COMPATIBILITY AND WEAK COMPATIBILITY FOR FOUR SELF MAPS IN A CONE METRIC SPACE

SHOBHA JAIN, SHISHIR JAIN, LAL BAHADUR

Abstract

The object of this paper is to introduce the concept of compatibility of pair of self maps in a cone metric space without assuming its normality. Using this concept we establish a unique common fixed point theorem for four self maps satisfying a generalized contractive condition in a cone metric space which generalizes and synthesizes the results of L. G. Huang and X. Zhang [3] J. Math. Anal. Appl 332(2007) 1468-1476). All the results presented in this paper are new.

1. Introduction

There has been a number of generalizations of metric space. One such generalization is a Cone metric space initiated by Huang and Zhang [3]. In this space they replaced the set of real numbers of a metric space by an ordered Banach Space and gave some fundamental results for a self map satisfying a contractive condition. In [1] Abbas and Jungck generalized the result of [3] for two self maps through weak compatibility in a normal cone metric space. On the same line Vetro [7] proved some fixed point theorem for two self maps satisfying a contractive condition through weak compatibility.

Recently, Rezapour and Hamlbarani [5] omitted the assumption of normality in cone metric space, which is a milestone in developing fixed point theory in cone metric space.

In section 2 , of this paper we introduce the concept of compatibility of pair of self maps and prove some propositions using it in a cone metric space. Also we prove a unique common fixed point theorem for four self maps through compatibility satisfying a more generalized contractive condition than one adopted in [1, 2, 3, 7] for a non- normal cone metric space. Our results generalize, extend and unify several well-known fixed point results in cone metric spaces. Example 2, illustrates the main result of this paper.

[^0]
2. Preliminaries

Definition 2.1. [3] :Let E be a real Banach space and P be a subset of E.P is called a cone if.
(i) P is a closed, non-empty and $P \neq\{0\}$;
(ii) $a, b \in R, a, b \geq 0, x, y \in P$ implies $a x+b y \in P$;
(iii) $x \in$ Pand $-x \in P$ imply $x=0$.

Given a cone $P \subseteq E$, we define a partial ordering " \leq "in E by $x \leq y$ if $y-x \in P$. We write $x<y$ to denote $x \leq y$ but $x \neq y$ and $x \ll y$ to denote $y-x \in P^{0}$, where P^{0} stands for the interior of P.
Proposition 2.2. [4]: Let P be a cone in a real Banach space E. If $a \in P$ and $a \leq k a$, for some $k \in[0,1)$ then, $a=0$.

Proof: For $a \in P, k \in[0,1)$ and $a \leq k a$ give $(k-1) a \in P$ implies $-(1-k) a \in P$. Therefore by (ii) we have $-a \in P$, as $1 /(1-k)>0$. Hence $a=0$, by (iii).

Proposition 2.3. [4]: Let P be a cone in a real Banach space E. If for $a \in E$ and $a \ll c$, for all $c \in P^{0}$, then $a=0$.
Remark 2.4. [5]: $\lambda P^{0} \subseteq P^{0}$, for $\lambda>0$ and $P^{0}+P^{0} \subseteq P^{0}$.

Definition 2.5. [3]: Let X be a nonempty set. Suppose the mapping $d: X \times X \rightarrow E$ satisfies:
(a) $0 \leq d(x, y)$, for all $x, y \in X$ and $d(x, y)=0$, if and only if $x=y$;
(b) $d(x, y)=d(y, x)$, for all $x, y \in X$;
(c) $d(x, y) \leq d(x, z)+d(z, y)$, for all $x, y, z \in X$.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.
For examples of cone metric spaces we refer Huang et al. [3].

Definition 2.6. 3]: Let (X, d) be a cone metric space. Let $\left\{x_{n}\right\}$ be a sequence in X and $x \in X$. If for every $c \in E$ with $0 \ll c$ there is a positive integer N_{c} such that for all $n>N_{c}, d\left(x_{n}, x\right) \ll c$, then the sequence $\left\{x_{n}\right\}$ is said to converges to x, and x is called limit of $\left\{x_{n}\right\}$. We write $\lim _{n \rightarrow \infty} x_{n}=x$ or $x_{n} \rightarrow x$, as $n \rightarrow \infty$.

Definition 2.7. [3]: Let (X, d) be a cone metric space. Let $\left\{x_{n}\right\}$ be a sequence in X. If for any $c \in E$ with $0 \ll c$ there is a N such that for all $n, m>N, d\left(x_{n}, x_{m}\right) \ll$ c, then the sequence $\left\{x_{n}\right\}$ is said to be a Cauchy sequence in X.
Definition 2.8. 3]: Let (X, d) be a cone metric space. If every Cauchy sequence in X is convergent in X, then X is called a complete cone metric space.
Proposition 2.9. : Let (X, d) be a cone metric space and P be a cone in a real Banach space E. If $u \leq v, v \ll w$ then $u \ll w$.

