\right\|_{L^{2}(\Omega)}^{2} \leq k\|f\|_{L^{1}(\Omega)} \\
\frac{1}{n} \int_{\left\{n \leq u_{h} \leq 2 n\right\}}\left|\nabla u_{h}\right|^{2} d x \leq \frac{1}{\alpha} \int_{\left\{\left|u_{h}\right| \geq n\right\}}|f| d x \tag{3.17}
\end{array}
$$

Proof. The proof is done in two steps.

- Step 1: Proof of (3.16).

The proof of 3.16 follows immediately from 3.12 .

- Step 2: Proof of (3.17).

Let's us introduce the function $h_{n}: \mathbb{R} \rightarrow \mathbb{R}$ defined, for any $n \geq 1$, by

$$
h_{n}(s)=\left\{\begin{array}{lll}
-n & \text { if } \quad s \leq-2 n \tag{3.18}\\
s+n & \text { if } & -2 n \leq s \leq-n \\
0 & \text { if } & -n \leq s \leq n \\
s-n & \text { if } & n \leq s \leq 2 n \\
n & \text { if } \quad s \geq 2 n
\end{array}\right.
$$

Note that $h_{n}(s)=T_{2 n}(s)-T_{n}(s)$, so h_{n} is a Lipschitz-function with $h_{n}(0)=$ 0 and then, $\Pi_{h}\left(h_{n}\left(u_{h}\right)\right) \in V_{h}$. We can take $\Pi_{h}\left(h_{n}\left(u_{h}\right)\right)$ as a test function in 2.19 to obtain

$$
\begin{align*}
\int_{\Omega} A \nabla u_{h} \cdot \nabla \Pi_{h}\left(h_{n}\left(u_{h}\right)\right) d x+ & \int_{\Omega} \Phi\left(u_{h}\right) \cdot \nabla \Pi_{h}\left(h_{n}\left(u_{h}\right)\right) d x+\lambda \int_{\Omega} u_{h} \Pi_{h}\left(h_{n}\left(u_{h}\right)\right) d x \\
& =\int_{\Omega} f \Pi_{h}\left(h_{n}\left(u_{h}\right)\right) d x \leq n \int_{\left\{\left|u_{h}\right| \geq n\right\}}|f| d x \tag{3.19}
\end{align*}
$$

Observe that $\nabla h_{n}\left(u_{h}\right)=h_{n}^{\prime}\left(u_{h}\right) \cdot \nabla u_{h}$ with

$$
h_{n}^{\prime}(s)=\left\{\begin{array}{llc}
1 & \text { if } & n<|s|<2 n \\
0 & \text { if } & |s|<n
\end{array} \text { or } \quad|s|>2 n\right.
$$

Therefore, we have

$$
\begin{align*}
\int_{\Omega} A \nabla u_{h} \cdot & \nabla \Pi_{h}\left(h_{n}\left(u_{h}\right)\right) d x \geq \int_{\Omega} A \nabla \Pi_{h}\left(h_{n}\left(u_{h}\right)\right) \cdot \nabla \Pi_{h}\left(h_{n}\left(u_{h}\right)\right) d x \\
& \geq \alpha \int_{\Omega}\left|\nabla \Pi_{h}\left(h_{n}\left(u_{h}\right)\right)\right|^{2} d x=\alpha \int_{\left\{n \leq\left|u_{h}\right| \leq 2 n\right\}}\left|\nabla u_{h}\right|^{2} d x \tag{3.20}
\end{align*}
$$

On the other hand, as in the proofs of (3.14) and 3.15, we show that

$$
\begin{equation*}
\lambda \int_{\Omega} u_{h} \Pi_{h}\left(h_{n}\left(u_{h}\right)\right) d x \geq \lambda \int_{\Omega}\left|\Pi_{h}\left(h_{n}\left(u_{h}\right)\right)\right|^{2} d x \geq 0 \tag{3.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega} \Phi\left(u_{h}\right) \cdot \nabla \Pi_{h}\left(h_{n}\left(u_{h}\right)\right) d x=0 \tag{3.22}
\end{equation*}
$$

Combining (3.19)-(3.22), we obtain (3.17).

