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AN EXAMPLE OF ALMOST COSYMPLECTIC 3-MANIFOLDS

SERVAIS CYR GATSE

Abstract. In the present paper, we construct an example of almost cosym-

plectic 3-manifolds which is isomorphic to the group E(1, 1) of rigid motions
of Minkowski 2-space.

1. Introduction

A (2n+1)-dimensional manifold M having the property that the structural group
of its tangent bundle is reducible U(n)× {1} is called an almost contact manifold.
Let M be almost contact metric manifold, i.e., M is a differentiable manifold and
(ϕ, ξ, η, g) is an almost contact metric structure on M , formed by tensor fields ϕ, ξ, η
of type (1, 1), (1, 0), (0, 1), respectively, and a Riemannian metric g such that{

ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η ◦ ϕ = 0,

η(X) = g(X, ξ), g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ).
(1.1)

As a consequence of the above relations we have

η(ξ) = 1, dη(ξ,X) = 0. (1.2)

On such manifold we may always define a 2-form Φ by Φ(X,Y ) = g(ϕX, Y ). A
2-form Φ is called the fundamental form of (ϕ, ξ, η, g).

We denote a vector field on M × R by (X, f
d

ds
), where X is tangent to M, s is

the coordinate on R, and f is a C∞ function on M ×R. Define an almost complex

structure on M × R by J(X, f
d

ds
) = (ϕX − fξ, η(X)

d

ds
), then J2 = −I is easy

checked. If now, J is integrable, we say that M is normal.
From (1.1) it is easily seen that |Φ|2 = 〈Φ,Φ〉 = 2n where 〈·, ·〉 denotes the

local scalar product induced by g. If the fundamental vector field of a contact
metric structure is a Killing field with respect to its contact metric, the manifold
is said to be almost Sasakian. If (M,ϕ, ξ, η, g) is Sasakian, then ∇ξ = ϕ and
∇Xϕ = −g(X, ·)ξ + η ⊗ X. An almost contact metric manifold (M,ϕ, ξ, η, g) is
called almost cosymplectic if both its fundamental form and contact form are closed,
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that is, if dΦ = 0 and dη = 0 where d is the operator of exterior differentiation. For
dη = 0, we obtain {

(∇Xη)Y = (∇Y η)X,

η([ξ,X]) = ξ(η(X)).
(1.3)

As it is known, an almost contact metric structure is cosymplectic if and only if
both ∇η and ∇Φ vanish, where ∇ is the covariant differentiation with respect to
g. If (M,ϕ, ξ, η, g) is an almost contact metric manifold, we have the following
statement: {

∇ξϕ = 0,

∇ϕXξ = −ϕ∇Xξ.
(1.4)

In the present paper, we are interested in almost cosymplectic 3-manifolds. The
article is organized as follows. In section 2, we provide a brief the notion of Levi-
Civita connection. In section 3, we recall some results of almost contact metric
manifolds. Example is also given. Section 4 deals with the study of connections
and metrics properties on a contact metric manifold. In section 5, we study the
distribution on almost cosymplectic manifolds. In section 6, we recall the local
formalism due to Z. Olszak and establish the consequence. Finally in section 7, we
present and study our example. We end the section with a characteristic theorem
(Theorem 7.2). For more details to the group E(1, 1) of rigid motions of Minkowski
2-space, see [3].

2. Background on Levi-Civita Connection

2.1. Linear Connections on a Manifold. Let M be a real m-dimensional con-
nected differentiable manifold of class C∞. Let C∞(M) be the algebra of differen-
tiable functions on M . A linear connection on M is a mapping

∇ : X(M) −→ EndR [X(M)] , X 7−→ ∇X
satisfying the following conditions:

(i) ∇aX+Y (Z) = a∇X(Z) +∇Y (Z),
(ii) ∇X(aY + Z) = a∇X(Y ) +X(a) · Y +∇X(Z),

for any a ∈ C∞(M) and X,Y, Z ∈ X(M). The operator ∇X is called the covariant
differentiation with respect to X.

