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Abstract. In this paper, we defined and studied a new notion of logarith-

mically or multiplicatively interval-valued h-preinvex function. We present

some new Hermite-Hadamard type inclusions in the setting of interval-valued
non-Newtonian calculus. We also established new Hermite-Hadamard type

inclusions for the product of multiplicatively interval-valued h-preinvex func-

tions. Then, we use multiplicative twice differentiable functions and we give
two new multiplicative integral identities. Next, we derive some new midpoint

and trapezoidal type inclusions using h-preinvexity.

1. Introduction

New definitions of differentiation and integration in which the roles of addition
and subtraction move to multiplication and division and introduce a new calculus
called multiplicative calculus or non-Newton calculus. This mathematical instru-
ment can be particularly helpful for the study of economics and finance and it was
initially explored by Grossman and Katz in [13]. In [10], the authors introduced
complex multiplicative calculus and, in [12] and [14], properties of stochastic multi-
plicative calculus have been studied. After the work of [4], many researchers proved
different variants of integral inequalities in the setting of multiplicative calculus. In
[8], the authors gave some estimates for the midpoint and trapezoidal inequalities
in multiplicative calculus, the HermiteHadamard type inequalities for general mul-
tiplicative convex and preinvex functions were treated in [3] and [20]. Many results
are also studied for multiplicative s-convex, multiplicative s-preinvex functions and
multiplicative h-preinvex functions in [21, 22, 23]. Ali et al., in [6], introduced the
notions of multiplicative interval-valued integral and established some new Hermite-
Hadamard type inequalities for intervalvalued multiplicative convex functions. J.
Xiea et al. established, in [26], some new trapezoidal and midpoint type inequal-
ities for multiplicative twice differentiable multiplicative convex functions. A set-
valued analysis is a useful tool for dealing with uncertainties and errors in data
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and computations. An interval-valued integral inequality is used to study functions
with outputs determined by intervals rather than sets of arbitrary shapes. Based
on this notion, A. A. H. Ahmadini et al., in [2], developed Hermite-Hadamard,
weighted Fejer, and trapezium type inequalities. Recently, in [1, 5, 11, 24, 25], the
authors treated many problems in relation with Hadamard-Hermite inequalities as
global stability for Volterra Hadamard random partial fractional integral equations,
boundary value problems of fractional differential equations of variable order, ex-
istence results for fractional differential inclusions, Caputo Hadamard boundary
value problem with integral boundary condition and Caputo Hadamard fractional
derivatives.
Inspired by the ongoing studies, we established new Hermite-Hadamard type inclu-
sions for the product of multiplicatively interval-valued h-preinvex functions. Then,
we use h-preinvexity to derive some new midpoint and trapezoidal type inclusions.

2. Preliminaries

We now define some existing definitions and results that may lend support to
the main findings presented in the article.
A real valued interval X is bounded, closed subset of R defined by

X = [a, b] = {t ∈ R, a ≤ t ≤ b},
where a, b ∈ R and a ≤ b. The numbers a and b are called the left and the right
endpoints of interval X, respectively. When a = b, the interval X is said to be
degenerate. Also, we call X positive if a > 0 or negative if b < 0. The set of all
closed intervals of R, the sets of all closed positive intervals of R and closed negative
intervals of R are denoted by RI ,R+

I and R−I , respectively. The Hausdorff-Pompeiu
distance between the intervals X = [a, b] and Y = [c, d] is defined by

d(X;Y ) = d([a, b], [c, d]) = max{|a− c|, |b− d|}.
It is known that (RI ; d) is a complete metric space (see [7]). For the definitions of
basic interval arithmetic operations and algebraic properties, we refer the readers
to [7, 15] and the references therein. What’s more, one of the set property is the
inclusion ⊇KC that is given by

[a, b] = X ⊇KC Y = [c, d]⇐⇒ a ≤ c and d ≤ b.
Considering together with arithmetic operations and inclusion, one has the following
property which is called inclusion isotony of interval operations: Let � be the
addition, multiplication, subtraction or division. If X,Y, Z and T are intervals
such that

X ⊇KC Y and Z ⊇KC T,
then the following relation is valid

X � Z ⊇KC Y � T.
In [9], Bashirov et al. introduced the concept of ∗integral which is denoted by∫ b
a

(F (x))dx.