Lemma 2.10. : Let (X, d) be a cone metric space and P be a cone in a real Banach space E and $k_{1}, k_{2}, k_{3}, k_{4}, k>0$. If $x_{n} \rightarrow x, y_{n} \rightarrow y, z_{n} \rightarrow z$ and $p_{n} \rightarrow p$ in X and (1.1) $\quad k a \leq k_{1} d\left(x_{n}, x\right)+k_{2} d\left(y_{n}, y\right)+k_{3} d\left(z_{n}, z\right)+k_{4} d\left(p_{n}, p\right)$,
then $a=0$.
Proof: As $x_{n} \rightarrow x, y_{n} \rightarrow y, z_{n} \rightarrow z$ and $p_{n} \rightarrow p$ for $c \in P^{0}$ there exists a positive integer N_{c} such that
$\frac{c}{\left(k_{1}+k_{2}+k_{3}+k_{4}\right)}-d\left(x_{n}, x\right), \frac{c}{\left(k_{1}+k_{2}+k_{3}+k_{4}\right)}-d\left(y_{n}, y\right)$,
$\frac{c}{\left(k_{1}+k_{2}+k_{3}+k_{4}\right)}-d\left(z_{n}, z\right), \frac{c}{\left(k_{1}+k_{2}+k_{3}+k_{4}\right)}-d\left(p_{n}, p\right) \in P^{0}$, for all $n>N_{c}$.
Therefore by Remark 2.4, we have
$\frac{k_{1} c}{\left(k_{1}+k_{2}+k_{3}+k_{4}\right)}-k_{1} d\left(x_{n}, x\right), \frac{k_{2} c}{\left(k_{1}+k_{2}+k_{3}+k_{4}\right)}-k_{2} d\left(y_{n}, y\right)$,
$\frac{k_{3} c}{\left(k_{1}+k_{2}+k_{3}+k_{4}\right)}-k_{3} d\left(z_{n}, z\right), \frac{k_{4} c}{\left(k_{1}+k_{2}+k_{3}+k_{4}\right)}-k_{4} d\left(p_{n}, p\right) \in P^{0}$, for all $n>N_{c}$.
Again by adding and Remark 2.4, we have
$c-k_{1} d\left(x_{n}, x\right)-k_{2} d\left(y_{n}, y\right)-k_{3} d\left(z_{n}, z\right)-k_{4} d\left(p_{n}, p\right) \in P^{0}$ for all $n>N_{c}$.
From (1.1) and Proposition 2.9 we have i. e. $k a \ll c$, for each $c \in P^{0}$. By Proposition 2.3, we have $a=0$, as $k>0$.

Definition 2.11. [1]: Let A and S be self maps of a set X. If $w=A x=S x$, for some $x \in X$, then w is called a coincidence point of A and S.
Definition 2.12. [5] :Let X be any set. A pair of self maps (A, S) in X is said to be weakly compatible if $u \in X, A u=S u$ imply $S A u=A S u$.

Compatibility in a Cone Metric Space

Here we will define compatibility of self maps in a cone metric space and prove some Propositions to be used in the main result of this manuscript.

Definition 2.13. : Let (X, d) be a cone metric space. A pair of self maps (A, S) in X is said to be compatible if for $\left\{x_{n}\right\}$ in $X, A x_{n} \rightarrow u$ and $S x_{n} \rightarrow u$, for some $u \in X$, then for every $c \in P^{0}$, there is a positive integer N_{c} such that $d\left(A S x_{n}, S A x_{n}\right) \ll c$, for all $n>N_{c}$.

Proposition 2.14. : In a cone metric space every commuting pair of self maps is compatible but the converse is not true, as observed in the following example.
Example 2.15. : Let $E=R^{2}, P=\{(x, y): x, y \geq 0\} \subseteq R^{2}$ be a cone in E. Taking $X=R$. Fix a real number $\alpha>0$ and define $d: X \times X \rightarrow E$ by $d(x, y)=|x-y|(1, \alpha)$. Then (X, d) is a complete cone metric space. Define self maps A and S on X as follows:
$A(x)=\left\{\begin{array}{llll}0, & \text { if } x & \text { is rational } \\ 1, & \text { if } x \text { is irrational }\end{array} \quad S(x)= \begin{cases}x / 2, & x \in[0,2] \\ 2, & \text { otherwise } .\end{cases}\right.$
If $\left\{r_{n}\right\}$ is a sequence of rationals such that $A\left(r_{n}\right) \rightarrow u$ and $S\left(r_{n}\right) \rightarrow u$ then $u=0$ and $S A r_{n}=S(0)=0$ and $S\left(r_{n}\right)=r_{n} / 2$ gives $A S\left(r_{n}\right)=0$. Thus $d\left(A S r_{n}, S A r_{n}\right)=$ 0 . Hence the pair of the self maps (A, S) is compatible. It is observed that the pair of self maps (A, S) is non-commuting at $\sqrt{8}$.
Proposition 2.16. : In a cone metric space every compatible pair of self maps is weakly compatible.
Proposition 2.17. : Let (A, S) be a compatible pair of self maps in a cone metric space (X, d). If $A x_{n} \rightarrow u$ and $S x_{n} \rightarrow u$, for some $u \in X$ and $A S x_{n} \rightarrow A u$ then $S A x_{n} \rightarrow A u$.

Proof :We have
$d\left(S A x_{n}, A u\right) \leq d\left(S A x_{n}, A S x_{n}\right)+d\left(A S x_{n}, A u\right)$.
(*)
As the pair (A, S) is compatible and $A S x_{n} \rightarrow A u$, for $c \in P^{0}$ there exists a positive integer N_{c} such that
$\frac{c}{2}-d\left(A S x_{n}, S A x_{n}\right), \frac{c}{2}-d\left(A S x_{n}, A u\right) \in P^{0}$, for all $n>N_{c}$.