To pass to the limit as $h \rightarrow 0$ in 2.19, we need strong convergence of u_{h} and $\Pi_{h}\left(T_{k}\left(u_{h}\right)\right)$.

3.2. Strong convergence.

Theorem 3.9. Under the assumptions of Theorem 3.2, the solution u_{h} of 2.19 satisfies

$$
\begin{equation*}
u_{h} \longrightarrow u \text { strongly in } L^{1}(\Omega) \tag{3.23}
\end{equation*}
$$

as h tends to zero, where u is the unique renormalized solution of 1.1).
Proof. Consider a sequence f^{ε} of functions such that

$$
f^{\varepsilon} \in L^{\infty}(\Omega), f^{\varepsilon} \longrightarrow f \text { strongly in } L^{1}(\Omega)
$$

Such a sequence is easily obtained by taking for example $f^{\varepsilon}=T_{\frac{1}{\varepsilon}}(f)$. Let u_{h}^{ε} be the unique solution of 2.19 for the right-hand side f^{ε}. Then $u_{h}-u_{h}^{\varepsilon}$ satisfies

$$
\left\{\begin{array}{c}
u_{h}-u_{h}^{\varepsilon} \in V_{h} \\
\forall v_{h} \in V_{h}, \int_{\Omega} A \nabla\left(u_{h}-u_{h}^{\varepsilon}\right) \nabla v_{h} d x+\int_{\Omega}\left(\Phi\left(u_{h}-u_{h}^{\varepsilon}\right)\right) \cdot \nabla v_{h} d x \\
+\lambda \int_{\Omega}\left(u_{h}-u_{h}^{\varepsilon}\right) v_{h} d x=\int_{\Omega}\left(f-f^{\varepsilon}\right) v_{h} d x
\end{array}\right.
$$

Applying estimate 3.16 to this problem, we obtain for every $k>0$, every $h>0$ and every $\varepsilon>0$
$\alpha \int_{\Omega}\left|\nabla \Pi_{h}\left(T_{k}\left(u_{h}-u_{h}^{\varepsilon}\right)\right)\right|^{2} d x+\lambda \int_{\Omega}\left|\Pi_{h}\left(T_{k}\left(u_{h}-u_{h}^{\varepsilon}\right)\right)\right|^{2} d x \leq k\left\|f-f^{\varepsilon}\right\|_{L^{1}(\Omega)}$,
which implies by Theorem 3.2 that for every q with $1 \leq q<\frac{d}{d-1}$, every $h>0$ and every $\varepsilon>0$

$$
\alpha\left\|u_{h}-u_{h}^{\varepsilon}\right\|_{W_{0}^{1, q}(\Omega)} \leq C(d,|\Omega|, q)\left\|f-f^{\varepsilon}\right\|_{L^{1}(\Omega)}
$$

In particular, for $q=1$, we deduce from the above inequality that

$$
\begin{equation*}
\left\|u_{h}-u_{h}^{\varepsilon}\right\|_{L^{1}(\Omega)} \leq \frac{1}{\alpha} C(d,|\Omega|)\left\|f-f^{\varepsilon}\right\|_{L^{1}(\Omega)} \tag{3.24}
\end{equation*}
$$