Proposition 2.1. If a positive function F is Riemann integrable on [a; b], then F
is ∗integrable on [a, b] and ∫ b

a

(F (x))dx = e
∫ b
a
ln(F (x))dx.
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Now we recall the concept of Interval-valued integral given by Moore et al. in [16]
and presented in [6]. Let F : [a, b] → RI be an interval-valued function such that
F (t) = [F (t), F (t)]. The interval-valued Riemann integral of function F is defined
by ∫ b

a

F (x)dx =

∫ b

a

[F (x), F (x)]dx.

Let’s define interval-valued ∗integral or multiplicative integral (I∗R). A function
F is said to be an interval-valued function of t on [a, b] if it assigns a nonempty
interval to each t ∈ [a, b]

F (t) = [F (t), F (t)].

A partition of [a, b] is any finite ordered subset P having the form

P : a = t0 < t1 < · · · < tn = b.

The mesh of a partition P is defined by

mesh(P) = max{ti − ti−1; i = 1, 2, · · · , n}.

We denote by P([a, b]) the set of all partition of [a, b]. Let P(δ, [a, b]) be the set of
all P1 ∈ P([a, b]) such that mesh(P1) < δ. Choose arbitrary points ξi in interval
[ti−1, ti], i = 1, 2, · · · , n and we define the product

P (F,P1, δ) =

n∏
i=1

F (ξi)
[ti−ti−1],

where F : [a, b]→ RI is a positive function. We call P (F,P1, δ) a Riemann product
of F corresponding to P1 ∈ P(δ, [a, b]).

Definition 2.2. A positive function F : [a, b] → RI is said to be integrable in
multiplicative sense or ∗integrable (I∗R integrable) on [a, b] if there exists A ∈ RI
such that, for each ε > 0, there exists δ > 0 such that

d(P (F,P1, δ), A) < ε,

for every Riemann product P of F corresponding to each P1 ∈ P(δ, [a, b]) and
independent of choice of ξi ∈ [ti−1, ti] for 1 ≤ i ≤ n. In this case, A is called the
I∗R-integral of F on [a, b] and is denoted by

A = (I∗R)

∫ b

a

(F (t))dt.

The collection of all functions that are I∗R-integrable on [a, b] will be denoted
by I∗R([a,b]).
The following theorem gives relation between I∗R-integral and multiplicative inte-
gral (I∗-integral).

Theorem 2.3. Let F : [a, b] → RI be a positive interval-valued function. F (t) =
[F (t), F (t)] ∈ I∗R([a,b]) if and only if F (t), F (t) ∈ I∗([a,b]) and

(I∗R)

∫ b

a

(F (t))dt =

[
(I∗)

∫ b

a

(F (t))dt, (I∗)

∫ b

a

(F (t))dt

]
,

where I∗([a,b]) denotes the all ∗integrable functions.
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It is very easy to notice that if positive function F is interval-valued integrable
(IR-integrable), then F is I∗R-integrable and

(I∗R)

∫ b

a

(F (t))dt = e
∫ b
a
(ln◦F )(t)dt.

Now we give some properties of ∗integral for interval-valued functions. We consider
F and G are positive interval-valued functions then the following equalities hold:

•
∫ b
a

(F (t)p)dt =
(∫ b

a
(F (t))dt

)p
.

•
∫ b
a

(F (t)G(t))dt =
∫ b
a

(F (t))dt
∫ b
a

(G(t))dt.

•
∫ b
a

(
F (t)
G(t)

)dt
=
∫ b
a
(F (t))dt∫ b

a
(G(t))dt

.

•
∫ b
a

(F (t))dt =
∫ c
a

(F (t))dt
∫ b
c

(F (t))dt, where a ≤ c ≤ b.

Definition 2.4. [9] Let f : R → R+ be a positive function. The multiplicative
derivative of the function f is given by

d∗f

dt
(t) = f∗(t) = lim

h→0

(
f(t+ h)

f(t)

) 1
h

.