Therefore by Remark 2.4, we have
$c-d\left(S A x_{n}, A S x_{n}\right)-d\left(A S x_{n}, A u\right) \in P^{0}$ for all $n>N_{c}$.
From (*) we have,
$d\left(S A x_{n}, A S x_{n}\right)+d\left(A S x_{n}, A u\right)-d\left(S A x_{n}, A u\right) \in P$ for all $n>N_{c}$.
Now adding and using Proposition 2.9, we have $c-d\left(A S x_{n}, A u\right) \in P^{0}$ i. e.
$d\left(S A x_{n}, A u\right) \ll c$, for all $n>N_{c}$.
Hence $S A x_{n} \rightarrow A u$.
Note: In above Proposition, if $S A x_{n} \rightarrow S u$ then it will follow that $A S x_{n} \rightarrow S u$.

3. MAIN RESULTS

Theorem 3.1. :Let (X, d) be a complete cone metric space with respect to a cone P contained in a real Banach space E. Let A, B, S and T be self mappings on X satisfying:
(3.1.1) $\quad A(X) \subseteq T(X), B(X) \subseteq S(X)$;
(3.1.2) pair (A, S) is compatible and the pair (B, T) is weakly compatible;
(3.1.3) one of A or S is continuous;
(3.1.4) for some $\lambda, \mu, \delta, \gamma \in[0,1)$ with $\lambda+\mu+\delta+2 \gamma<1$ such that for all $x, y \in X$ $d(A x, B y) \leq \lambda d(A x, S x)+\mu d(B y, T y)+\delta d(S x, T y)+\gamma[d(A x, T y)+d(S x, B y)]$. Then A, B, S and T have a unique common fixed point in X.

Proof. : Let $x_{0} \in X$ be any point in X. Using (3.1.4) construct sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that

$$
\begin{equation*}
A x_{2 n}=T x_{2 n+1}=y_{2 n}, B x_{2 n+1}=S x_{2 n+2}=y_{2 n+1}, \text { forall } n \tag{3.1}
\end{equation*}
$$

We show that $\left\{y_{n}\right\}$ is a Cauchy sequence in X.
Step I: Taking $x=x_{2 n}, y=x_{2 n+1}$ in (3.1.4) we get,
$d\left(A x_{2 n}, B x_{2 n+1}\right) \leq \lambda d\left(A x_{2 n}, S x_{2 n}\right)+\mu d\left(B x_{2 n+1}, T x_{2 n+1}\right)+\delta d\left(S x_{2 n}, T x_{2 n+1}\right)$

$$
+\gamma\left[d\left(A x_{2 n}, T x_{2 n+1}\right)+d\left(S x_{2 n}, B x_{2 n+1}\right)\right]
$$

Using (3.1) we get,
$d\left(y_{2 n}, y_{2 n+1}\right) \leq \lambda d\left(y_{2 n}, y_{2 n-1}\right)+\mu d\left(y_{2 n+1}, y_{2 n}\right)+\delta d\left(y_{2 n-1}, y_{2 n}\right)+\gamma\left[d\left(y_{2 n}, y_{2 n}\right)+d\left(y_{2 n-1}, y_{2 n+1}\right)\right]$ $\leq \lambda d\left(y_{2 n}, y_{2 n-1}\right)+\mu d\left(y_{2 n+1}, y_{2 n}\right)+\delta d\left(y_{2 n-1}, y_{2 n}\right)+\gamma\left[d\left(y_{2 n-1}, y_{2 n}\right)+d\left(y_{2 n}, y_{2 n+1}\right)\right]$
Writing $d\left(y_{n}, y_{n+1}\right)=d_{n}$, we have
$d_{2 n} \leq \lambda d_{2 n-1}+\mu d_{2 n}+\delta d_{2 n-1}+\gamma\left[d_{2 n}+d_{2 n-1}\right]$,
i.e.
$(1-\mu-\gamma) d_{2 n} \leq(\lambda+\delta+\gamma) d_{2 n-1}$,
which implies

$$
\begin{equation*}
d_{2 n} \leq h d_{2 n-1} \tag{3.2}
\end{equation*}
$$

where $h=\frac{(\lambda+\delta+\gamma)}{1-\mu-\gamma}$.
Inview of (3.1.4), $h<1$.
Taking $x=x_{2 n+2}, y=x_{2 n+1}$ in (3.1.4) we get,

$$
d\left(A x_{2 n+2}, B x_{2 n+1}\right) \leq \lambda d\left(A x_{2 n+2}, S x_{2 n+2}\right)+\mu d\left(B x_{2 n+1}, T x_{2 n+1}\right)+\delta d\left(S x_{2 n+2}, T x_{2 n+1}\right)
$$

Using (3.1 we get,

$$
+\gamma\left[d\left(A x_{2 n+2}, T x_{2 n+1}\right)+d\left(S x_{2 n+2}, B x_{2 n+1}\right)\right]
$$