On the other hand, since $f^{\varepsilon} \in L^{\infty}(\Omega) \subset L^{2}(\Omega)$ and since the family of triangulations \mathcal{T}_{h} satisfies 2.10, 2.11) and 2.12, we have that for every fixed ε

$$
\begin{equation*}
u_{h}^{\varepsilon} \longrightarrow u^{\varepsilon} \text { strongly in } H_{0}^{1}(\Omega) \tag{3.25}
\end{equation*}
$$

as h tends to zero and where u^{ε} is the unique weak solution (see [14], Theorem 1.1) of

$$
\left\{\begin{array}{c}
u^{\varepsilon} \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega) \tag{3.26}\\
-\operatorname{div}\left(A \nabla u^{\varepsilon}+\Phi^{\varepsilon}\left(u^{\varepsilon}\right)\right)+\lambda u^{\varepsilon}=f^{\varepsilon} \text { in } \mathcal{D}^{\prime}(\Omega)
\end{array}\right.
$$

Finally, the function u^{ε}, which is the unique weak solution of (3.26) and the unique renormalized solution (see [14], Theorem 1.1) in the sense of Definition 2.1 of the problem

$$
\left\{\begin{array}{c}
-\operatorname{div}\left(A \nabla u^{\varepsilon}+\Phi^{\varepsilon} u^{\varepsilon}\right)+\lambda u^{\varepsilon}=f^{\varepsilon} \text { in } \Omega \\
u^{\varepsilon}=0 \text { on } \partial \Omega
\end{array}\right.
$$

satisfy

$$
\begin{equation*}
\left\|u^{\varepsilon}-u\right\|_{L^{1}(\Omega)} \leq \frac{1}{\lambda}\left\|f^{\varepsilon}-f\right\|_{L^{1}(\Omega)} \tag{3.27}
\end{equation*}
$$

Writing now

$$
\left\|u_{h}-u\right\|_{L^{1}(\Omega)} \leq\left\|u_{h}-u_{h}^{\varepsilon}\right\|_{L^{1}(\Omega)}+\left\|u_{h}^{\varepsilon}-u^{\varepsilon}\right\|_{L^{1}(\Omega)}+\left\|u^{\varepsilon}-u\right\|_{L^{1}(\Omega)}
$$

and using (3.24), 3.25 and (3.27), we have proved that for every $\varepsilon>0$

$$
\limsup _{h \longrightarrow 0}\left\|u_{h}-u\right\|_{L^{1}(\Omega)} \leq\left(\frac{1}{\alpha} C(d,|\Omega|)+\frac{1}{\lambda}\right)\left\|f^{\varepsilon}-f\right\|_{L^{1}(\Omega)} .
$$

Taking the limit when ε tends to zero proves 3.23 , and relation 3.2 of Theorem 3.2 is proved.

Now, we prove that $\Pi_{h}\left(T_{k}\left(u_{h}\right)\right)$ converges strongly to $T_{k}(u)$ in $H_{0}^{1}(\Omega)$ in the following statement.
Proposition 3.10. Under the assumptions of Theorem 3.2, the solution u_{h} of (2.19) satisfies for every $k>0$

$$
\begin{equation*}
\Pi_{h}\left(T_{k}\left(u_{h}\right)\right) \longrightarrow T_{k}(u) \text { strongly in } H_{0}^{1}(\Omega) \quad \text { as } h \rightarrow 0 \tag{3.28}
\end{equation*}
$$

Proof. Fix $k>0$. In view of estimate (3.16), we can extract a subsequence (which depends on k and is still denoted by $\left.u_{h}\right)$ such that for some $w_{k} \in H_{0}^{1}(\Omega)$

$$
\begin{equation*}
\Pi_{h}\left(T_{k}\left(u_{h}\right)\right) \rightharpoonup w_{k} \text { weakly in } H_{0}^{1}(\Omega) \tag{3.29}
\end{equation*}
$$

when h tends to zero. By estimate (3.16) and Proposition 3.5, u_{h} satisfies (2.14, namely

$$
T_{s}\left(\Pi_{h}\left(T_{k}\left(u_{h}\right)\right)\right)-T_{s}\left(u_{h}\right) \longrightarrow 0 \text { in measure }
$$