If f has positive values and is differentiable at t, then f∗ exists and the relation
between f∗ and ordinary derivative f ′ is as follows:

f∗(t) = e[logf(t)]
′

= e
f′(t)
f(t) .

If, additionally, the second derivative of f at t exists, then by an easy substitution,
we obtain

f∗∗(t) = e[ln◦f
∗(t)]′ = e[ln◦f(t)]

′′
.

Here (ln ◦ f)′′(t) exists because f ′′(t) exists. For more details and properties, one
can consult [26, 9]. Let Θ ⊂ R, and ξ(., .) : Θ×Θ→ R is a bifunction.

Definition 2.5. (See [18]) A set Θ is considered to be invex with reference to the
bifunction ξ(., .), iff

a+ tξ(b, a) ∈ Θ,

for all a, b ∈ Θ and t ∈ [0, 1].

Example. Let Θ = [−4,−3] ∪ [−2, 3] be considered to be invex with reference to
bifunction ξ(., .) and defined as:

ξ(a, b) =


a− b if 3 ≥ a ≥ −2, 3 ≥ b ≥ −1;
a− b if − 4 ≤ a ≤ −3, −4 ≤ b ≤ −3;
−4− b if − 2 ≤ a ≤ 3, −4 ≤ b ≤ −2;
−2− b if − 4 ≤ a ≤ −3,−2 ≤ b ≤ 3.

Then Θ is considered to be invex with reference to bifunction ξ(., .).

Definition 2.6. Let h : [c, d] → R be a nonnegative function, (0, 1) ⊂ [c, d] and
h 6= 0. Let f : Θ→ RI be a nonnegative interval-valued function given by f = [f, f ].
Then, f is said to be logarithmically or multiplicatively interval-valued preinvex
function with reference to ξ if

f(a+ tξ(b, a)) ⊇KC (f(a))h(1−t)(f(b))h(t),

for all a, b ∈ Θ and t ∈ (0, 1).



108 O. BEN KHALIFA, A. IBRAHEAM BASHA, S. HADJ AMOR

Remark. If f = f and ξ(b, a) = b− a, Definition 2.6 reduces to a multiplicatively
h-preinvex function (see [17])

Definition 2.7. (Condition C (see [19]))
Let Θ ⊂ Rn be an open invex set with reference to ξ(., .) : Θ × Θ → R. For all
a, b ∈ Θ and η ∈ [0, 1], we have

ξ(b, b+ ηξ(a, b)) = −ηξ(a, b),
and

ξ(a, b+ ηξ(a, b)) = (1− η)ξ(a, b).

For any a, b ∈ Θ, and η1, η2 ∈ [0, 1], from Condition C, we have

ξ(b+ η2ξ(a, b), b+ η1ξ(a, b)) = (η2, η1)ξ(a, b).

3. Existence and uniqueness results

The prime objective of this section is to derive and prove several novel Hermite-
Hadamard inclusions for multiplicatively interval-valued preinvex function in the
framework of multiplicative calculus.

Theorem 3.1. Let Θ ∈ R to be an open invex subset with respect to a bifunction
ξ : Θ × Θ → R and a, b ∈ Θ with ξ(b, a) > 0. Let h : [0, 1] → R+ and h( 1

2 ) 6= 0.

Consider f : [a, a+ ξ(b, a)]→ R+
I to be a multiplicatively h-preinvex interval-valued

function and ξ satisfies Condition C, then[
f(

2a+ ξ(b, a)

2
)

] 1

2h( 1
2
)

⊇KC

(∫ a+ξ(b,a)

a

(f(x))dx

) 1
ξ(b,a)

⊇KC (f(a)f(b))
∫ 1
0
h(t)dt.

Proof. Since f is a multiplicatively interval-valued h-preinvex function, we have,
with t = 1

2

f(
2a+ ξ(b, a)

2
) ⊇KC (f(a)f(b))h(

1
2 ).

