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ON INVERSE SOURCE PROBLEM FOR SOBOLEV EQUATION
WITH MITTAG-LEFFLER KERNEL IN L" SPACE

BUI DUC NAM, LE XUAN DAI, LE DINH LONG, NGUYEN HOANG TUAN

ABSTRACT. In this paper, we consider a Sobolev equation with the Atangana-
Baleanu-Caputo fractional derivative. We give the explicit fomula of the source
term. Under the observations of tha data in L" spaces, we provide a regularized
solution using Fourier truncated method. We give the error estimate between
the exact solution and the regularized solution. The main tool is of using some
embeddings.

1. INTRODUCTION

Let @ € RV(N > 1) be a bounded domain with sufficiently smooth boundary
0. In this paper, we are interested to study time fractional diffusion equation
with fractional derivative as follows

4BCpp (w(z,t) + mLu(z,t)) + Lu(z,t) = g(t) f (), zeQ, te(0,1),
u(z,t) =0, x e d, te(0,1),
u(z, 1) = p(x), x €.

(1.1)

Here in the main equation as above, the Atangana - Baleanu fractional derivative
OABCDtBu(x, t) is defined by

/ u(x, s —B(t— )P
ABC Dl u(x,t) = /1\4(65) /6 (837 )E5,1(ﬁl(tﬂ>)ds, (1.2)

0

where the normalization function M(8) can be any function satisfying the condi-
tions M(B) = 1 — B + (57, here M(0) = M(1) =1 (see Definition 2.1 in [I]) and
Eg1 is the MittagLefler function. Our main goal in this paper is of finding the
source term f(z) from the given data p and the measured data at the final time
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u(z,1) = p(x), p € L*(Q) such that

19 = gellLr0,1) + [lp = pellLr(e) < e (1.3)

One of the narrow branches of fractional analysis is the theory of fractional diffusion
equations. Fractional-time diffusion equations are used to model complex phenom-
ena such as long-term memory or spatial interactions, non-local and local dynamics.
For details, please refer to documents [2 3 51 [6, [7, 8, [I§]. One of the modern trends
in fractional analysis is the development of fractional operators with non-singular
kernels. The study of these fractional derivatives is important to satisfy the need
for modeling applications in various fields, such as fluids, mechanics, viscoelasticity,
biology, physics and engineering, see in [3] 4l 17, @] 10, 1T [12] 13, 21 22] 23] 24].
Several definitions of fractional derivatives have been given based on non-special
nuclei such as Atangana-Baleanu-Caputo fractions and derivatives. Regarding the
study of problem with Atangana-Baleanu derivative, we list some previous
results as follows

e Under the case F = F(z,t), from [19], the kernels of the extended Mittag-
Leffler type functions are studied in this study using a partial differential
equation model with the new universal fractional derivatives. Analysis
and consideration are given to an initial boundary value problem for the
anomalous diffusion of fractional order. The Mittag-Leffler kernel fractional
derivative, also known as the Atangana-Babeanu fractional derivative in
time, is interpreted in the Caputo sense. They discovered findings on the
existence, uniqueness, and regularity of the solution.

e Under the case F' = ¢(t) f(z), from [14 [16], the problem of determining in-
verse source problem for fractional diffusion equation containing Atangana-
Baleanu-Caputo fractional derivative. We first establish an explicit formula
of the source term from the average data of the function in the time variable.
We then show that the inverse source problem is ill-posed in the meaning
of Hadamard i.e., the source function is not stable according to the given
data. To overcome this instability, we propose a regularized method as
in the Fractional Landweber method. We also obtain the upper bounds
and find the convergence rate between the regularized solution and sought
source function. Estimates are also derived in two cases on selection rules,
a priori parameter, and a posterior parameter. Numerical examples are
given which illustrate the usefulness of our method.

e Under the case F' = F(x,t,u(z,t)), in the paper [I5], they investigated a
nonlinear time fraction Volterra equation with a Mittag-Leffler multiplier in
Hilbert space. By applying the properties of the Mittag-Leffler function and
the eigenvalue expansion, the existence of a light solution to our problem
has been proved. The main tool to prove our results is the use of some
Sobolev embeddings and some fixed point theorems.

