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FIXED POINT THEOREMS FOR (¢ — ¢)-CONTRACTIONS IN
GENERALIZED NEUTROSOPHIC METRIC SPACES

J. JOHNSY, M. JEYARAMAN

ABSTRACT. In this article, we provide a fixed point theory for Generalized
Neutrosophic Metric Spaces (GNMS) and present generalized (¢ — ¢)- con-
tracting principle. Numerous modern fixed point concepts have been general-
ized as well as extended by what we have found. We support our argument
with a specific example.

1. INTRODUCTION

In 1965, Zadeh [17] established the idea of fuzzy sets. In 1975, Kramosil and
Michalek [8] introduced the idea of a fuzzy metric space, seen as an extension of
the statistical metric space. Atanassov [1] researched intuitionistic fuzzy sets and
noted their effectiveness in this context. The possibility of neutrosophic set was
presented by Smarandache [13] as an augmentation of the intuitionistic fuzzy set.
The paper authored by Ali Asghar et. al. explores Neutrosophic 2-Metric Spaces
and their applications[2]. George and Veeramani delve into the exploration of neu-
trosophic metric spaces, contributing to the advancement of knowledge in fuzzy sets
and systems.[3]. Different kinds of fuzzy contractive maps have been invented and
generalized by numerous researchers, who also study various fixed point proofs in
Intuitionistic and GNM S [4,6,9,10]. Researchers additionally discovered distinct
common fixed point results in generalized metric spaces with a V-fuzzy metric and a
weakly non-archemedean intuitionistic metric[5,16]. These publications explore di-
verse aspects of neutrosophic metric spaces and related mathematical concepts. The
researches by Uddin et al. [15] explores into Neutrosophic Double Controlled Metric
Spaces and their applications, contributing to the understanding of this mathemat-
ical framework. Muhammad Saeed et al. [11] introduces new fixed point results
in Neutrosophic b-Metric Spaces, demonstrating practical applications. Saleem et
al.’s [14] work focuses on multivalued neutrosophic fractals and the Hutchinson-
Barnsley operator in the context of neutrosophic metric spaces, providing insights
into the broader field of mathematical chaos and fractals. Fixed point theories in
GNMS relies significantly upon the results of this research.
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2. PRELIMINARIES
Now, we begin with some basic concepts.

Definition 2.1. [12] Suppose A is a nonempty set, and & : A X A x A — (—o00, 00)
is representing a function, then it must have the following conditions:
(i) 6(@,’[9,&) =0ifw=10=¢,

(ii) 0 < &(w,w,?) for all @, € A with w # I,
(i) &(ew,w, ) < &(w,¥,&) for all w, V¥, & € A with ¥ # &,

(iv) &(w,v,&) = &(w,§,9) = &(V,&,w) = -+, each of the three variables have

symmetry,

(v) &(w, 9, &) < B(w,p,p) +&(p, 9, &) for all w,¥,&, p € .
The combination (A, ) is referred to as a H-metric space, whereas & is a general-
ized metric or &-metric on X.

Definition 2.2. [12] When each of the w,v¥ € A, the G-metric space becomes
symmetric, then &(w,w,d) = &(w,?, ).

Definition 2.3. A binary operation ® : [0,1] x [0,1] — [0,1] is called a continuous
triangular norm (continuous p-norm) if it satisfies the following conditions:
(i) ® is commutative and associative,
(il) ® is continuous,
(iii) ®(a,1) = a for every a € [0,1],
(iv) ®(a,b) < ®(c,0) whenever a <¢,b <0 and a,b,¢,0 € [0,1].

Definition 2.4. A binary operation & : [0, 1] x [0,1] — [0,1] is called a continuous
triangular conorm (continuous w-conorm) if it satisfies the following conditions:

(i) @ is commutative and associative,

(ii) @ is continuous,

(ili) ®(a,0) =a for every a € [0,1],

(iv) @&(a,b) < ®(c,0) whenever a < ¢, b <0 and a,b,¢,0 € [0,1].
Definition 2.5. [12] A 6-tuple (A, &,9,T,®, ) is referred to as a GNMS if A
is a nonempty set, a continuous triangular ¢ -norm & , continuous triangular ¢

-conorm @ and neutrosophic sets &, $ and J are defined from A xAx2A — (0, 4+00)
satisfying the following requirements, for each p, 7 > 0:

(i) &(w,d, &, 0)+9(w, P, & 0)+J(w, 9,8, ) <3 for all w, ¥ € A with w # 9,
(i) &(w, @, 0,0) > 6(c, 9, 9) for all w,9,€ € A with v + ¢,
(i) &(w, v, & 9) =1 if and only if w =9 =&,
(iv) &(w, v, &, ¢) = &(p(w,V,E£),p), where p is a permutation function,
V) B(w,p,p,p) @G(p,4,&,7) < B(w, ¥, ¢+ 7) (the triangle inequality),
(vi) &(w,?,&,-): (0,00) = [0,1] is continuous,
(vii) 9(w,w@,9, ) < H(w,,& @) for all w,9,£ € A with ) # &,
(viii) H(w,?,&,¢) =0 if and only if w =1 =&,
(ix) H(w, 3, & 0) =HD(p(w,¥,€),¢), where p is a permutation function,
(x) H(w,p,p,0) BH(P, Y, 7) < H(w, I, & o+ T) (the triangle inequality),
(xi) H(w, 9, &) (0,00) = [0,1] is continuous,
(xii) J(w,w,d,¢) < J(w,9,&, ) for all w,d,& € A with ¥ # &,
(xiii) J(w,9,&,0) =0 if and only if w =19 =&,
(xiv) J(w,9,&,¢) = J(p(w,,§),¢), where p is a permutation function,
xv) (@, p, p,) ©I(p, 9,6, 7) < J(@,9,€, 0+ 7) (the triangle inequality),
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(xvi) J(w,v,&,-) : (0,00) = [0,1] is continuous.
Definition 2.6. (A, ®,9,3,®,®) a GNMS |, then

(1) a sequence {wy} in A is known to be convergent to w
if lim &(wp, wn, w,9) =1, lim H(w,, wn, w,9) =0
n— 00 n—00
and lim J(wwn, wn,w,p) =0 for all ¢ > 0.
n—oo
(2) a sequence {wy} in A is known to be a Cauchy sequence

if lim &(wy, @n, Wm,p) =1, lUm $H(w,, wn, @m, ) =0
m—0o0 m—00

and mli_r}nooﬁ(wn,wn,wm,w) =0 as n,m — oo that is, for any € > 0 and
for every ¢ > 0, there exists ng € N such that
&(wn, Wn,y @Wm,y @) > 1 — €, H(@Wn, Tn, Tm, @) < €
and J(wwp, Wn, @Wm, @) < € for n,m > nyg.

(3) Every Cauchy sequence in 2 converges, so we say that GNMS (A, 6, 9,3, ®, ®)
is complete.

Lemma 2.7. [7] Suppose (A, $,$,3,R,®) is a GNMS . At that instance, &(w, 9, &, p)
is non-decreasing with reference to ¢ for all w,¥,£ € A.

Lemma 2.8. [7] U indicate by the collection of non-decreasing continous functions,
¢, : [0,00) = [0,00) so that ¢"(p) = 0 as n — oo and Y™ (p) = 1 as n — oo for
every ¢ > 0. It is obvious that ¢p(p) > @, () > ¢ for all ¢ > 0 and $(0) =0 and
P(1) =1.

The objective of this work is to introduced generalized (1) — ¢)- contractions and
prove fixed point theorems in GNMS.

3. MAIN RESULTS

Definition 3.1. Let (A,,9,3,®,®) be a GNMS. A mapping T : A — A is
known to be a generalized (v — ¢)- contractions assuming there is ¢, € ® so that,
for any w,¥,£ € A,

&(l'w, [V, 1€, ¢) # 1 = ¢(6(T'w, IV, 1€, ¢)) = ¢[d(R(w@,7, €, 9))],
H(T'w, IV, TE ¢) # 0 = d(H(T'w, 'V, T, ¢)) < Y[d(L(w, 7, ¢))],
ITw, I, TE ) # 0= ¢(J(T'w, I'Y, T, ) < Y[o(M(w, 7, 0))], (3.1)
where
O (w, 9, &, 0),8(w, Tw, Tw, p), &I, T9, T, @),
B(¢,TE,TE, p), )%[ T0,T0, ) + &(9,TE,T'E, 0)],

{ 1[6(w, [0, TY, ¢) +

R(w,9,&, 9) = min
(’5(19 F§ D& )+ 6(&,Tw, I'w, ¢))

(w
H(w,3,&,0),9(w, Tw, Tw, p), HY,TY,TY, @),
H(ETETE ¢), 519(w, T, 10, o) + H(9,T€ T, 0)],
L9 (. 09,10, ) + H(0.T€. T, ) + H(E. T Tam, )]

L(w, 9, &, p) = max

(@, 9,&,9),3(w, Tw,T'w, ), J(0,T9,T9, p),
M(w,d, &, p) = max J(ETETE ¢), 2[3(w W 'Y, @) + 30, T, TE, o),
[3(w, 'Y, I s0)+3(19,F€,F£,s0)+3(§,Fw,Fw,¢)]
(3.2)

1
3

Theorem 3.2. Let us consider (A, $,9,J,®,P) as a complete GNMS and T :
A — A as a generalized (v —@)- contraction. Then T has unique fized point w* € 2.
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Proof. Choose wy € 2 be any point in 2[. There is sequence {w,} in 2 in such
way that ['w,, = w, 41 for all n € N. In case that, w, 41 = w, for certain n € N,
therefore, @w* = w, is a fixed point for I". The following assumption, w,+1 # @,
for every n € N. Obviously, &(w,, wn+1, @nt1,¢) > 0 for all n € N. Execution
inequality (3.1) along @w = wy, ¥ = wWnp+1,£ = Wnt1, We obtain

A& (T, Twng1, Twng1, 0) > Y[O(R(@n, @nt1, Tni1,9))]
d(HDTwn, T'wnt1, Pownt1, 0) < YIG(L(@n, @nt1, Tnt1, ©))]
¢(I(Twn, Twn i1, Twnt1, 9)) < Y[O(M(@n, @nt1, Tnt1, ©))]

where,

ﬁ(wna Wn+1, Wn+1, 90)