Choosing θ1 = a + tξ(b, a) and θ2 = a + (1 − t)ξ(b, a), and using the condition C,
one has

f(
2a+ ξ(b, a)

2
) = f(

2θ1 + ξ(θ2, θ1)

2
)

= f(a+ tξ(b, a) +
1

2
ξ(a+ (1− t)ξ(b, a), a+ tξ(b, a))

⊇KC [(f(a+ tξ(b, a)))(f(a+ (1− t)ξ(b, a)))]
h( 1

2 ) .

Taking logarithms of both sides leads to

ln f(
2a+ ξ(b, a)

2
) ⊇KC ln [(f(a+ tξ(b, a)))(f(a+ (1− t)ξ(b, a)))]

h( 1
2 )

⊇KC h(
1

2
)(ln f(a+ tξ(b, a)) + ln f(a+ (1− t)ξ(b, a))).

Integrating the above inclusion over (0, 1), it follows that∫ 1

0

ln f(
2a+ ξ(b, a)

2
)dt ⊇KC h(

1

2
)

∫ 1

0

(ln f(a+ tξ(b, a)) + ln f(a+ (1− t)ξ(b, a)))dt

⊇KC
2h( 1

2 )

ξ(b, a)

∫ a+ξ(b,a)

a

ln f(x)dx.
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Thus [
f(

2a+ ξ(b, a)

2
)

] 1

2h( 1
2
)

⊇KC e(
1

ξ(b,a)

∫ a+ξ(b,a)
a

ln f(x)dx)

=

(∫ a+ξ(b,a)

a

(f(x))dx

) 1
ξ(b,a)

,

which gives the first inclusion. Now, we have(∫ a+ξ(b,a)

a

(f(x))dx

) 1
ξ(b,a)

=
(
e(
∫ a+ξ(b,a)
a

ln f(x)dx)
) 1
ξ(b,a)

= e(
1

ξ(b,a)

∫ a+ξ(b,a)
a

ln f(x)dx)

= e2h(
1
2 )(
∫ 1
0
ln(f(a+tξ(b,a)))dt)

⊇KC e
∫ 1
0
ln((f(a))h(1−t)(f(b))h(t))dt

⊇KC eln(f(a)f(b))
∫ 1
0 h(t)dt

⊇KC (f(a)f(b))
∫ 1
0
h(t)dt,

which completes the proof of the theorem. �

Corollary 3.2. Under the assumptions of Theorem 3.1, if we set h(t) = t, then we
have the following Hermite-Hadamard inequality for multiplicatively interval-valued
preinvex functions

f(
2a+ ξ(b, a)

2
) ⊇KC

(∫ a+ξ(b,a)

a

(f(x))dx

) 1
ξ(b,a)

⊇KC G(f(a), f(b)),

where G(f(a), f(b)) referes to the geometric mean of f(a) and f(b).

Now we give a new integral inclusions for a product of multiplicatively h-preinvex
positive interval valued functions.

Theorem 3.3. Let Θ ∈ R an open invex subset with respect to a bifunction ξ :
Θ × Θ → R and a, b ∈ Θ with ξ(b, a) > 0. Let h : [0, 1] → R+ and h( 1

2 ) 6= 0.

Consider f : [a, a+ ξ(b, a)]→ R+
I to be a multiplicatively h-preinvex interval-valued

function and ξ satisfies Condition C, then[
f(

2a+ ξ(b, a)

2
)g(

2a+ ξ(b, a)

2
)

] 1

2h( 1
2
)

⊇KC

(∫ b

a

f(x)dx
∫ b

a

g(x)dx

) 1
ξ(b,a)

⊇KC (f(a)f(b)g(a)g(b))
∫ 1
0
h(t)dt.

Proof. By the definition of multiplicatively interval-valued h-preinvex function, we
have

f(
2a+ ξ(b, a)

2
) ⊇KC f(a)h(

1
2 )f(b)h(

1
2 ),

and

g(
2a+ ξ(b, a)

2
) ⊇KC f(a)h(

1
2 )f(b)h(

1
2 ).