We define the covariant differentiation of a ∈ C∞(M) with respect to X by

∇X(a) = X(a). (2.1)

Thus for any tensor S of type (0, s) or (1, s) we define the covariant derivative
∇XS of S with respect to X by

(∇XS)(X1, · · · , Xs) = ∇X(S(X1, · · · , Xs))−
s∑
i=1

S(X1, · · · ,∇XXi, · · · , Xs), (2.2)

for any Xi ∈ X(M), i = 1, · · · , s.
The tensor field S is say to be parallel with respect to the linear connection ∇

if we have ∇XS = 0, for any X ∈ X(M).
The torsion tensor T of linear connection ∇ is a tensor field T of type (1, 2)

defined by

T (X,Y ) = ∇XY −∇YX − [X,Y ] , (2.3)
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for any X,Y ∈ X(M).
A torsion-free connection is linear connection with torsion tensor field zero. The

curvature tensor R of linear connection ∇ is a tensor field of type (1, 3) defined by

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z, (2.4)

for any X,Y, Z ∈ X(M).

2.2. The Levi-Civita Connection. A tensor field g of type (0, 2) is said to be a
Riemannian metric on M if the following conditions are fulfilled:

(i) g is symmetric, i.e., g(X,Y ) = g(Y,X), for any X,Y ∈ X(M),
(ii) g is positive definite.

The manifold M endowed with a Riemannian metric is called a Riemannian mani-
fold. Thus a linear connection ∇ on M is said to be Riemannian connection if the
Riemannian metric g is parallel with respect to ∇, i.e., by (2.2) we have

X(g(Y, Z)) = g(∇XY,Z) + g(Y,∇XZ), (2.5)

for any X,Y, Z ∈ X(M).
The following theorem is well Know.

Theorem 2.1. On a Riemannian manifold there exists one and only one torsion-
free Riemannian connection.

The Riemannian connection whose existence and uniqueness are stated in this
theorem is called the Levi-Civita connection and it is given by

2g(∇XY,Z) = X(g(Y, Z)) + Y (g(X,Z))− Z(g(X,Y )) (2.6)

+ g([X,Y ] , Z) + g([Z,X] , Y ) + g([Z, Y ] , X),

for any X,Y, Z ∈ X(M).
This a Koszul’s formula.

Proposition 2.2. Let ∇ be the Levi-Civita connection and let R denote corre-
sponding curvature. Then it holds that

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0, (2.7)

(∇XR)(Y,Z,W ) + (∇YR)(Z,X,W ) + (∇ZR)(X,Y,W ) = 0, (2.8)

for any X,Y, Z,W ∈ X(M).

One is also able to derive the classical symmetries of the curvature tensor.

Proposition 2.3. Let ∇ be the Levi-Civita connection and R denote corresponding
curvature. Then it holds that

R(X,Y, Z,W ) = −R(Y,X,Z,W ) = −R(X,Y,W,Z), (2.9)

R(X,Y, Z,W ) = R(Z,W,X, Y ), (2.10)

for any X,Y, Z,W ∈ X(M).
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3. On almost contact metric manifolds

Let S and r be the Ricci curvature tensor and the scalar curvature defined,
respectively, by

S(X,Y ) =

2n+1∑
i=1

g(R(ei, X)Y, ei), r =

2n+1∑
i=1

S(ei, ei),

respectively, {ei}1≤i≤2n+1 being an orthonormal frame with respect to g. In addi-
tion, the Ricci ∗-curvature tensor S∗ and scalar ∗-curvature r∗, are given by

S∗(X,Y ) =

2n+1∑
i=1

g(R(ei, X)ϕY, ϕei), r∗ =

2n+1∑
i=1

S∗(ei, ei).

Note that, in [4], the author found the following lemmas and theorems.