As we know, the inverse issue for diffusion equation with Atangana-Babeanu frac-
tional derivative where the observed data is in the LP(2) space with p # 2 is solved
for the first time in this study. One significant challenge is that because the data
is not in L2(£2), we cannot utilize Parseval equality directly. We get around these
issues by leveraging embedding between LP(€Q)) and H*(f2) scale-spaces. We have
the regularized solution through the Fourier series truncation method with the ob-
served data (¢e,gc) € L™(0,T) x L"™(Q). After that, the error established between
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the regularized solution and the exact solution in the Theorem (3.1, by the main
analytical technique is to use some embeddings and some evaluations using Hlder
inequality.

The structure of our paper is as follows. The existence of mild solution u to
in Section 1.In the Section 2, we have some preliminaries. The main results
in Section 3 is Theorem 3.1, our main tool is Sobolev embeddings.

2. PRELIMINARIES

Let us recall that the spectral problem

{—wnm = &upa(®), inQ 21)
en(x) =0, on 01,
admits a family of eigenvalues
0<6 <& <GS < <. S
For all » > 0, the operator L" (here £L = —A) also possesses the following

representation:

en=Y ( [H@ea)gen.
n=1 Q

heH (Q) = {h € L(Q) i ( / h(x)cpn(x)dm) Cerr o oo}. (2.2)

n=l g
Consider on H" the norm

v = (3 ([ n@enter) €)', nemean,

n=i0

7]

Lemma 2.1. ([0]) Let 0 < 8 < 1, then there exist 0 < By, Ba, Bs such that
B B

- < Eﬂ,l(_y) < 2 )

1+y 1+y

Lemma 2.2. For{ > 0,8 >0, m € N*, we have

m

——Eg1(—&t°) = —&tP " Eg gy (—EL7),

Ego(—y) < %, forally >0, a e R. (2.3)

dtm

d

= (tBs2(=6t")) = Bpa (=6t7),

d

(17 Bp (—67)) = ~1" 2B 51 (—61). (2.4)

Lemma 2.3. [6] Fort >0, and £ >0, and 0 < 8 < 1, then one has
0 Bga(~€t°) = — €Bsa(~€1"),

M(B)

Lemma 2.4. For § € (0,1), putting A3 pn(m,B) = ¢ (M(ﬁ) T énon(l _5))

it

gives

Az (m, B) = (2.5)

§101

1
&n (M(ﬁ) +(1- 5)) .
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Proof. First of all, we notice that §,0, = 1 ﬁ;; = > éim — 5;11+m7 and we have
M(B) M(B)
A3,n(m7ﬁ) = > >
gn(M(ﬁ)J’_gnUn(l_ﬁ)) 1+£77r1L§n <'2:Efi) —|—(]_—ﬂ))
LM 1 e
CG(H21a-p) b (H24a-p)
O

Lemma 2.5. For M >0, by Lemmas[2.1] and [2-3, we have

r

M
dt:/ t* By o (At dt
0

t* By o (= Ant®)

——i/niE (“Ant®) dt = ~= (1 = But (—AaM®) (2.7)
- )\n 0 dt a,l n —)\n a,l n . .

Lemma 2.6. Let § € (0,1), we have estimate

1 mM(5) B B B¢ )L
& (2D 4 (1-)) [1 i M(@’H(E?Wm)l(lﬂ))}

O'nﬁM(ﬂ) 1 - 65710-%(1 —S)B ., 1 . i
(M(@”wfn(l—mfO/EM< M)+ ottt —p) 1~ S

IN

(2.8)

Proof. For Egg(—z) > 0for 0 < § <1 and z > 0, and using the Lemmas [2.4] and
[2:6] we obtain

BEnon (1 —s)P

0xIM(P) /1 .

a — —sﬁ_ls
w0+ om0 7 F@ F =)
1 mM(B) B +m)?
> — 1—Eg1( — — . (29
“(gera m){ ol M(B) + (&7 +m) <1—ﬁ>>] >
O—nﬁM / Bfng’ﬂ( - )B _86—1 s
) Lt QO/E“< M)+ ontalt —7) 07
M(ﬁ) i _ Bfnan(l - 5)6 r
1 BEnon 1
~g - B reen=s) <& (2.10)

O
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Lemma 2.7. [I7] The following statement are true:

N 2N
L"(Q (0 if — — < >
() = H(Q), if 4<s_07 T2
v oy (2.11)
(0 L"(Q ] 0< — <
W@ D@, i 0Ss<T, rsr
3. THE INVERSE SOURCE PROBLEM (1.1
Let us first to review the initial value problem as follows
ABC DY (u(x,t) +mLlu(x,t)) + Lu(z,t) = Fla,t),  inQx(0,1],
u(z,t) =0, on 092 x (0,1, (3.1)
u(z,0) = uola), in 0,
where ug and F are given functions. Let u(x,t) Zun ©n(z) be the Fourier

series in L2(Q) with u, (t) = /u(m, t)on (x)dx, then we have the fractional integro-

Q
differential equation involving the Atangana-Baleanu fractional derivative in the
form

(?Bcl)tﬂ(1 + mfn)un(t) + fnun(t) = Fn(t)’ (32)

in [20], the solution (3.1)) can be represented as by Fourier series

u(z,t) :i(/ u(z, t)pn(x )dx)cpn(x)

=1
and then given by
U (t) = MB) +M§(f)(1 ~5) Ega (M(B)f%(l — 5)) 0,n
P TFme,
+ (1 +1m§n) M(B) + 11:%5 (1-8) 0

( 1 ) BM(B)
Ltmén/ (M(B) + e (1- B))”

t

_/8 1+7;;5n (t - S)ﬁ _ \B-1
« O/ Eﬁ,B(M(m P o 6>)(t P IE (r)dr. (3.3)

+
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Let us denote o, = (1 + mé&,) !, this implies that
“ 0= 3 it = FE T =) O

on(l-B) | )
M) + eron (1= 7) L enen(@)

(M(B) +&non(1 = 5))

t

—5&%(75—7)5 _ \B8-1 s 5 )
x / B (i) ooy ) ) o)) (30

Let us now return the problem of identifying the source term. Let t = 1, u(x,0) =
0, F(z,t) = g(t)f(x), and F,(1) =0, we get

+
e 109 11

‘pn>50n ),

+ 2

), (x)dr = )y, (x)dx 5
Q/p< Jon(2) Q/f( Jonlehls o s

—fB&non (1 — S)ﬁ -1
XO/E@[;(M( 5))(1_s)ﬁ g(s)ds.  (3.5)

6) + fnan (1 -
To make the formula even more compact, we put
nBM(B)
A n(m, B) = - ,
' (M(ﬂ)ﬁ’gngn(lfﬂ))Q
Ao n(m, B) = =T (3.6)

M(ﬁ) + gnan(l - 5)
From and , we receive

[ rrenlalds = / F(@)pu(e)dz

Q
X Atin(m,B) /Egﬁ — Agn(m, B)(1 —s) )(1 — )P 1g(s)ds. (3.7)
0

From (3.7)), it gives

[ H@ontayds =
Q

Through some basic transformations, we get

fp z)pn(z

= Z @n(x)

"=t Ay (. B) _Of‘EB,B( = g (m, B)(1L— 8)8) (1 — )P 1g(s)ds

J p(a)on(z)dx
Q

Ay (m, B) jEM( ~ Anlm A1 - $)8)(1 - 8)5-1g(s)ds
(3.8)

(3.9)
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Asn — ooiie., (Al,n(m,ﬁ) Ong”g( — Ay (m, B8)(1 — 5)5)(1 — s)ﬁ_lg(s)ds)i1

— 00, see in the Lemma Thus, it can be concluded from formula (3.9) that the
small perturbation of p.(x) will cause a great change of f(x). Thus our problem
(1.1) is ill-posed. Next, we will give the conditional stability results of the source

term f(z).

Theorem 3.1. Let us take (ge, pe) € L™(0,1) x L"(R2) such that ge(t) > G2 > 0 for
any 0 <t <1 for any % <71 < 2 and condition

l9e = 9ll 10,1y + lloe = oll 1oy < € (3.10)

Assume that f € H(AITF) for k>0 and 0 < j < %. With the Fourier truncation
method, we have

[ pel@)pn(x)da
OEDY 1 o on(2).
= Avn(m B) [ B p( = Aanlm, B)(1 = )°) (1= ) gu(s)ds

(3.11)

Then we have

17 = 11l

LN%]V;J.(Q) 5 |C€|7k||f||7_[]+k(ﬂ) + CE€|A4(B37 r, 67 G27 m, 51)|Hf||HJ(Q)
4 N N
+ As(€1,01,m, B) (C) T ¢ (3.12)
whereby C. satisfies that
lim Cee = lim ((ce)j“*%‘% e) =0, limC = +oo. (3.13)
e—0 e—0 e—0
Remark. We can take C. satisfying (3.13) as follows
Cc=e 5% 0<s<1.
Then the error order erc — f||LN2—1\ilj @ s of order
e NN stitgl -
max {E%, E@, ES}.