110 O. BEN KHALIFA, A. IBRAHEAM BASHA, S. HADJ AMOR

By setting θ1 = a+ tξ(b, a) and θ2 = a+ (1− t)ξ(b, a), and using the condition C,
one has

f(
2a+ ξ(b, a)

2
) = f(

2θ1 + ξ(θ2, θ1)

2
) ⊇KC f(a+ tξ(b, a))h(

1
2 )f(a+(1− t)ξ(b, a))h(

1
2 ),

and

g(
2a+ ξ(b, a)

2
) = g(

2θ1 + ξ(θ2, θ1)

2
) ⊇KC g(a+ tξ(b, a))h(

1
2 )g(a+ (1− t)ξ(b, a))h(

1
2 ).

By multiplying the two previous inclusions, we obtain

ln

[
f(

2a+ ξ(b, a)

2
)g(

2a+ ξ(b, a)

2
)

]
⊇KC h(

1

2
)[ln f(a+ tξ(b, a)) + ln f(a+ (1− t)ξ(b, a))

+ ln g(a+ tξ(b, a)) + ln g(a+ (1− t)ξ(b, a))].

Integrating the above inclusion over (0, 1), it follows that

ln

[
f(

2a+ ξ(b, a)

2
)g(

2a+ ξ(b, a)

2
)

]
⊇KC h(

1

2
)[

∫ 1

0

ln f(a+ tξ(b, a))dt+

∫ 1

0

ln f(a+ (1− t)ξ(b, a))dt

+

∫ 1

0

ln g(a+ tξ(b, a))dt+

∫ 1

0

ln g(a+ (1− t)ξ(b, a))dt].

Consequently,

1

2h( 1
2 )

ln

[
f(

2a+ ξ(b, a)

2
)g(

2a+ ξ(b, a)

2
)

]
⊇KC

1

ξ(b, a)
[

∫ b

a

ln f(x)dx+

∫ b

a

ln g(x)dx],

which implies that[
f(

2a+ ξ(b, a)

2
)g(

2a+ ξ(b, a)

2
)

] 1

2h( 1
2
)

⊇KC
(
e
∫ b
a
ln f(x)dx+

∫ b
a
ln g(x)dx

) 1
ξ(b,a)

.

Hence [
f(

2a+ ξ(b, a)

2
)g(

2a+ ξ(b, a)

2
)

] 1

2h( 1
2
)

⊇KC
(
e
∫ b
a
f(x)dx+

∫ b
a
g(x)dx

) 1
ξ(b,a)

.

For the second inclusion, first we note that

f(a+ tξ(b, a)) ⊇KC f(a)h(t)f(b)h(1−t),

and

g(a+ tξ(b, a)) ⊇KC g(a)h(t)g(b)h(1−t).

Then

ln (f(a+ tξ(b, a))g(a+ tξ(b, a)))

⊇KC h(t)[ln f(a) + ln g(a)] + h(1− t)[ln f(b) + ln g(b)].
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By integrating over (0, 1), we get∫ 1

0

ln (f(a+ tξ(b, a))g(a+ tξ(b, a))) dt

⊇KC [ln f(a) + ln g(a)]

∫ 1

0

h(t)dt

⊇KC [ln f(b) + ln g(b)]

∫ 1

0

h(1− t)dt.

So, it follows that

1

ξ(b, a)

∫ 1

0

ln(f(x)g(x))dx ⊇KC ln(f(a)f(b)g(a)g(b))
∫ 1
0
h(t)dt.

Hence (
e
∫ b
a
ln f(x)dx+

∫ b
a
ln g(x)dx

) 1
ξ(b,a) ⊇KC (f(a)f(b)g(a)g(b))

∫ 1
0
h(t)dt.

Thus (∫ b

a

f(x)dx
∫ b

a

g(x)dx

) 1
ξ(b,a)

⊇KC (f(a)f(b)g(a)g(b))
∫ 1
0
h(t)dt.