®(wn7 Wn+1, wn+17 a ®(wn7 Fwna Fwna 30)7 ®(wn+la Fwn-‘rh Fwn-}-la 30)7 ®(wn+la
= min Fwn-}-l; Fwn+17 a [6 (w'm Fwn-}-la Fwn-‘rla SD) + ®(wn+17 Fwn+1a Fwn+1; SD)])
3 (6 (wn, Fwn+1rwn+1, ©) + &(@ny1, Twnr1, Twng, ©) + S(w@nt1, Loy, Loy, ¢)]

S (n, Wit 1, Tni1s @), G(Wn, Wnt1, @nt1, ©); B(Tni1, Tnta, Tnte, ),
= min &(Wn+1, Tnt2, Wn+2, ) %[6(737“ Tnt2, Wn+2,P) + B(Tn1, Tnt2, Wiz, )]

%[ﬁ(wna Wn+2; Tn+2, P) + S(Tnt1, @nt2, Tnt2, P) + S(Tnt1, @nt1, Tntl, )]

= min {ﬁ(wm Wn+1s Wn+41, 90), ®(wn+17 Wn+2; Wn+2, 90)} .
S(wnvwn+1awn+1790)

(T, Tt 1, @1, @), 9 (@n, [wn, Twn, 0), H(@nt1, Tong1, Twngr, ©), H(@wnt,
= max ILpi1, Pont1, ), 3 [9(@n, Tons1, Tons1, @) + 9(@nt1, Pong1, Tont1, )],

)
;, [‘f)(wna FwnJrlenJrl 90) + f)(wnJrla FwnJrla FwnJrla 90) + f)(wnJrlﬂ Fwna F’(Dn, 50)]

f_)(wn, Wn+1, Wn+1, 30)7 ‘ﬁ(w'rm Wn+1, Wn+1, 90); ﬁ(wn-i-lv TWn+2, Wn+2, (p)a

=max{  H(Tni1, Tnt2, Tni2, ), 3 9(Tn, Tnt2, Ont2, ©) + H(@nt1, Tni2, g2, @)
39(@n, @ni2, @nt2,9) + H(@nt1, nt2, Wni2, @) + H(@nt1; Tngt, ng1, )]

= max {H(@Wn, Tn+1, Tnt1, ), N @nt1, Wni2, Wnt2,9)} -
m(wna Wn+1, Wn+1, 90)

‘j(wna Wn+1, Wn+1, P )a 3(wna eru Fw'm (p)a 3(wn+1a Fwn-ﬁ-h Fwn-i-lv (p)a 3(w"+15
= Inax I'wyy1, o, ) %[S(W JTwnr, Twng, 90) + 3(wn+17 Twyp1, T'wpg, 90)])
©)
),

[

3[3(@n, Top i1 T 3(wn+1, L1, Twn g1, 9) + (@1, Dwn, Do, )]

7

J(wnv Wn41, Wn41, P Wny Wn+1, Wn+1, 90)) 3(wn+17 Wn+2, Wn+2, 90);
= max 13(Wn+1a Wit 2, Wnt25 P)s 5 [3(Fns Dnt2, Wnt2, ©) + J(@nt1, Wnt2, o2, )]

3 [3(wn; Wn+42, Wn+2, P ) J Wn41y Wn+2, Wn42, 90) + 3(wn+1a Wn+1, Wn+1, 50)]

= Imax {3(@»@, Wn+1y Wn+1, 90)7\5(wn+17 Wn+2, Wn+2, 90)} .

“'“u —|—
—~

/\

If R(wn, Wnt1, @nt1, 9) = S(Wnt1, Wnt2, Wnt2, @), then it follows from (3.1) that

H(B(@Wn+1, Tnt2, Wnt2, ) = ¢(Q5(mefwn+1, F@ni1,9))
Y[P(S(@n, Tnt1, @nt1,9))]
[¢( (wn+17 Wn+2, Wn+2, ‘P))]
(S (W41, Wnt2, Wnt2, @),

utilizing Lemma (2.8), that itself is a contradiction. Thereupon, for all n € N,

R(@n, Tnt1, @nt1, @) = 6(Tn, Tni1, Tntls @)
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If £(wn, Wnt1, @nt1, @) = D(Wnt1, Tnt2, Tnt2, @), then it follows from (3.1) that

(D (Wnt1, Tnt2, Tnt2, P

= ¢(O(T@y, Ty, Twntr, ¢))
S Y[O(H(@n, Tnt1, @nt1,9))]
= Y[P(H(@nt1, Wnt2, W2, ¢))]
< (N (@nt1, Tnt2, Tnt2, P);

by Lemma (2.8), which is a contradiction. Hence for all n € N,

S(wna Wntl, Wnil, P) = ﬁ(wm Wnt1, Tntl, P)-

If M(on, Wnt1, @nt1, 9) = J(Wnt1, @nt2, @nt2, @), this means from (3.1) that

¢(3(wn+17 Wn+2, Wn+2, (p)) = ¢(~(Fwn7 Fwn-}-la Fwn-‘rh 90))