Proof. Using the triangle inequality, we have
erc - f”w‘(m = HB,E - wa‘(Q) + H}-Lf - fZeHw‘(Q) + H}-Lf - fEHHJ‘(Q)’
(3.14)

where we denote some following functions

J p(@)n (z)dx
flve(z) = Z 1 ¢ Sﬁn(l’)y
2 Ay u(m ) [ (= Aaa(m, B)(1 = %) (1= )7~ g.(s)ds

(3.15)
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and
J p(@)pn(z)dx
Q
Faelz) = Z 1 on(T).
=C Ay u(m, B) [ Bpp(— Aza(m,B)(1 - 5)7)(1 - 5)5~g(s)ds
0
(3.16)
Let us next consider some terms on the right hand side of ([3.14]).
Step 1. Estimate of ||}“2,e - wa(Q)'
Let us recall the function f as follows.
J p(@)pn(x)dz
Q
on(z).

fx)y=3" ;
=L A ,(m, B) ofEﬂ’B( — Ay p(m, 8)(1 — 3)5)(1 —5)P-1g(s)ds

This expression together with the fomula (3.16]) gives us the claim of the following
difference

f(@) = Fae(w)
s{ﬂ(f)@n(x)dfﬂ

= Z 1 @n(x)

€n>Ce Ay . (mfB3) OfEﬁﬁ( — Az (m, B)(1 = 5)P) (1 — 5)f~1g(s)ds

-3 ( /Q F(@)pn(@)d) (). (3.17)

&n>Ce

The norm on H7(Q) of (3.17) is calculated through the Parseval equality as follows

17 = Fadllom = X &( [ 10pnteric)

n

= 3 e ([ faenis)

&n>Ce

It is easy to see that &, 2% < |C|~2F if &, > Cc and k > 0. Hence, we have

. 2
Hf _«F276H3.[j(Q) < |Ce|_2k Z fiﬁ—zk(/ﬂ f(l‘)(pn(l‘)dl‘>

&n>Ce
—2k | 42
=|c] Hf||’]-[j+k(Q)’ (3.18)

It gives that

Hf - ‘FQvEHHJ'(Q) < |C€|7k||f||yj+k(g)- (3.19)
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Step 2. Estimate of ||y — f2,€||w O
Based on two formulas (3.15)) and (3.16[), we have
Fre(@) = Fae(w)

. O}Eﬁ,ﬁ( — As (i B)(1— $)°) (1 — )P~ (ge(5) — g(s))ds

@ [ Ep(— Analm. B)(1 = 9)7)(1 = 5)Pgc(s)ds

[ p(x)on(x)ds
Q

X

. on(x) (3.20)
Ain(m, B) OfEﬂ,B( — Az n(m, B)(1 = 5)P) (1 — 5)7~1g(s)ds

We follows from that
}—1’5(.%) — .FQ’E(LE)
- [ B (= Aam 51 = 7)1 = 97 (05 — 9(5)) s

@0 [ Bpp(— Apn(m, )1 - 5)7) (1 - )7 1ge(s)ds

0
X </Qf(z)g0n(x)dw><pn(x). (3.21)

By taking the norm of (3.21)) in space H7(9) and using Parseval’ s equality, we
provide that

2
Hfl,s - fQ,EHHj(Q)

jEﬁ,ﬁ< — Ao (m, B)(1 — $)7)(1 — )~ (g(s) — g(5))ds 2

>

Gl Baa(- anlm, 81— 9)7) (1 - )1, (5)ds
<& ( [ faen(oric) (3.22)