when h tends to zero, for every s with $0<s<k$. The convergence 3.29), the convergence (3.23), the Rellich-Kondrachov's compactness theorem and the continuity of the function T_{s} prove that

$$
T_{s}\left(w_{k}\right)=T_{s}(u)
$$

for every s with $0<s<k$. Passing to the limit when s tends to k, we obtain $T_{k}\left(w_{k}\right)=T_{k}(u)$. But since $\mid \Pi_{h}\left(T_{k}\left(u_{h}\right) \mid \leq k\right.$, the convergence (3.29) implies that $\left|w_{h}(x)\right| \leq k$, hence $T_{k}\left(w_{k}\right)=w_{k}$. This yields $w_{k}=T_{k}(u)$, and since the limit does not depend on the subsequence, we have proved that

$$
\begin{equation*}
\Pi_{h}\left(T_{k}\left(u_{h}\right)\right) \rightharpoonup T_{k}(u) \text { weakly in } H_{0}^{1}(\Omega) \tag{3.30}
\end{equation*}
$$

when h tends to zero without extracting a subsequence.
Let us now prove that this convergence is strong. Lebesgue's dominated convergence theorem combined with

$$
\left|f \Pi_{h}\left(T_{k}\left(u_{h}\right)\right)\right| \leq|f| k \in L^{1}(\Omega)
$$

with the weak convergence 3.30 and with Rellich-Kondrachov's compactness theorem imply that

$$
\int_{\Omega} f \Pi_{h}\left(T_{k}\left(u_{h}\right)\right) d x \longrightarrow \int_{\Omega} f T_{k}(u) d x \quad \text { as } h \rightarrow 0
$$

Therefore passing to the limit with respect to h in 3.12 yields

$$
\begin{gather*}
\limsup _{h \longrightarrow 0}\left[\int_{\Omega} A \nabla \Pi_{h}\left(T_{k}\left(u_{h}\right)\right) \nabla \Pi_{h}\left(T_{k}\left(u_{h}\right)\right) d x+\int_{\Omega} \Phi\left(\Pi_{h}\left(T_{k}\left(u_{h}\right)\right)\right) \nabla \Pi_{h}\left(T_{k}\left(u_{h}\right)\right) d x\right. \\
\left.+\lambda \int_{\Omega}\left(\Pi_{h}\left(T_{k}\left(u_{h}\right)\right)\right)^{2} d x\right] \leq \int_{\Omega} f T_{k}(u) d x \tag{3.31}
\end{gather*}
$$

On the other hand, since u is the renormalized solution of 1.1), one has (see [14], Theorem 5.1)

$$
\begin{equation*}
\int_{\Omega} A \nabla T_{k}(u) \nabla T_{k}(u) d x+\lambda \int_{\Omega} u T_{k}(u) d x=\int_{\Omega} f T_{k}(u) d x \tag{3.32}
\end{equation*}
$$

From (3.31) and 3.32 we deduce that

$$
\begin{array}{r}
\limsup _{h \longrightarrow 0}\left[\int_{\Omega} A \nabla \Pi_{h}\left(T_{k}\left(u_{h}\right)\right) \nabla \Pi_{h}\left(T_{k}\left(u_{h}\right)\right) d x+\int_{\Omega} \Phi\left(\Pi_{h}\left(T_{k}\left(u_{h}\right)\right)\right) \nabla \Pi_{h}\left(T_{k}\left(u_{h}\right)\right) d x\right. \\
\left.+\lambda \int_{\Omega}\left(\Pi_{h}\left(T_{k}\left(u_{h}\right)\right)\right)^{2} d x\right] \leq \int_{\Omega} A \nabla T_{k}(u) \nabla T_{k}(u) d x+\lambda \int_{\Omega} u T_{k}(u) d x
\end{array}
$$

which combined with the weak convergence (3.30) implies the strong convergence (3.28), which proves relation (3.1) of Theorem 3.2.