COMPATIBILITY AND WEAK COMPATIBILITY FOR FOUR SELF MAPS IN A CONE METRIC SPACIG

$$
\begin{aligned}
d\left(y_{2 n+2}, y_{2 n+1}\right) & \leq \lambda d\left(y_{2 n+2}, y_{2 n+1}\right)+\mu d\left(y_{2 n+1}, y_{2 n}\right)+\delta d\left(y_{2 n+1}, y_{2 n}\right) \\
& +\gamma\left[d\left(y_{2 n+2}, y_{2 n}\right)+d\left(y_{2 n+1}, y_{2 n+1}\right)\right] \\
& \leq \lambda d\left(y_{2 n+2}, y_{2 n+1}\right)+\mu d\left(y_{2 n+1}, y_{2 n}\right)+\delta d\left(y_{2 n+1}, y_{2 n}\right) \\
& +\gamma\left[d\left(y_{2 n+2}, y_{2 n+1}\right)+d\left(y_{2 n+1}, y_{2 n}\right)\right] .
\end{aligned}
$$

So we have
$d_{2 n+1} \leq \lambda d_{2 n+1}+\mu d_{2 n}+\delta d_{2 n}+\gamma\left[d_{2 n+1}+d_{2 n}\right]$,
i.e.
$(1-\lambda-\gamma) d_{2 n+1} \leq(\mu+\delta+\gamma) d_{2 n}$,
which implies

$$
\begin{equation*}
d_{2 n+1} \leq k d_{2 n} \tag{3.3}
\end{equation*}
$$

where $k=\frac{(\mu+\delta+\gamma)}{(1-\lambda-\gamma)}$.
By condition (3.1.4), we have $k<1$.
Inview of 3.2 and (3.3) we have
$d_{2 n+1} \leq k d_{2 n} \leq h k d_{2 n-1} \leq k^{2} h d_{2 n-2} \leq \ldots \leq k^{n+1} h^{n} d_{0}$, where $d_{0}=d\left(y_{0}, y_{1}\right)$, and $d_{2 n} \leq h d_{2 n-1} \leq h k d_{2 n-2} \leq h^{2} k d_{2 n-3} \leq \ldots \leq h^{n} k^{n} d_{0}$, where $d_{0}=d\left(y_{0}, y_{1}\right)$.
Therefore,
$d_{2 n+1} \leq k^{n+1} h^{n} d_{0}$ and $d_{2 n} \leq h^{n} k^{n} d_{0}$.
Also
$d\left(y_{n+p}, y_{n}\right) \leq d\left(y_{n+p}, y_{n+p-1}\right)+d\left(y_{n+p-1}, y_{n+p-2}\right)+\ldots+d\left(y_{n+1}, y_{n}\right)$,
i. e.

$$
\begin{equation*}
d\left(y_{n+p}, y_{n}\right) \leq d_{n+p-1}+d_{n+p-2}+\ldots+d_{n} \tag{3.4}
\end{equation*}
$$

If $n+p-1$ is even, then by (3.4) we have

$$
\begin{aligned}
d\left(y_{n+p}, y_{n}\right) & \leq\left(h^{(n+p-1) / 2} k^{(n+p-1) / 2}+h^{(n+p-1) / 2} k^{(n+p) / 2}+\cdots+\right) d_{0} \\
& =h^{(n+p-1) / 2} k^{(n+p-1) / 2}\left[1+k+h k+h k^{2}+h^{2} k^{2}+\ldots\right] d_{0} \\
& =h^{(n+p-1) / 2} k^{(n+p-1) / 2}\left[\left(1+h k+h^{2} k^{2}+\ldots\right)+\left(k+h k^{2}+h^{2} k^{3}+\ldots\right)\right] d_{0} \\
& =h^{(n+p-1) / 2} k^{(n+p-1) / 2}\left[\left(1+h k+h^{2} k^{2}+\right)+k\left(1+h k+h^{2} k^{2}+\ldots\right)\right] d_{0} \\
& =h^{(n+p-1) / 2} k^{(n+p-1) / 2}(1+k)\left(1+h k+h^{2} k^{2}+\ldots\right) d_{0} \\
& \leq h^{(n+p-1) / 2} k^{(n+p-1) / 2}(1+k) d_{0} /(1-h k),
\end{aligned}
$$

as $h k<1$ and P is closed.
Thus

$$
\begin{equation*}
d\left(y_{n+p}, y_{n}\right) \leq h^{(n+p-1) / 2} k^{(n+p-1) / 2}(1+k) d_{0} /(1-h k) \tag{3.5}
\end{equation*}
$$

Now for $c \in P^{0}$, there exists $r>0$ such that $c-y \in P^{0}$ if $\|y\|<r$. Choose a positive integer N_{c} such that for all $n \geq N_{c}, \| h^{(n+p-1) / 2} k^{(n+p-1) / 2}(1+k) d_{0} /(1-$ $h k) \|<r$, which implies $c-h^{(n+p-1) / 2} k^{(n+p-1) / 2}(1+k) d_{0} /(1-h k) \in P^{0}$ and $h^{(n+p-1) / 2} k^{(n+p-1) / 2}(1+k) d_{0} /(1-h k)-d\left(y_{n+p}, y_{n}\right) \in P$, using 3.5).
So we have $c-d\left(y_{n+p}, y_{n}\right) \in P^{0}$, for all $n>N_{c}$ and for all p by Proposition 2.9. The same thing is true if $n+p-1$ is odd. This implies $d\left(y_{n+p}, y_{n}\right) \ll c$, for all $n>N_{c}$, for all p. Hence $\left\{y_{n}\right\}$ is a Cauchy sequence in X, which is complete. So $\left\{y_{n}\right\} \rightarrow u \in X$. Hence its subsequences

$$
\begin{array}{lll}
\left\{A x_{2 n}\right\} \rightarrow u & \text { and } & \left\{B x_{2 n+1}\right\} \rightarrow u \\
\left\{S x_{2 n}\right\} \rightarrow u & \text { and } & \left\{T x_{2 n+1}\right\} \rightarrow u \tag{3.7}
\end{array}
$$