1
From (3.22)), noting that » > 87! and r* =1 + Pt using Hélder inequality and
r_
Lemma we have

[ Bos(= Aanlm. B0 = %) (1= )" (a(r) — gt

1

< { 01 |9¢(s) —9(5)|7“ds} . {Al g5 ( — Asn(1— )7)(1 _8)ﬁ1|r*d8:|

or =1\ r—1\%
<o =0l (B 5 =) T =lae—slonBs(5 =) T 62)
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This implies that

| /01 B~ Ao, B)(1 ~ 7)1~ 97 (au(e) — g(o)ds| < By(2—2) e

pr—1
(3.24)
It is easy to see that
1 M@ +&oa(l=8) _ MB) _ 1 (MB)
T B~ em  Caen 265 ) (3:29)
Next, the function g. > G4, and using the Lemma [2.6] we have
1
[ Bas(= Aol 91 = )1 = 5" g (s)ds
’ 1
> Gy /Eg,g( — Az n(1— s)ﬂ)(l —5)P1ds
0
Ga M(B) plEt +m)!
=— ——|1—-F — . 3.26
S [ BJ( M(5)+(«£11+m)_1(1—6))] 1520

From ([3.24) and (3.26)), we assert that
The right hand side of ([3.22))

e (rmNF B [ B m) -
< s B55) G2M<ﬂ>l1 o M(B)+(€1‘1+m)1(16))1 |

A4 (Bs,r,8,G2,m,&1)

(3.27)
Combining and , we find that
H-Fl,e - FQ,EH?_“'(Q) < |A4(B37 T /87 G27 m, 61)|262
. 2
< 30 ([ fapn(a)ds) (329)
€n<C. @
The finite sum on the right above can be bounded as follows
, 2 , 2
> @ ([ s@eaoi) <lel Y &( [ o)
€n<Ce @ €n<Ce @
< CPIIf 30y (3.29)
Therefore, we follows from that
||-7:1,e - f2,e||H_j(Q) < CEE A4(B3,raﬂ7 G27ma€1)‘ ||f||H7(Q) (330)
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Step 3. Estimate of || F} — fEHHJ . We derive that

Fielw) - £.(2)
— {Aln /E/g,g — Az n(m, B)(1 —s) )(lfs)ﬁflge(s)ds )
£,<Ce s
< ([ (o) = pl@) g @)e) (o) (3.31)

By taking the norm of both sides of the above expression in space H7 (), and using
Parseval’ s equality, we obtain that

2
H}—laé - fEHHj(Q)

-2

— Z {Alyn(m, 5)/E51g( — Agn(m, 5)(1 — s)ﬁ)(l — s)BilgE(s)ds
0

, 2
<& ([ (oea) = pla)) (o)) (3:32)
By looking back the inequality (3.26)), we get

2
||]:11€ N fe”q-u‘(sz)

mM(8) Bler! +m)! -
- (fﬁi’?m—ﬂ) - B’l(_M<ﬂ>+(fll+m)‘1<1—m”>
X Z 523+2</ (z) — p(m))cpn(x)dx)2. (3.33)
En<Cc

Form , one has
2j+2 z) — p(x)) o, (z)dz i
> ([ (ot p())so()d)

&n<Cc
7_3 Nr—2N 2
_ Z 52]+2+ a7 (/Q (Pe(m) — p(x))tpn(l')dx)
£n<C.
Nr—2N 2
< (C. 2J+2+7** Z €n 7 (/ pe(z) — p(x))@n(x)dx)
£n<C.
= (COTT TR ||pe - ol ¥ ) (3.34)
Since 1 < r < 2, with L"(Q) — o (©). Therefore, we get

HpE — pH’HNT;fN ) S Cl(N, ’I“)Hpe - S Cl(N, T)G. (335)

By summarizing all three evaluations (3.33)), (3.34)) and (3.35)), we derive that

H‘FLE — f‘”’f-ﬁ(ﬂ) < A5(§1,01, m, 5) (Ce)j+1+%_% €, (336)
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whereby
As(&1,01,m, B)

mM(B) Bl +m)!
w0l S e )

§101

From (3.19) to (3.37)), we can conclude that
||f€Cg - fHHJ(Q) < |Ce|7kaHHj+k(Q) + Ce€’A4(B37T7B7G27m7€1) |Hf||7-[,1(52)

N

+’A5(£130—17m7ﬂ) (CE)jJrlJr%7Z €. (338)

-1

(3.37)

By using Lemma since 0 < j < &, we know that H7(Q) — L¥5 (©), which
yields to the desired result (3.38]). O
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