To achieve the proof of Theorem 3.2, it remains to prove that the limit u is a renormalized solution of problem (1.1).
We claim that u satisfies the decay (2.6) of the truncate energy, i. e.,

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \lim _{h \rightarrow 0} \frac{1}{n} \int_{\{n \leq u \leq 2 n\}}\left|\nabla u_{h}\right|^{2} d x=0 \tag{3.33}
\end{equation*}
$$

Indeed, from 3.17), we can write

$$
\begin{align*}
& \frac{1}{n} \int_{\Omega}\left|\nabla h_{n}\left(u_{h}\right)\right|^{2} d x=\frac{1}{n} \int_{\left\{n \leq u_{h} \leq 2 n\right\}}\left|\nabla u_{h}\right|^{2} d x \\
\leq & \frac{1}{\alpha} \int_{\left\{\left|u_{h}\right| \geq n\right\}}|f| d x \leq \frac{1}{\alpha} \int_{\left\{\left|u_{h}\right| \geq n\right\}}|f| \chi_{\left\{\left|u_{h}\right| \geq n\right\}} d x . \tag{3.34}
\end{align*}
$$

But

$$
\limsup _{h \rightarrow 0} \chi_{\left\{\left|u_{h}\right| \geq n\right\}} \leq \chi_{\{|u| \geq n\}} \quad \text { and } \quad \limsup _{h \rightarrow 0}|f| \chi_{\left\{\left|u_{h}\right| \geq n\right\}} \leq|f| \chi_{\{|u| \geq n\}}
$$

almost everywhere in Ω. Therefore, we use Fatou's Lemma to obtain

$$
\begin{equation*}
\limsup _{h \rightarrow 0} \int_{\left\{\left|u_{n}\right| \geq n\right\}}|f| d x \leq \int_{\{|u| \geq n\}}|f| d x \tag{3.35}
\end{equation*}
$$

On the other hand, as $h_{n}\left(u_{h}\right)$ is bounded in $H_{0}^{1}(\Omega)$, it's clear that

$$
\begin{equation*}
h_{n}\left(u_{h}\right) \rightharpoonup h_{n}(u) \text { weakly in } H_{0}^{1}(\Omega) \text { as } h \rightarrow 0 \tag{3.36}
\end{equation*}
$$

Combining (3.34)-3.36) and using the lower semi-continuity of the norm, we obtain

$$
\begin{align*}
\frac{1}{n} \int_{\{n \leq u \leq 2 n\}}\left|\nabla u_{h}\right|^{2} d x=\frac{1}{n} & \int_{\Omega}\left|\nabla h_{n}(u)\right|^{2} d x \leq \frac{1}{n} \limsup _{h \rightarrow 0} \int_{\Omega}\left|\nabla h_{n}\left(u_{h}\right)\right|^{2} d x \\
& \leq \frac{1}{\alpha} \limsup _{h \rightarrow 0} \int_{\left\{\left|u_{h}\right| \geq n\right\}}|f| d x \leq \frac{1}{\alpha} \int_{|u| \geq n}|f| d x \tag{3.37}
\end{align*}
$$

Letting $n \rightarrow \infty$ in (3.37), we deduce (3.33).
To complete the proof of Theorem 3.9, it remains to prove that the limit of u_{h} satisfies (2.7). We use the same manage as the proof of Theorem 1.1 in [14] to obtain the desired result, that is

$$
\left\{\begin{array}{l}
\forall k>0, \forall S \in C_{c}^{1}(\mathbb{R}) \text { with } \operatorname{supp} S \subset[-k, k], \forall v \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega) \tag{3.38}\\
\int_{\Omega}\left(A \nabla T_{k}(u) \cdot \nabla v\right) S(u) d x+\int_{\Omega} S^{\prime}(u)\left(A \nabla T_{k}(u) \cdot \nabla T_{k}(u)\right) v d x \\
\quad+\int_{\Omega} S(u)(\Phi(u) \cdot \nabla v) d x+\int_{\Omega} S^{\prime}(u)\left(\Phi(u) \cdot \nabla T_{k}(u)\right) v d x \\
\quad+\lambda \int_{\Omega} T_{k}(u) S(u) v d x=\int_{\Omega} f S(u) v d x
\end{array}\right.
$$