< 1/)[925( (wna Wn+1, Wn+1, 50))]
= YA (Ong1, Tnt2, Tni2, @))]
(3(

J(Wn41; Wn+2, Wn+2, (p)a

according to Lemma (2.8), this itself is a contradiction. Thus, for all n € N,

m(wn;wnJrlawnJrla@) = 3(wn7wn+17wn+1a¢)' (33)

Thus, (3.1) becomes

(S(Twy, Twng1, Twng, @)

[(ZS(@(F’(D»,“ FwnJrla FwnJrla 90))]

>
(725(‘6 (I‘wn, FwnJrla FwnJrla 90)) < 1/)[¢(~6 (I‘wn, FwnJrla FwnJrla 90))]
<

¢(3(Fwn; Fwn+1; Fwn"rl? ()0))

Repeating this process, we get

(b(@(wnv Wn+1; Wn+1, 90)) -

¢(~6(wm Wn+1; Wn+1, 90)) -

¢(3(wnv W1y Tnt1, P))

@ (Twn, Pwng1, Ty, 9))]

QS(@(FWH*D Fwna F’(Dn, 90))

> P[P(&(@n—1,@n, Tn, @))]

> 2 [P(S(wn—2, @01, Tn1,9))]
Zw3[¢(®(wn 3, Wn—2, Wn—2,9))]
Z - 2P [p(B(wo, w1, @1, 9))]-

¢(~6 (Fwnfla Fwna F’(Dn, SD))
¢(~6 (wnfla Wny Wn, 50))]

- <Y [p(H (w0, w1, w1, ©))]
d(F(Twp—1,Twn, Ty, )

(I(@n—1, @n, @n, ¢))]
o3 (n—2,Tn-1,Tn-1,9))]
3[‘1’(3(7371*3’ Wn—2, Wn—2,9))]
- <Y o (wo, @1, @1, )]

IA

IN
< S =

IN A
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We have
Qﬁ(@(wn;wn-i-hwn—i-la@)) Z w[(b( (wn—lvwmwm@))] Z ' Z wn[qﬁ(@(woawhwla(p))]
¢(~6(wn;wn+17wn+1;@)) S w[(b( (wn 1,wn,wn,<p))] S o S wn[¢(‘ﬁ(w07w1)w17§0))]
(b(\’}(wn;wn-i-lywn—i-l,@)) < ¢[¢( (wn 17wn;wn7(p))] < < wn[qﬁ(‘?(wm?la)wh(p))]
3.4
Based to the definition ¢ and ¢, there is,
limy, 500 P [d) (Qj (WO; w1, W1, 50))] = 1,lim, 00 @ ((’5 (wna Wn+1; Wn+1, 90))] =0
limy, 500 P [(b (f) (WO; w1, Wi, 50))] = 0,lim, 00 @ (f) (’(Dn, Wn+1, Wn+1s 90))] =1
limy, 00 Y™ [¢ (I (w0, @1, @1, 9))] = 0,1imy o0 ¢ (I (Wny Wng1, Tnt1,9))] = 1

To demonstrate that {w,} is &-Cauchy sequence in 2, currently, let’s assume for
m > n, we have

ﬁ(wnawn;wmagp)
®(wn;wn;wma¢)a (wnarwn;Fwna50)76(wn;]-—‘wnarwna§0)v
= min ®(wm; I, o, ¢ [®(Wn7 I'w,, oy, 90) + ®(wn7 T'wm, T, ‘P)]a
%[ﬁ(wmrwm l'wp, ) ®(wn7rwma T, ‘P) + ®(wmvrwmrwm 90)]
®(wn;wn7wm7 )a®(wn7wn+1awn+179@)a®(wn7wn+1awn+17§0)a
= min ®(wm; Wm+1y Wm+1, P )7 %[ (wn; Wn+1y Wn+1, 90) + ®(wna Wm+1y Wm+1, ()0)]7
1(&(@n, Tnt1, Tnt1, @) + S(@n, Tms1, Tmt1, @) + E(Tm, Tnt1, Tnt1, )]
Z min {ﬁ(wruwm Wi, 90); ®(wm+17wm+1a Wn, SD)}
>1—g¢,
forn,m > nyg.
S(Wnawn;wmacp)

ﬁ(wn; Wny Wm, 90)75(1771; I'wy,, T'w,, 90)75(1771; I'wy,, T'w,, 90)7
=max < H(@m, [@Wm, [0m, ©), %[ﬁ(wn, Ty, Twn, ©) + H(wn, Twom, Dwm, ¢)]

%[ﬁ(wn; eru Fwna SD) + ‘ﬁ(w'rm Fw'r‘rﬂ me, (10) + ﬁ(w“% Fwn? Fwna SD)]