Case I: Map S is continuous.
As S is continuous we have

$$
\begin{equation*}
S^{2} x_{2 n} \rightarrow S u, S A x_{2 n} \rightarrow S u \tag{3.8}
\end{equation*}
$$

Step II: As the pair (A, S) is compatible by Proposition 2.17. we have, $A S x_{2 n} \rightarrow$ Su.
Now,

$$
\begin{aligned}
d(S u, u) & \leq d\left(S u, A S x_{2 n}\right)+d\left(A S x_{2 n}, B x_{2 n+1}\right)+d\left(B x_{2 n+1}, u\right) \\
& =d\left(S u, A S x_{2 n}\right)+d\left(y_{2 n+1}, u\right)+d\left(A S x_{2 n}, B x_{2 n+1}\right)
\end{aligned}
$$

Using (3.1.4) with $x=S x_{2 n}$ and $y=x_{2 n+1}$ we have

$$
\begin{aligned}
d(S u, u) \leq & d\left(S u, A S x_{2 n}\right)+d\left(y_{2 n+1}, u\right)+\lambda d\left(A S x_{2 n}, S^{2} x_{2 n}\right)+\mu d\left(B x_{2 n+1}, T x_{2 n+1}\right) \\
& +\delta d\left(S^{2} x_{2 n}, T x_{2 n+1}\right)+\gamma\left[d\left(A S x_{2 n}, T x_{2 n+1}\right)+d\left(B x_{2 n+1}, S^{2} x_{2 n}\right)\right] \\
& =d\left(S u, A S x_{2 n}\right)+d\left(y_{2 n+1}, u\right)+\lambda d\left(A S x_{2 n}, S^{2} x_{2 n}\right)+\mu d\left(y_{2 n+1}, y_{2 n}\right) \\
& +\delta d\left(S^{2} x_{2 n}, y_{2 n}\right)+\gamma\left[d\left(A S x_{2 n}, y_{2 n}\right)+d\left(y_{2 n+1}, S^{2} x_{2 n}\right)\right] \\
& \leq d\left(S u, A S x_{2 n}\right)+d\left(y_{2 n+1}, u\right)+\lambda\left[d\left(A S x_{2 n}, S u\right)+d\left(S u, S^{2} x_{2 n}\right)\right] \\
& +\mu\left[d\left(y_{2 n+1}, u\right)+d\left(u, y_{2 n}\right)\right]+\delta\left[d\left(S^{2} x_{2 n}, S u\right)+d(S u, u)+d\left(u, y_{2 n}\right)\right] \\
& +\gamma\left[d\left(A S x_{2 n}, S u\right)+d(S u, u)+d\left(u, y_{2 n}\right)+d\left(y_{2 n+1}, u\right)+d(u, S u)+d\left(S u, S^{2} x_{2 n}\right)\right],
\end{aligned}
$$

implies

$$
\begin{aligned}
{[1-\delta-2 \gamma] d(S u, u) \leq } & {\left.[1+\lambda+\gamma] d\left(S u, A S x_{2 n}\right)+[\lambda+\delta+\gamma] d\left(S u, S^{2} x_{2 n}\right)\right] } \\
& +[1+\mu+\gamma] d\left(y_{2 n+1}, u\right)+[\mu+\delta+\gamma] d\left(u, y_{2 n}\right)
\end{aligned}
$$

As $A S x_{2 n} \rightarrow S u, S^{2} x_{2 n} \rightarrow S u,\left\{y_{2 n}\right\} \rightarrow u$ and $\left\{y_{2 n+1}\right\} \rightarrow u$, using Lemma 2.10. we have $d(S u, u)=0$, and we get $S u=u$.
Now,

$$
\begin{aligned}
d(A u, S u) & \leq d\left(A u, B x_{2 n+1}\right)+d\left(B x_{2 n+1}, S u\right) \\
& =d\left(y_{2 n+1}, S u\right)+d\left(A u, B x_{2 n+1}\right)
\end{aligned}
$$