�

Corollary 3.4. Under the assumptions of Theorem 3.1, if we set h(t) = t, then we
have the following Hermite-Hadamard inequality for multiplicatively interval-valued
preinvex functions[

f(
2a+ ξ(b, a)

2
)g(

2a+ ξ(b, a)

2
)

] 1

2h( 1
2
)

⊇KC
(
e
∫ b
a
f(x)dx+

∫ b
a
g(x)dx

) 1
ξ(b,a)

⊇KC G(f(a), f(b))G(g(a), g(b)).

where G(f(a), f(b)) referes to the geometric mean of f(a) and f(b).

4. Multiplicative integral Identities

We begin this section by an integral identity associated with the twice multi-
plicative differentiable function.

Lemma 4.1. Let Θ ⊂ R an open invex subset with respect to a bifunction ξ :
Θ × Θ → R and a, b ∈ Θ with ξ(b, a) > 0. Consider f : [a, a + ξ(b, a)] → R+

I be
a twice differentiable interval-valued function. If f∗∗ ∈ L2[a, a + ξ(b, a)], then the
following equality holds:

√
f(a)f(b)

(∫ a

b

(f(x))dx
) 1
ξ(b,a)

=

(∫ 1

0

(
[f∗∗(a+ tξ(b, a))t(1−t)]

)dt) (ξ(b,a))2

2

.
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Proof. By changing the variables of integration and from the fondamental rules of
multiplicative integration, we obtain that

(∫ 1

0

(
[f∗∗(a+ tξ(b, a))t(1−t)]

)dt) (ξ(b,a))2

2

= e
(ξ(b,a))2

2

∫ 1
0
t(1−t)(ln◦f)′′(a+tξ(b,a)))dt

= e[
ξ(b,a)

2 t(1−t)(ln ◦f)′(a+tξ(b,a))]10−
ξ(b,a)

2

∫ 1
0
(1−2t)(ln ◦f)′(a+tξ(b,a))dt

= e−
1
2 [[(1−2t)(ln ◦f)(a+tξ(b,a))]10+2

∫ 1
0
(ln ◦f)(a+tξ(b,a))dt]

= e
1
2 [ln(f(a)f(b))]−

∫ 1
0
(ln ◦f)(a+tξ(b,a))dt

=
eln
√
f(a)f(b)

e
∫ 1
0
(ln ◦f)(a+tξ(b,a))dt

=
√
f(a)f(b)

(∫ a

b

(f(x))dx
) 1
ξ(b,a)

.

Thus, the proof is completed. �

Lemma 4.2. Let Θ ⊂ R an open invex subset with respect to a bifunction ξ :
Θ × Θ → R and a, b ∈ Θ with ξ(b, a) > 0. Consider f : [a, a + ξ(b, a)] → R+

I be
a twice differentiable interval-valued function. If f∗∗ ∈ L2[a, a + ξ(b, a)], then the
following equality holds:(∫ b

a
(ln ◦f(x))dx

) 1
ξ(b,a)

f( 2a+ξ(b,a)
2 )

=

(∫ 1
2

0

(
[f∗∗(a+ tξ(b, a))]t

2
)dt) (ξ(b,a))2

2

×

(∫ 1

1
2

(
[f∗∗(a+ tξ(b, a))](1−t)

2
)dt) (ξ(b,a))2

2

.

Proof. We have

I1 =

(∫ 1
2

0

(
[f∗∗(a+ tξ(b, a))]t

2
)dt) (ξ(b,a))2

2

= e
(ξ(b,a))2

2

∫ 1
2

0 t2(ln◦f)′′(a+tξ(b,a)))dt

= e
ξ(b,a)

2 (ln ◦f)′( 2a+ξ(b,a)
2 )− 1

2 f(
2a+ξ(b,a)

2 )+
∫ 1

2
0 (ln ◦f)(a+tξ(b,a))dt,

and

I2 =

(∫ 1

1
2

(
[f∗∗(a+ tξ(b, a))](1−t)

2
)dt) (ξ(b,a))2

2

= e
− ξ(b,a)2 (ln ◦f)′( 2a+ξ(b,a)

2 )− 1
2 f(

2a+ξ(b,a)
2 )+

∫ 1
1
2
(ln ◦f)(a+tξ(b,a))dt

.
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From the above two equalities, it follows that

I1 × I2 = e
∫ 1
0
ln ◦f(a+tξ(b,a))dt−ln ◦f( 2a+ξ(b,a)

2 )

=
e

1
ξ(b,a)

∫ b
a
ln ◦f(x)dx

f( 2a+ξ(b,a)
2 )

=

(∫ b
a

(ln ◦f(x))dx
) 1
ξ(b,a)

f( 2a+ξ(b,a)
2 )

.