‘ﬁ(wna Wns Wm, 30)75(73717 Wn+1; Wn+1, 30)75(73717 Wn+1; Wn+1, 90);
= max N (Tm, Tt 1, Tmi1, P), %[ﬁ(wna Dnt1, @nt1s P) + D@y Tt 1, Tmt1, 9)],
%[(ﬁ(wm Wnt1, @nt1, P) + 9 (Tn, @mt1, @mt1, ©) + D (Tm, Tnt1, Tntt, 9)]
S max {ﬁ(wn; Wns Wm, 90)75(wm+1; Wm+1, Wn, 90)}
<€,
forn,m < nyg.
m(wnawn;wmagp)

3(wn;wn7wma@) 3( nameme‘P) S(erwn,rwn,g&),
= max 3(wm7rwmvrwma 90)7 % 3( ny L'oon, [y, ) +3(wnvrwma ey, 90)]’
%r(wn; l'wy, oy, ‘P) +3( ns L@, L', ) +3(wmvrwn; '@y, 90)]

J(wnawn;wmaw) 3(wnawn+1;wn+17cp)aj(wnawnJrlawnJrlv(p)a

(Tm> Tmt1, Tm+1, P)s 5 2 [3(@ns Tnt1, @nt1, @) + I(@ns @t 1, Tm+1, 9)],

[(3(@n, Tnt1, @nt1, @) + I(@n, Tma 1, Tmits ©) + I(@my @nt1, @ntt, 9)]

S max {3(@»@, Wns Wm, 90)73(wm+15 Wm+1, Wn, 90)}

<€,

3

= Imax

Wl @

forn,m < nyg.
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®(wnawna Wm 90) > l/}[@(wn; Wny Wn+1, 50)] + w2[¢(®(wn+lawn+la Wn+25 90))] +oee

+ wn[d)(@(wm*lawmflawmvcp))]
Z wn[(b(@(ﬂoa 1917 1915 SD)] + wn+1[¢(®(1907 1915 191) SD)] +

+ ™ B(B (Do, V1,1, )]
— lasn, m — oo.

ﬁ(wmwmwmv(p) < ¢[ﬁ(wn7wn,wn+17¢)] + ¢2[¢(ﬁ(wn+1awn+1vwn+2a 90))] +oe

+ wn[¢(ﬁ(wm—1; Wm—1, Wm, 90))]
< 1/)"[@5(@(190’ 191; 1917 90)] + ¢n+1[¢(~6(ﬂ0a 191; 1917 90)] +oee
+ " p(H (Do, 91, Y1, ©)]

— 0asn,m — oo.

@y Ty T, ) < Y[I(@n, Ty D1, @) + ¢2[¢(3(wn+1, Wnt1, @nt2, P))] + -+

+ wn[d)(:j(wmfla Wm—1y Wm, 50))]
<P [D(I(WD0, V1,91, )] + T B(F (D0, V1,01, )] + - - -

+ 9" S (Y0, V1,01, )]
— 0asn, m — oo.

Using the condition (3.1)

¢(®(wn+17 Wm+1, Wm+1, SD)) = ¢(®(Fwna me, Fw'r‘rﬂ 90)) Z w[(b(ﬁ(w'fﬂ Wmy Wmy (p))]
¢(ﬁ(wn+17 Wm+1, Wm+1, 90)) = ¢(ﬁ(rwn7 mev mea 90)) < ¢[¢(£(wm Wmy Wm (,0))]
A (Tnt1, Tmt1, @mt1, ) = O(I(Cwn, Fwm, Fwm, ) < YoM, @, @m, ¢

Over the limit n,m — oo, next there is,p(1 —€) > Y[p(1 — €)], d(e) < Y[p(e)]

applying Lemma (2.8), ¢[¢(1 — €)] > ¢(1 =€), P[d(e)] < ¢(€) then ¢(1 — €)
Yol —e)] > d(1 —€), d(e) < Plp(e)] < ¢(e) which are the contradictions.

>

Hence {wy} is B-Cauchy. Since I'(2) is &-complete. After it,there is @w* € 2A so

that {w, } convergence to w*. In particular,

lim &(w,,w*,@") =1, lim H(w,,w*,@*) =0, lim J(w,,w",@*) =0. (3.5)

n—oo n—oo n—oo

We take use of the fact that & is continuous on each variable,

O(w", I'w*, Tw") = lim &(wyy1,['w",Tw")
n—oo

H(w*, Tw", T'w") = lim H(w,i1,[w", Tw™)
n—oo

J(@*, Tw", Tw") = lim J(wpi1, @™, Tw™). (3.6)

n—oo
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We assert that @™ is a fixed point of I". Let’s say, on the other hand, if w* # I'ew™,
then by (3.5) and (3.6)

Qj(wna’(D*a'(D*v(p)aQj(wnarwnarwna@)76(W*7FW*7FW*79@);
R(wn7W*7W*7 (p) = min ®(W*7FW*7FW*7 90)) %[ﬁ(wnvr’W*aFW*v 90) + ®(W*7FW*7FW*7 90)]7
%[ﬁ(wn, Il'w*, Tw*, ¢) + &(w*, T'w*, Tw*, ¢) + &(w*, ['w,, ['w,, ¢))
= (™, T'w*, T'w", p),