Using (3.1.4) with $x=u$ and $y=x_{2 n+1}$ we have

$$
\begin{aligned}
d(A u, S u) \leq & d\left(y_{2 n+1}, S u\right)+\lambda d(A u, S u)+\mu d\left(B x_{2 n+1}, T x_{2 n+1}\right) \\
& +\delta d\left(S u, T x_{2 n+1}\right)+\gamma\left[d\left(A u, T x_{2 n+1}\right)+d\left(B x_{2 n+1}, S u\right)\right] \\
& =d\left(y_{2 n+1}, S u\right)+\lambda d(A u, S u)+\mu d\left(y_{2 n+1}, y_{2 n}\right) \\
& +\delta d\left(S u, y_{2 n}\right)+\gamma\left[d\left(A u, y_{2 n}\right)+d\left(y_{2 n+1}, S u\right)\right] \\
& \leq d\left(y_{2 n+1}, S u\right)+\lambda d(A u, S u)+\mu\left[d\left(y_{2 n+1}, S u\right)+d\left(S u, y_{2 n}\right)\right] \\
& +\delta d\left(S u, y_{2 n}\right)+\gamma\left[d(A u, S u)+d\left(S u, y_{2 n}\right)+d\left(y_{2 n+1}, S u\right)\right] .
\end{aligned}
$$

So
$(1-\lambda-\gamma) d(A u, S u) \leq(\mu+\delta+\gamma) d\left(y_{2 n}, S u\right)+(1+\mu+\gamma) d\left(y_{2 n+1}, S u\right)$.
Using $S u=u$ we have
$(1-\lambda-\gamma) d(A u, u) \leq(\mu+\delta+\gamma) d\left(y_{2 n}, u\right)+(1+\mu+\gamma) d\left(y_{2 n+1}, u\right)$.
As $\left\{y_{2 n}\right\} \rightarrow u$ and $\left\{y_{2 n+1}\right\} \rightarrow u$, using Lemma 2.10, we have $d(A u, u)=0$, and we get $A u=S u=u$. Thus u is a point of coincidence of the pair of maps (A, S).
Step III:As $A(X) \subseteq T(X)$, there exists $v \in X$ such that $u=A u=T v$. So

$$
\begin{equation*}
u=A u=S u=T v \tag{3.9}
\end{equation*}
$$

Taking $x=u$ and $y=v$ in (3.1.4) we have
$d(A u, B v) \leq \lambda d(A u, S u)+\mu d(B v, T v)+\delta d(S u, T v)+\gamma[d(A u, T v)+d(B v, S u)]$.
Using (3.9) we have
$d(u, B v) \leq[\mu+\gamma] d(u, B v)$.
As $\mu+\gamma<1$, using Proposition 2.2, it follows that $d(B v, u)=0$ and we get $B v=u$.
Thus $B v=T v=u$. As the pair (B, T) is weak compatible we get $B u=T u$.
Taking $x=u, y=u$ in (3.1.4) and using $A u=S u, B u=T u$ we get
$d(A u, B u) \leq(\delta+2 \gamma) d(A u, B u)$.
Hence $A u=B u$, by Proposition 2.2, as $\delta+2 \gamma<1$, and we have $u=A u=S u=$

COMPATIBILITY AND WEAK COMPATIBILITY FOR FOUR SELF MAPS IN A CONE METRIC SPACW
$B u=T u$. Thus u is a point of coincidence of the four self maps A, B, S and T in this case.

Case II: Map A is continuous.

As A is continuous we have
$A^{2} x_{2 n} \rightarrow A u, A S x_{2 n} \rightarrow A u$.
As the pair (A, S) is compatible by Proposition 2.17, we have, $S A x_{2 n} \rightarrow A u$.
Now,

$$
\begin{aligned}
d(A u, u) & \leq d\left(A u, A^{2} x_{2 n}\right)+d\left(A^{2} x_{2 n}, B x_{2 n+1}\right)+d\left(B x_{2 n+1}, u\right) \\
& =d\left(A u, A^{2} x_{2 n}\right)+d\left(y_{2 n+1}, u\right)+d\left(A^{2} x_{2 n}, B x_{2 n+1}\right) .
\end{aligned}
$$

Using (3.1.4) with $x=A x_{2 n}$ and $y=x_{2 n+1}$ we have

$$
\begin{aligned}
& d(A u, u) \leq d\left(A u, A^{2} x_{2 n}\right)+d\left(y_{2 n+1}, u\right)+\lambda d\left(A^{2} x_{2 n}, S A x_{2 n}\right)+\mu d\left(B x_{2 n+1}, T x_{2 n+1}\right) \\
&+\delta d\left(S A x_{2 n}, T x_{2 n+1}\right)+\gamma\left[d\left(A^{2} x_{2 n}, T x_{2 n+1}\right)+d\left(B x_{2 n+1}, S A x_{2 n}\right)\right] \\
& \leq d\left(A u, A^{2} x_{2 n}\right)+d\left(y_{2 n+1}, u\right)+\lambda\left[d\left(A^{2} x_{2 n}, A u\right)+d\left(A u, S A x_{2 n}\right)\right] \\
&+\mu\left[d\left(y_{2 n+1}, u\right)+d\left(u, y_{2 n}\right)\right]+\delta\left[d\left(S A x_{2 n}, A u\right)+d(A u, u)+d\left(u, T x_{2 n+1}\right)\right] \\
&+\gamma\left[d\left(A^{2} x_{2 n}, A u\right)+d(A u, u)+d\left(u, T x_{2 n+1}\right)+d\left(B x_{2 n+1}, u\right)+d(u, A u)+d\left(A u, S A x_{2 n}\right)\right] . \\
& \text { So } \quad \\
&(1-\delta-2 \gamma) d(A u, u) \leq \quad(1+\lambda+\gamma) d\left(A u, A^{2} x_{2 n}\right)+(\lambda+\delta+\gamma) d\left(A u, S A x_{2 n}\right) \\
& \quad+(\mu+\delta+\gamma) d\left(y_{2 n}, u\right)+(1+\mu+\gamma) d\left(y_{2 n+1}, u\right) .
\end{aligned}
$$

As $S A x_{2 n} \rightarrow A u, A^{2} x_{2 n} \rightarrow A u,\left\{y_{2 n}\right\} \rightarrow u$ and $\left\{y_{2 n+1}\right\} \rightarrow u$, using Lemma 2.10 . we have $d(A u, u)=0$, and we get $A u=u$.
As $A(X) \subseteq T(X)$ there exists $v_{1} \in X$ such that $u=A u=T v_{1}$.