Lemma 3.1. [4] Let (M,ϕ, ξ, η, g) is an almost contact metric manifold. If a
fundamental 2-form Φ is closed, then

(∇ϕXΦ)(ϕY,Z) + (∇XΦ)(Y,Z)− η(X) {dη(ϕY,Z) + dη(Y, ϕZ)}

+ η(Y )

{
dη(ϕZ,X)− 1

2
(Lξg)(Z,ϕX)

}
+ η(Z) {dη(X,ϕY )− dη(ϕX, Y )} = 0,

where Lξ is Lie derivative with respect to ξ.

Lemma 3.2. [4] If (M,ϕ, ξ, η, g) is an almost cosymplectic manifold, we have

(∇ϕXϕ)ϕY + (∇Xϕ)Y − η(Y )∇ϕXξ = 0.

Theorem 3.3. [4] If a compact almost contact metric manifold satisfiesr − r∗ − S(ξ, ξ) +
1

2
|∇ϕ|2 = 0,

S(ξ, ξ) + |∇ξ|2 = 0,
(3.1)

then it is almost cosymplectic.

Theorem 3.4. [4] If an almost contact metric manifold (M,ϕ, ξ, η, g) fulfills the
conditions (3.1), ∇ξξ and the forms η and Φ are coclosed, then (M,ϕ, ξ, η, g) is
almost cosymplectic.

The products of an almost Kähler and a real line or a circle are the simplest
examples of such manifolds.

Example. Define a group operation in R3 by

(t, x, y) ∗ (s, u, v) = (t+ s, exp(t)u+ x, exp(−t)v + y),

then (R3, ∗) is the solvable non-nilpotent Lie group. The following set of left-
invariant vector fields forms an orthonormal basis for the corresponding Lie algebra:
e0 = ∂t, e1 = exp(t)∂x, e2 = exp(−t)∂y. According to this basis, one can construct
almost contact metric structure (ϕ, ξ, η, g) on R3 as follows:{

η = dt, ξ = e0, ϕ = exp(−2t)dx⊗ ∂y − exp(2t)dy ⊗ ∂x,
g = dt⊗ dt+ exp(−2t)dx⊗ dx+ exp(2t)dy ⊗ dy.

(3.2)

By (3.2) and g(∇eiej , ek) = −g(ej ,∇eiek), the non-zero components of the Levi-
Civita connection are given by

∇e1e1 = e0, ∇e1e0 = −e1, ∇e2e2 = −e0, ∇e2e0 = −e2.
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Thus we obviously get (R3, ϕ, ξ, η, g) is an almost cosymplectic manifold.

On the other hand, Kenmotsu studied in [2] another class of almost contact
manifolds, defined by the following conditions on the associated almost contact
structure

dη = 0, dΦ = 2η ∧ Φ. (3.3)

A normal almost Kenmotsu manifold is said to be Kenmotsu manifold.
An almost contact metric manifold (M,ϕ, ξ, η, g) is said to be normal if the tensor
field [ϕ,ϕ] + dη ⊗ ξ vanishes where

[ϕ,ϕ] (X,Y ) = [ϕX,ϕY ]− ϕ [X,ϕY ]− ϕ [ϕX, Y ] + ϕ2 [X,Y ] . (3.4)

A normal contact metric manifold is called Sasakian manifold. It is easily shown
that the fundamental vector field of the Sasakian manifold is a Killing field. If M
is almost cosymplectic, dη = 0, so the normality condition is given by the vanishing
of the torsion tensor [ϕ,ϕ], and in this case, M is said to be cosymplectic.

4. Connections and metrics properties on a contact metric manifold

When

dη = Φ, (4.1)

an almost contact metric manifold (M,ϕ, ξ, η, g) is said to be a contact metric
manifold (for more details, see [1]). In this case, we have iξΦ = LξΦ = Lξη = 0.

Theorem 4.1. On a contact metric manifold the integral curves of ξ are geodesics.

Proof. For a contact metric structure we have

0 = Lξη(X) = g(X,∇ξξ),
so the integral curves of ξ are geodesics. �

If (M,ϕ, ξ, η, g) is a contact metric manifold, there exists on (M,ϕ, ξ, η, g) a
unique connection ∇ satisfying ∇g = 0.