ﬁ(wn7W*7W*7 @),ﬁ(wn, Fwn7rwn7 @)aﬁ(W*7FW*7FW*7 So)a
Lwn, @, w", ) =max{  H(w@", Tw*, Tw", ), 3[H(w@n, T'w*, Ta*, ¢) + H(w*, Tw*, L™, p)],
%[ﬁ(wn7FW*7FW*7 90) + ﬁ(W*7FW*a FW*a 90) + ‘Yj(W*; Fwn7rwn7 SD)]

- ﬁ(w*7rw*7rw*7¢)ﬂ

3(wn7W*7W*a90)73(wn5Fwn7rwn7()0)53(W*7FW*7FW*7(p)a
M(wy, @, w*, ) =max{  J(@*, T'w*, Tw*, ¢), 5[J(wn, o, Tw*, ¢) + J(w*, Tw*, Tw*, ¢)],
%[3(wn7FW*7FW*7 90) +3(W*a FW*a FW*a 90) +3(W*; Fwn7rwn7 SD)]
%S(W*7FW*7FW*7§0)5

as n — 0o, using the condition (3.1),

(& (@n41, ['w", Tw", ¢)) = $(&([wy, I'w", T'w”, ¢)) = Y[p(R(wn, @*, @", ¢))]
¢ (@nt1,IT'w", T'w*, 9)) = (O (Lwn, ['w*, Tw", ¢)) < P[p(L(wn, @", @", ¢))]
¢(3(wn+17 FW*7 FW*7 90)) = ¢(3(Fwn7 FW*7 FW*7 (p)) S ¢[¢(m(wm w I W*7 (p))]

Over to limit as n — oo, at that instant, we have
o(&(w", T'w", I'w", ) = Y[¢(S (=", I'w", T'w", ¢))]
o(H (=", T'w", T, ¢)) < Yo (@, I'w", I'a", ¢))]
oQ(@", I'w", I'w", 9)) < Y[p (@, ['w", I'w", ¢))]
By Lemma (2.8),
Y[op(&(w*, Tw*, Tw™, ¢))] > (6 (w*, Tw*, Tw", p)),
Y[o(H(w", Tw", Tw™, ¢))] < p(H(w",Tw*,T'w”", ¢)) and
YoR(@", T'w", I'a", ¢))] < ¢ (@", T'w", T'w", p)).
Then
o(&(w", I'w", I'w", ¢)) 2 Y[$(&(w", I'w", I'w", ¢))] > ¢(&(w", T'w", T'w", p)),
o(H(@", I'w", T'w", ) < YA (", Tw", T'w", 9))] < ¢(H (=", I'w", I'c", ¢)),
o (@", IT'w", I'w", ¢)) < Yo (", Tw", I'w", ¢))] < o(J(@", I'w", I'w", ¢)),
which are the contradictions. This leads us to the conclusion with I'w* = w*. Let’s
show that there’s no more than a single fixed point in I'. Instead, let us assume
that, additional unique fixed point ¥* of I" so that I'w* = w* # I'9* = J*. Then
&(Tw*, T9*, T, ) = B(w*, 9%, 9%, p) > 0 and K(w*, 9*,9*, p) = &(w™, 9*, 9", p),
&(Tw*, TY*, T, p) = H(w*, ¥*, 9%, ) < 1 and L(ww™*, I*, 9*, ) = H(w™*, ¥*, 9*, ),
H(Tw*, T, T, @) = J(w*, 9%, 9%, ¢) < 1 and M(w™*, ¥*, 9%, ) = J(w*, 9*, 9%, ),
and then by (3.1)
(6(I'w, I'd, 1)) = p(&(T'w”, I'9", I'D", ¢)) >
o(HTw, T, TY)) = p(HTw™, T, TV, ¢)) <
d(FTw,TY,T9)) = v F(Tw*, 9", T9", p)) <

Plo(R(w™, 07,07, ¢))]
Ple(L(w™, 9%, 9%, ¢))]
Ple(M(w™, 97, 9%, )]

Plo(R(w™, 0%, 9%, 0))],
Plo(L(w™, 9%, 9%, 9))];
Ple(M(w™, 9%, 0%, 9))];
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and by Lemma (2.8),

P(B(w", 97,07, ) = Y[D(R(@", 07, 9%, )] > (R(w", 9", @, ¢)),
(@™, 97,97, ¢)) < PlP(L(w@”, 97,97, 9))] < ¢(&(w", V", @, ),
P (", 0" 19*,</>)) < Ple(M(w™, 9%, 9%, 9))] < (M(w™, 9%, @, 9)),

which are the contradictions. As a result, there can be only one fixed point of
T. d

Corollary 3.3. Let (U,6,9,3,8,®) be a complete GNMS and T : A — A be a
self-mapping which satisfies the following condition, for all w,9 € 2,

v[&(w, T, T, p) + &9, 19,19, p) + &, Tw, T'w, p)]
p$H(w@, 9,9, ), v[H(w, Tw, Tw, p) + H(0, 19, T9, ¢)],

v[H (@, T, TY, ) + H(,T9,T9, p) + H(9,I'w, T'w, )]

J(w,Tw, Tw, @) +J(0,T9, T, )], }

~ pﬁ(w;ﬁaﬁa @)7““(
3w, 19, 19, ) < m*""{ o[3(. D9, 10, ) + 3(9,T9, T, ) + 3(9, ew, Tew, )]

(T, T, T, ) > min{ p& (@, 0,9, ¢),v[6(w, ', I'w, @) + (9, 19,T9, ¢)], }

HTw, T, T, ) < max{

where 0 < p < % and 0 < v < % In that case, T has a unique fized point w* € 2.