Step IV:Now

$d\left(u, B v_{1}\right) \leq d\left(A x_{2 n}, B v_{1}\right)+d\left(A x_{2 n}, u\right)$
i. e.
$d\left(u, B v_{1}\right) \leq d\left(A x_{2 n}, B v_{1}\right)+d\left(y_{2 n}, u\right)$
Taking $x=x_{2 n}, y=v_{1}$ in (3.1.4) and using $u=T v_{1}$

$$
\begin{aligned}
d\left(u, B v_{1}\right) \leq & \lambda d\left(A x_{2 n}, S x_{2 n}\right)+\mu d\left(B v_{1}, T v_{1}\right)+\delta d\left(S x_{2 n}, T v_{1}\right) \\
& +\gamma\left[d\left(A x_{2 n}, T v_{1}\right)+d\left(S x_{2 n}, B v_{1}\right)\right]+d\left(y_{2 n}, u\right) \\
& =\lambda d\left(y_{2 n}, y_{2 n-1}\right)+\mu d\left(B v_{1}, u\right)+\delta d\left(y_{2 n-1}, u\right) \\
& +\gamma\left[d\left(y_{2 n}, u\right)+d\left(y_{2 n-1}, B v_{1}\right)\right]+d\left(y_{2 n}, u\right) \\
& \leq \lambda\left[d\left(y_{2 n}, u\right)+d\left(u, y_{2 n-1}\right)\right]+\mu d\left(B v_{1}, u\right)+\delta d\left(y_{2 n-1}, u\right) \\
& +\gamma\left[d\left(y_{2 n}, u\right)+d\left(y_{2 n-1}, u\right)+d\left(u, B v_{1}\right)\right]+d\left(y_{2 n}, u\right) .
\end{aligned}
$$

So
$(1-\mu-\gamma) d\left(B v_{1}, u\right) \leq(1+\lambda+\gamma) d\left(u, y_{2 n}\right)+(\gamma+\lambda+\delta) d\left(u, y_{2 n-1}\right)$,
As $\left\{y_{2 n}\right\} \rightarrow u$ and $\left\{y_{2 n-1}\right\} \rightarrow u$, and using Lemma 2.10, we have $d\left(u, B v_{1}\right)=0$, and we get $B v_{1}=u$. Thus $u=B v_{1}=T v_{1}$. As (B, T) is weak compatible we have $B u=T u$. Again
$d(u, B u) \leq d\left(A x_{2 n}, u\right)+d\left(A x_{2 n}, B u\right)$
i. e. $d(u, B u) \leq d\left(y_{2 n}, u\right)+d\left(A x_{2 n}, B u\right)$

Taking $x=x_{2 n}$ and $y=u$ in (3.1.4) and using $T u=B u$ we have

$$
\begin{aligned}
d(u, B u) \leq & d\left(y_{2 n}, u\right)+\lambda d\left(A x_{2 n}, S x_{2 n}\right)+\mu d(B u, T u)+\delta d\left(S x_{2 n}, T u\right) \\
& +\gamma\left[d\left(A x_{2 n}, T u\right)+d\left(S x_{2 n}, B u\right)\right] \\
& =d\left(y_{2 n}, u\right)+\lambda d\left(y_{2 n}, y_{2 n-1}\right)+\mu d(B u, B u)+\delta d\left(y_{2 n-1}, B u\right) \\
& +\gamma\left[d\left(y_{2 n}, B u\right)+d\left(y_{2 n-1}, B u\right)\right] \\
& \leq d\left(y_{2 n}, u\right)+\lambda\left[d\left(y_{2 n}, u\right)+d\left(u, y_{2 n-1}\right)\right]++\delta\left[d\left(y_{2 n-1}, u\right)+d(u, B u)\right] \\
& +\gamma\left[d\left(y_{2 n}, u\right)+d\left(y_{2 n-1}, u\right)+2 d(u, B u)\right] .
\end{aligned}
$$