Combining (3.23, 3.28, 3.33 and (3.38), we conclude that u is a renormalized solution of problem 1.1). This achives the proof of Theorem 3.2 .
Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

[1] P.Bénilan, L.Boccardo, Th.Gallouët, R. Gariepy, M. Pierre and J.L. Vázquez, An L^{1}-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup.Pisa. 22, (1995),pp 241-273.
[2] L. Boccardo and Th. Gallouët, Nonlinear elliptic equations with right-hand sides measures, Comm. Partial Differential Equations 17, (1992), pp. 641-655.
[3] S.C. Brenner and L.R. Scoot, The mathematical theory of finite element methods, Texts in applied Mathematics 15, Springer-Verlag, New York, 1994.
[4] L. Casado-Díaz, T. Chacòn, Rebollo, V. Girault, M.Gòmez Marmol and F. Murat, Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L^{1}, Numer. Math. 105, No. 3, 337-374 (2007).
[5] P.G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, (1978).
[6] P. G. Ciarlet and P.A. Raviart, Maximum principle and uniform convergence for the finite element method, Comput. Meth. Appl. Mech. Eng. 2,(1973), pp. 17-31.
[7] S. Clain, Finite element approximations for the Laplace operator with a right-hand side measure, Math. Models Methods Appl. Sci. 6, (1995), pp. 713-719.
[8] G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa 28, (1999), pp. 741-808.
[9] A. Dall'Aglio, Approximated solutions of equations with L^{1} data.Application to the H convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl. 170, (1996), pp. 207-240.
[10] R.J. DiPerna and P-L, Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. 130 (1989), no. 2, 321-366.
[11] J. Droniou, T. Gallouët and R. Herbin, A finite volume scheme for a noncoercive elliptic equation with measure data, SIAM J. Numer. Anal. 41, (2003), pp. 1997-2031.
[12] T. Gallouët and R. Herbin, Convergence of linear finite elements for diffusion equations with measure data, C. R. Math. Acad. Sci. Paris 338, (2004), pp.81-84.
[13] P.-L. George and H. Borouchaki, Delaunay triangulation and meshing. Application to finite elements, Hermes, Paris, 1998.
[14] F. Murat, Soluciones renormalizadas de edp elipticas no lineales, Publication 93023 du laboratoire d'Analyse numérique de l'Université Paris VI, (1993), 38 pages.
[15] F. Murat, Equations elliptiques non linéaires avec second membre L^{1} ou mesure In Actes du 26ème Congrès national d'analyse numérique(Les Karellis, juin 1994), Université de Lyon I, (1994), pp. A12-A24.
[16] L.R. Scott, Finite element convergence for singular data, Numer. Math. 21, (1973), pp. 317-327.

Yibour Corentin Bassonon
Département de Mathématiques, Université Norbert ZONGO, BP 376 Koudougou, Burkina Faso

E-mail address: corentinbassonon@gmail.com
Arouna Ouédraogo
Département de Mathématiques, Université Norbert ZONGO, BP 376 Koudougou, Burkina Faso

E-mail address: arounaoued2002@yahoo.fr

[^0]: 2010 Mathematics Subject Classification. 65N12; 65N30; 35J60.
 Key words and phrases. finite elements, renormalized solution, \mathbb{P}_{1} approximation, L^{1}-data. (c)2023 Universiteti i Prishtinës, Prishtinë, Kosovë.

 Submitted February 21, 2022. Published February 11, 2023.
 Communicated by Arian Novruzi.