Proof. Take n = min{2p,3v}, p = max{2p,3v}, then 0 < n,u < 1. And let
o(p) = on,Y(p) = ¢, (@) = £,9(p) = ¢ then ¢,7) € . Since

min{ p8(w, 3,9, ¢),v[6(w, I'w, I'w, p) + (9, 'Y, 'Y, p)], }
[6(m, 7Y, T, ¢) + (’5(19 I‘ﬂ 'Y, @) + 6V, I'w, I'w, )]

> (wa 19) 19) 30)7 §[ (w7 Fw7 Fw7 ()0) + 6(197 F197 F197 (10)]7
M 16 (@, I, T, @) + & (0, 9, 10, ) + &(d, T, Tz, )]
. &(w, 9,9, ¢), ®(w, T'w, Tw, ), &(0, 19, T9, p),
M\ 16 (e, TY, T, ) + (0,19, 0, ) + (0, Tew, 'w, )]
> n6(w,d,9)
max 4 PA@ 0,0, ), v (w, I'w, Tw, ¢) +H(0, 0,19, )],
v[H(w T9,T ;) + 5,19, T, ) + H(, T'w, I'w, ¢)]
H(w@, 9,9, ), 1[9(w, T'w, T'w, ) + H(9,T9,T9, )],
3[9(@, 19,19, ) + H(9,T9,T9, 0) + H(9,T'w, I'w, ¢)]

ﬁ(w7 7‘97 7‘97 90), ﬁ(w’ ]‘—‘w’ ]‘—‘w’ 80)7 f-)(7‘97 F,l97 F,l97 90),
1[9(@,T9,T9, ) + H(9, 19,19, ) + H(J, ['w, ['w, ¢)]

< max

< max

—N

JTw, Tw, p) +J(¢,T9,TY, p)], }
19

v I‘ﬂ 'Y, o) + J(ﬂ,Fw I'w, ¢)]
< maxd 3@9,9,9), 33w, I'w,Tw, ¢) +23(9, L9, T, )],
- 3[3(w, 19, T, 2) + 39,19, 19, ) + 3(9, Tew, T, )]
< I(@,9,9,¢),3(@, Tw,I'w, ¢), 30, 19,19, p),
= U L3(w, 10,10, ) + 3(0, 10,19, ¢) + 3(0, P, I'w, )]



22 J. JOHNSY, M. JEYARAMAN
Therefore,
(nf(w, 9,9))" = ¢(nh(w, 9, V)) = »(¢(nk(w, 9, 7)),

>
< (M*Q(wa v, 19))” = (b(:us(wv v, 19)) = ¢(¢(M£(wa v, 19)));
< (Mm(wa v, 9)" = (b(:um(wv v, 19)) = ¢(¢(Mfm(wa U,9))).

$(&(Dw, 19, T9)) = (&(Tw, 09, T9))"
#(H(Tw, T9,19)) = (H(Tow, DY, T9) )
#(3(Tw, 9, T9)) = (3(T'w, [, D))"

Therefore, I' has only one fixed point @w* € 2. O

Example 3.4. Let A = {1 :n e N} U{0} be endowed with the GNMS

@(w,ﬁ,f, gp) — o (m=+I—El+H|E~m))
H(w,0,&,0) = 1 — e (T2 —El+|e—=])
(@, 9,&, ) = e (IF0IHI—ElHE—=D) _q

for all w,9,& € A. Then (A, 6,9,J,®,D) is a complete GNMS.

Define th ing T : 2 — A by T(w) = wo i w=gn>2
&ne the mapping = YW= 0 Otherwise

If so, there is only one fixed point w € 2.

Solution: The three cases below are taken into account.
Case-I: Take w =0 (orw=1) 9 =2 and { =1

n

Since ', =0 (or 'y, = 1), T'y = n—14 and I'y = n—14 for all n € N, then

6 (1 d k) B(L de k)6 (L, 1 L)
1 1 1 ' no o my ) ARG ARTAR LS mo mE ma )
R(E7E7E7§0) = min ?%%5{%471?730)5%[66(5%)1#)1#71()0)+®§§%71#71#1590 %7 :17
36 (5 mm @) 6 (ot ) + 06 (5 5m 5 9)]
ﬁ(l7i7i7¢),ﬁ(l,%,%7¢ ,ﬁ(i7%,%,@ )
(o e =] 2o S B, 1 <o
L[S (2 e ) +9 (8 b o) + 8 (2 )]
3(lai7i7(p)53(l5%;%7§0)53(i5%5%5@)7
1 1 1
m —y | = 1nax 3(#7%{17%;2‘)7%[3(%;7%;”%;@) +T§(%7%7#a )}7 =0
n-m m 1 1 1 1 1 1 1 1 1 1
s mn @) 3G @) T3 (o 7 9)]

Hence the LHS of (3.1)

¢(B((I'w,, 9, Te, ) = v, 6( (T, Lo, Tey 9)) = 1T, 6(F((I'w, , o, T, ) =
ent — 1,

and the RHS of (3.1)

Y[p(R(w,9,8))] = 1, ¥[d(&(w, 9, )] = 0, ¥[¢(M(ew, 7, €))] = 0.