Thus, we have the result. �

5. Trapezoidal type Inequalities

A new trapezoidal type inclusion in the setting of multiplicative calculus is es-
tablished in this section.

Theorem 5.1. Under the assumptions of Lemma 4.1 with f = f. If f∗∗ is multi-
plicative h-preinvex mapping, then the following inequality holds:∣∣∣∣∣√f(a)f(b)

(∫ a

b

(f(x))dx
) 1
ξ(b,a)

∣∣∣∣∣ ≤ (f∗∗(a)f∗∗(b))
(ξ(b,a))2

∫ 1
0 t(1−t)h(t)dt

2 .

Proof. From Lemma 4.1 and the multiplicative h-preinvexity of f∗∗, we have∣∣∣∣∣√f(a)f(b)

(∫ a

b

(f(x))dx
) 1
ξ(b,a)

∣∣∣∣∣
≤ e

[
(ξ(b,a))2

2

∫ 1
0
|((ln◦f)′′(a+tξ(b,a))))t(1−t)|dt

]

= e

[
(ξ(b,a))2

2

∫ 1
0
|t(1−t)(ln◦f)′′(a+tξ(b,a)))|dt

]

≤ e

[
(ξ(b,a))2

2

∫ 1
0
t(1−t)(h(1−t)(ln◦f)′′(a)+h(t)(ln◦f)′′(b))dt

]

≤ (f∗∗(a)f∗∗(b))
(ξ(b,a))2

∫ 1
0 t(1−t)h(t)dt

2 .

�

6. Midpoint Type Inequalities

In the setting of multiplicative calculus, we establish a new midpoint inequality.

Theorem 6.1. Under the assumptions of Lemma 4.2 with f = f. If f∗∗ is multi-
plicative h-preinvex mapping, then the following inequality holds:∣∣∣∣∣∣∣

(∫ b
a

(f(x))dx
) 1
ξ(b,a)

f( 2a+ξ(b,a)
2 )

∣∣∣∣∣∣∣ ≤ (f∗∗(a)f∗∗(b))
(ξ(b,a))2

2

∫ 1
2

0 t2(h(t)+h(1−1))dt.
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Proof. From Lemma 4.2 and the multiplicative h-preinvexity of f∗∗, we have∣∣∣∣∣∣∣
(∫ b

a
(f(x))dx

) 1
ξ(b,a)

f( 2a+ξ(b,a)
2 )

∣∣∣∣∣∣∣
≤ e

[
(ξ(b,a))2

2

(∫ 1
2

0 t2|(ln◦f)′′(a+tξ(b,a))|dt
)]

× e

[
(ξ(b,a))2

2

(∫ 1
1
2
(1−t)2|(ln◦f)′′(a+tξ(b,a))|dt

)]

≤ e

[
(ξ(b,a))2

2

(∫ 1
2

0 t2(h(1−t)(ln◦f)′′)(a)+h(t)(ln◦f)′′)(b))dt
)]

× e

[
(ξ(b,a))2

2

(∫ 1
1
2
(1−t)2(h(1−t)(ln◦f)′′)(a)+h(t)(ln◦f)′′)(b))dt

)]

≤ (f∗∗(a)f∗∗(b))
(ξ(b,a))2

2

∫ 1
2

0 t2(h(t)+h(1−1))dt.

�

7. Conclusion

In this article, we showed new Hermite-Hadamard type inclusions, in the set-
ting of interval-valued non-Newtonian calculus, for the product of multiplicatively
interval-valued h-preinvex functions. This work is a rafinement of the Hermite-
Hadamard inequality for this type of functions. We derived also some new mid-
point and trapezoidal type inclusions using h-preinvexity. We hope that our ideas
inspired many researchers in this fascinating field.
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