Proposition 4.2. The metric connection ∇ on a contact metric manifold (M,ϕ, ξ, η, g)
allows the following relations 

∇ξη = 0;

∇ξ(dη) = 0;

∇ξϕ = 0.

Moreover, 
η(∇Xξ) = 0;

(∇Xη)ξ = 0;

g(∇Xξ, Y ) =
1

2
(Lξg)(X,Y );

for any X,Y ∈ X(M).

Proof. By straightforward calculation. �

Corollary 4.3. Let (M,ϕ, ξ, η, g) be a contact metric manifold. Then the following
assertions are equivalent:

1) ∇η = 0;
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2) ∇ξ = 0;
3) Lξg = 0;
4) Lξϕ = 0.

We deduce the following assertion.

Theorem 4.4. Let (M,ϕ, ξ, η, g) be a contact metric manifold with metric connec-
tion ∇. Then the following assertions are equivalent:

1) ∇ϕ = 0;
2) Nϕ(X,Y ) = [ϕ,ϕ] (X,Y ) + dη(X,Y )ξ;
3) ∇(dη) = 0.

5. Distribution on almost cosymplectic manifolds

Since ξ = η] denotes the metric dual of the contact form η, consider the bilinear
form σ = ∇η and the associated endomorphism S := −∇ξ. They are related by
the formula σ(X,Y ) = g(SX, Y ). As the form η is closed, we get for all vector
fields X and Y on M :

0 = dη(X,Y ) = −(∇Xη)Y + (∇Y η)X = −σ(X,Y ) + σ(Y,X),

thus showing that the (0, 2)-tensor σ is symmetric bilinear form, and correspond-
ingly S is a symmetric endomorphism with respect to the metric g. From formula
(2.14) from [4], we get

0 = ∇η(X,Y ) +∇η(ϕX,ϕY )

= σ(X,Y ) + σ(ϕX,ϕY )

= g(SX, Y ) + g(SϕX,ϕY )

= g(SX, Y )− g(ϕSϕX, Y )

= g((S − ϕSϕ)X,Y ),

for all vector fields X and Y on M . Thus the tensor S := −∇(η]) satisfies S =
ϕSϕ. There is a local orthonormal {ξ, ϕei, ei} on TxM , called a ϕ-basis, such that
Sei = λiei, where λ0 = 0, λi = −λ, λn+i = λ (λ ≥ 0). Hence trace(S2) = 2nλ2 at

x. Thus λ =

√
1

2n
trace(S2). Since Sξ = 0 and therefore also Sϕξ = 0, we thus get

∇ϕξξ = ∇ξϕξ = ∇ϕξϕξ = ∇ξξ = 0. In particular

[ξ, ϕξ] = 0. (5.1)

We conclude that the distribution {ξ, ϕξ} is integrable, and its integral leaves are
totally geodesic and this implies that [Lξ,Lϕξ] = L[ξ,ϕξ] = 0.

6. Local formalism on almost cosymplectic 3-manifold

The material used in this section is due to Z. Olszak (for further details, we refer
to [5] and references therein). On a neighborhood U of x on which there is a vector
field e so that {e0 = ξ, e1 = e, e2 = ϕe} is a local orthonormal frame field composed
of eigenvectors of S. The components of the Levi-Civita connection are:

∇e0e0 = 0, ∇e1e0 = −λe2, ∇e2e0 = −λe1,
∇e0e1 = ae2, ∇e1e1 = −be2, ∇e2e1 = λe0 + ce2,

∇e0e2 = −ae1, ∇e1e2 = λe0 + be1, ∇e2e2 = −ce1,
(6.1)

where a, b, c are smooth functions.
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As ∇ is torsion free, the Poisson brackets are given by:

[e0, e1] = (a+ λ)e2, [e0, e2] = (−a+ λ)e1, [e1, e2] = be1 − ce2. (6.2)