Therefore,

¢(®((Fwa 7F19a FE? 90)) = w[(b(ﬁ(wa
and ¢(3((Fw; 7F19; F§7 ()0)) = ¢[¢
Case-II: Let w = %, y = = and

) é‘?%(l—‘wa 3 F197 Fﬁa 50)) = w[¢(£(wﬂ 19; g))]

) )

, whenm >n > 2.

g >
2l-q

1 _
m z=
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Since ', = n—14,1“19 = # and I'e = # then

6 (1,5, %,0) 62k, k), 6 (L, &, o)
1 1 1 . n’m’m)’ ’ ' mir nd ’ m’ m%’ md>
85 mme) —mind o (LG e (32T ) 8 (1
5[0 G mmmr @) +0 (G ma e 9) +0 (5 ar
11 1 (1”6(1%’%’#)’%)’["6((%1”%?’#1’@’)"6(%’(?”1’%‘“?’
S(_7_7_7§0):max ~6 mo i nir P 1) *6 o miE mEr P +~6 m’ m%) mio
mm 5[5 (e mieoe) 9 (50 s i) +9 (ot 2
1 1 1 13(1%;%7%7901))3(%1;%;#17 )aj(%a?a»i,_lflﬂf)a
m(ﬁ7%7%7@):max 3%%7?7?)@)7_[3(%)?)7)@)+3(E7m7m5@
s 3G mmmm @) 135 mm @) £3 (5 5o

Hence the LHS of (3.1)

¢(®((Fwa 7F19a]-—‘6790)) = 1; d)(ﬁ((rwwrﬁarﬁa 50)) = 07(725(3((1—‘%) 7F19a]-—‘6790)) = 0;
and the RHS of (3.1)

Therefore,

¢(®(Fw;Fﬁ7F§;@)) > 1/)[@5(.@(@,19,5))],@5(.6((1—‘1;,,Fﬁ,].—‘g,cp)) < w[¢(£(waﬂag))]

and

PN, , Ty, T, ©)) < Y[P(M(w, I, E))].

v

~——— RHs

FiGURE 1. Comparison of L.H.S and R.H.S of Case I and Case 11
of (3.1) in 2D view

Case-IIT Let w =1, when n > 2,9 =0 (or ¥ = 1) and { =0 ( or £ = 1). Since,
Fw:#,l“ﬁ:If:Othen,

1 & (£,0,0,9),6(2, 1,1 0),6(0,0,0,¢),
ﬁ(E,o,o,gp)min 1@(0,0,0,@,%[@(%,0,0,¢)+6(0,0,0,¢)}, 1,
26 (2,0,0,¢) +(0,0,0,) + & (0, L, L, 0)]
9(£,0,0,0),9(+, 25, 25,9),9 (0,0,0,¢),
E(,0,0,(p):max sa(o,o,o,w),%[sa?%,o,o,w)ﬂﬁ(o,o,o,@)}, =0,
109 (2,0,0,¢) +9(0,0,0,0) + 9 (0, 1, X, 0)]
3(%70507()0)73(l7#7#a@)73(0’070a@)a
SUI( ,0,0,<p>max 3(0,0,0,@,%[3?%,0,0,<p)+3(0,0,0,<p)}, =0.
115(2,0,0,0) +3(0,0,0,0) + 3 (0, 1, ., )]

~—
T

~—
[

S

~—

S

S

~—t
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~
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2

Hence the L.H.S of (3.1), ¢(&(I'eww, I'9,T€)) = 6724, d(H(Tw, 'Y, T€)) = 1—en® and
$(3(Pw, T, T€)) = exs —1, the R.H.S of (3.1), Y[¢(R(, 9,€))] = 1, p[6(L(, 9, €))] =
0, Y[¢(M(w,9,€))] =0

Therefore, ¢(&(I'w, I'0, I'€)) = ¥[¢(R(w, ¥, )], o(H(T'w, I'0,TE)) < ¥[d(£(w,V,£))]
and

6(3(Tw, 10, TE)) < Y[6(M(w, 9, €))].

As a result, w = 0 is a fixed point of I', satisfying all the requirements of Theorem
(3.2).

4. CONCLUSION

Theoretical gaming, dynamic programming, financial studies, and research on
integral and differential equations share foundations in fixed-point theories. This
article elucidates the common fixed point concept within GNMS. The findings
presented in this study not only generalise but also build upon prior research in
NMS, contributing to an enhanced understanding of the subject. Additionally,
researchers might explore the connections between generalized fixed-point theo-
ries and other mathematical concepts or theories. This could involve investigating
how these fixed-point theories relate to existing theorems, lemmas, or mathemati-
cal structures, providing a deeper understanding of their place within the broader
mathematical landscape.
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