From the Jacobi identity [e0, [e1, e2]] + [e1, [e2, e0]] + [e2, [e0, e1]] = 0, we get the
following {

e1(λ)− e0(b)− e1(a)− c(a− λ) = 0,

e2(λ)− e0(c) + e2(a) + b(a+ λ) = 0.
(6.3)

Let RX,Y := [∇X ,∇Y ]−∇[X,Y ] denote the curvature tensor of ∇ defined by (2.4).
At x ∈M , we obtain

Re0,e0ei = Re1,e1ei = Re2,e2ei = 0, i = 0, 1, 2,

Re0,e1e0 = λ(2a+ λ)e1 − e0(λ)e2,

Re0,e1e1 = −λ(2a+ λ)e0 − (e0(b) + e1(a) + c(a+ λ))e2,

Re0,e1e2 = e0(λ)e0 + (e0(b) + e1(a) + c(a+ λ))e1,

Re0,e2e0 = −e0(λ)e1 + λ(−2a+ λ)e2,

Re0,e2e1 = e0(λ)e0 + (e0(c)− e2(a) + b(−a+ λ))e2,

Re0,e2e2 = λ(2a− λ)e0 + (−e0(c) + e2(a) + b(a− λ)e1,

Re1,e2e0 = −(e1(λ) + 2λc)e1 + e2(λ)e2,

Re1,e2e1 = (e1(λ) + 2λc)e0 + (e1(c) + e2(b) + b2 + c2 − λ2)e2,

Re1,e2e2 = −(e2(λ) + 2bλ)e0 − (e1(c) + e2(b) + b2 + c2 − λ2)e1.

The non-zero components of the Ricci curvature are:
r00 = −2λ2, r01 = −e2(λ)− 2bλ,

r02 = −e1(λ)− 2λc, r12 = e0(λ)

r11 = −e1(c)− e2(b)− b2 − c2 − 2aλ,

r22 = −e1(c)− e2(b)− b2 − c2 + 2aλ.

(6.4)

Corollary 6.1. The scalar curvature r is given by:

r = −2
[
e1(c) + e2(b) + b2 + c2 + λ2

]
. (6.5)

Theorem 6.2. [5] Let (M,ϕ, ξ, η, g) be a 3-dimensional almost cosymplectic man-
ifold non-zero constant curvature. Then this manifold does not exist.

We finish the present section to proving the following consequence.

Corollary 6.3. In the above conditions, the following assertions are equivalent:

(i) S = ϕSϕ;
(ii) r11 = r22 and rij = 0 (i 6= j, i, j = 0, 1, 2);
(iii) a = 0, e0(λ) = 0, e1(λ) = −2λc, e2(λ) = −2λb;
(iv) λ is constant.

7. An example of almost cosymplectic 3-manifolds

7.1. Unimodular Lie groups. A Lie group G is said to be unimodular if its
left-invariant Haar measure is right invariant. Milnor gave an infinitesimal refor-
mulation of unimodularity for 3-dimensional Lie groups. We recall it briefly here.
Let G be a 3-dimensional oriented Lie algebra with an inner product 〈·, ·〉. We
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define the vector product operation × : G×G −→ G as the skew-symmetric bilinear
map which is uniquely determined by the following conditions for any X,Y ∈ G:

〈X,X × Y 〉 = 〈Y,X × Y 〉 = 0, (7.1)

|X × Y |2 = 〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2, (7.2)

det(X,Y,X × Y ) > 0 (7.3)

if X and Y are linearly independent. On the other hand, the Lie bracket

[·, ·] : G × G −→ G

is a skew-symmetric bilinear map. Comparing these two operations, we get a linear
endomorphism LG which is uniquely determined by the formula

[X,Y ] = LG(X × Y ),∀X,Y ∈ G. (7.4)

Now let G be an oriented 3-dimensional Lie group equipped with a left-invariant
Riemannian metric. Then the metric induces an inner product on the Lie algebra
G. With respect to the orientation on G induced from G, the endomorphism field
LG is uniquely determined. The unimodularity of G is characterized as follows.

Proposition 7.1. Let G be an oriented 3-dimensional Lie group with a left-invariant
Riemannian metric. Then G is unimodular if and only if the endomorphism LG is
self-adjoint with respect to the metric.

Proof. See [3]. �

Let G be a 3-dimensional unimodular Lie group with a left-invariant metric.
Then there exists an orthonormal basis {ei}1≤i≤3 of the Lie algebra G such that

[e1, e2] = c3e3, [e2, e3] = c1e1, [e3, e1] = c2e2, ci ∈ R.

Three-dimensional unimodular Lie groups are classified in [3] as follows:

Signature of (c1, c2, c3) Simply connected Lie group Property
(+,+,+) SU2 compact and simple

(+,+,−) S̃L2R non-compact and simple

(+,+, 0) Ẽ(2) solvable
(+,−, 0) E(1, 1) solvable
(+, 0, 0) Heisenberg group Nil3 nilpotent
(0, 0, 0) (R3,+) Abelian

Example. The group

E(1, 1) =


ez 0 x

0 e−z y
0 0 1

 , x, y, z ∈ R


is the motion group of the Minkowski 2-plane.

7.2. An example of almost cosymplectic 3-manifolds. We consider the 3-
dimensional manifold

Q =
{

(t, x, y) ∈ R3, t ∈ R∗
}
. (7.5)

The left-translated vector fields f0 = ∂t, f1 = t∂x, f2 = t−1∂y are linearly indepen-
dent at each point of Q. The dual coframe field is ω0 = dt, ω1 = t−1dx, ω2 = tdy.
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Define the left-invariant vector fields u0 = f0, u1 = 1√
2
(−f1 +f2), u2 = 1√

2
(f1 +f2).

This left-invariant frame field satisfies the commutation relations

[u1, u2] = 0, [u2, u0] = u1, [u0, u1] = −u2. (7.6)

Let ei = ui

αi
, i = 0, 1, 2, where αi is a positive constant. Then Q is equipped with a

left-invariant Riemannian metric such that {e0, e1, e2} is orthonormal.
Let g be a Riemannian metric on Q defined by g(ei, ej) = δij , i, j = 0, 1, 2, where

δij is the Kronecker symbol, that is, the form of the metric becomes

g = (α0)2ω0 ⊗ ω0 +
α2
1

2
(−ω1 + ω2)⊗ (−ω1 + ω2) +

α2
2

2
(ω1 + ω2)⊗ (ω1 + ω2). (7.7)

Define a 1-form η on Q by η = ω0 := dt, then dη = 0. Let ϕ be the (1, 1)-tensor
field defined by ϕe0 = 0, ϕe1 = e2, ϕe2 = −e1. Thus, we get

ϕ =
α2
1

2
(−ω1 + ω2)⊗ (f1 + f2)− α2

2

2
(ω1 + ω2)⊗ (−f1 + f2). (7.8)

The non-zero component of the fundamental 2-form Φ is given by

Φ = −ω1 ∧ ω2. (7.9)

Then dΦ = 0. Thus, the quintuple (Q,ϕ, ξ, η, g) is called almost cosymplectic
manifold with fundamental 2-form Φ. In term of standard coordinates, since
Jac(f0, f1, f2) = 0, we deduce that f1(λ) = f2(λ) = 0. By the formalism, we
dedude that f0(λ) = 0. So the eignvalue λ is constant. In these conditions a unique
non-zero component of Ricci curvature is r00 = −2λ2. Thus the scalar curvature is
given by r = −2λ2.
By the Koszul formula, we get ∇f0f0 = 0, ∇f1f0 = −λf1, ∇f2f0 = λf2.
By the formula (LXϕ)Y = [X,ϕY ] − ϕ [X,Y ], the components of the tensor field
h are given by h(f0) = 0, h(f1) = −λf1, h(f2) = λf2 and trace(h) = 0.

Theorem 7.2. The almost cosymplectic 3-manifold (Q,ϕ, ξ, η, g) is isomorphic to
the group E(1, 1) of rigid motions of Minkowski 2-space.
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