So
$(1-\delta-2 \gamma) d(B u, u) \leq(1+\lambda+\gamma) d\left(u, y_{2 n}\right)+(\lambda+\gamma+\delta) d\left(u, y_{2 n-1}\right)$.
As $\left\{y_{2 n}\right\} \rightarrow u$ and $\left\{y_{2 n-1}\right\} \rightarrow u$, using Lemma 2.10. we have $d(u, B u)=0$, and we
get $B u=u$. Thus $u=B u=T u=A u$.
Now as $B(X) \subseteq S(X)$, there exists $w_{1} \in X$ such that $u=B u=S w_{1}$. Also $d\left(A w_{1}, u\right)=d\left(A w_{1}, B u\right)$.
Using (3.1.4) with $x=w_{1}$ and $y=u$ with $u=T u=B u=S w_{1}$ we have

$$
\begin{aligned}
d\left(A w_{1}, B u\right) \leq & \lambda d\left(A w_{1}, S w_{1}\right)+\mu d(B u, T u)+\delta d\left(S w_{1}, T u\right)+\gamma\left[d\left(A w_{1}, T u\right)+d\left(B u, S w_{1}\right)\right] \\
& =\lambda d\left(A w_{1}, u\right)+\mu d(u, u)+\delta d(u, u)+\gamma\left[d\left(A w_{1}, u\right)+d(u, u)\right] \\
& =\lambda d\left(A w_{1}, u\right)+\gamma d\left(A w_{1}, u\right) .
\end{aligned}
$$

So
$d\left(A w_{1}, u\right) \leq[\lambda+\gamma] d\left(A w_{1}, u\right)$.
Hence $A w_{1}=u$, by Proposition 2.2, as $\lambda+\gamma<1$. Thus $A w_{1}=S w_{1}=u$. As (A, S) is compatible so by Proposition [2.16, (A, S) is weakly compatible.Therefore $A u=S u$. Thus $u=A u=B u=S u=T u$. Hence u is a common fixed point of the four self maps in both the cases.
Step V (Uniqueness):Let $w=A w=B w=S w=T w$ be another common fixed point of the four self maps. Taking $x=u$ and $y=w$ in (3.1.4) we get $d(A u, B w) \leq \lambda d(A u, S u)+\mu d(B w, T w)+\delta d(S u, T w)+\gamma[d(A u, T w)+d(B w, S u)]$ implies
$d(u, w) \leq[\delta+2 \gamma] d(u, w)$.
Hence $u=w$, by Proposition 2.2, as $\delta+2 \gamma<1$. Thus the four self maps A, B, S and T have a unique common fixed point.

On the lines of B. Singh, Shishir Jain [6] our Theorem 3.1 can be extended for six self maps as follows:

Theorem 3.2. :Let (X, d) be a complete cone metric space with respect to a cone P contained in a real Banach space E. Let A, B, S, T, L and M be self mappings on X satisfying:
(3.2.1) $L(X) \subseteq S T(X), M(X) \subset A B(X)$;
(3.2.2) $A B=B A, S T=T S, L B=B L, M T=T M$;
(3.2.3) pair $(L, A B)$ is compatible and the pair $(M, S T)$ is weakly compatible;
(3.2.4) for some $\lambda, \mu, \delta, \gamma \in[0,1)$ with $\lambda+\mu+\delta+2 \gamma<1$,
$d(L x, M y) \leq \quad \lambda d(L x, A B x)+\mu d(M y, S T y)+\delta d(A B x, S T y)$
$+\gamma[d(L x, S T y)+d(A B x, M y)]$.
for all $x, y \in X$.
Then A, B, S, T, L and M have a unique common fixed point in X.
Taking $B=A$ and $T=S$ in Theorem 3.1, we get

Corollary 3.3. :Let (X, d) be a complete cone metric space with respect to a cone P contained in a real Banach space E. Let A and S be self mappings on X satisfying: (3.3.1) $\quad A(X) \subseteq S(X)$;
(3.3.2) pair (A, S) is compatible;
(3.3.3) one of A or S is continuous;
(3.3.4) for some $\lambda, \mu, \delta, \gamma \in[0,1)$ with $\lambda+\mu+\delta+2 \gamma<1$ such that for all $x, y \in X$ $d(A x, A y) \leq \lambda d(A x, S x)+\mu d(A y, S y)+\delta(S x, S y)+\gamma[d(A x, S y)+d(S x, A y)]$.
Then A and S have a unique common fixed point in X.
Taking $S=I$, the identity map on X, in above Corollary we get

Corollary 3.4. : Let (X, d) be a complete cone metric space. Let A be self mapping on X satisfying:
(3.4.1) for some $\lambda, \mu, \delta, \gamma \in[0,1)$ with $\lambda+\mu+\delta+2 \gamma<1$
$d(A x, A y) \leq \lambda d(A x, x)+\mu d(A y, y)+\delta d(x, y)+\gamma[d(A x, y)+d(A y, x)]$,
for all $x, y \in X$.
Then the map A has the unique fixed point in X and for any $x \in X$, the iterative sequence $\left\{A^{n} x\right\}$ converges to the fixed point.

Proof. : Existence and uniqueness of the fixed point follow from Corollary 3.3, by taking $S=I$ there. Taking $T=S=I, B=A$ and $x_{0}=x$ in Theorem 3.1, we have $y_{0}=A x, y_{1}=A^{2} x, \ldots, y_{n+1}=A^{n} x$ etc. Thus for each x, the sequence $\left\{A^{n} x\right\}$ converges to the fixed point z.

Taking $\gamma=0$ in Corollary 3.4 we have

Corollary 3.5. :Let (X, d) be a complete cone metric space. Let A be self mapping on X satisfying:
(3.5.1) for some $\lambda, \mu, \delta, \gamma \in[0,1)$ with $\lambda+\mu+\delta+\gamma<1$, $d(A x, A y) \leq \lambda d(A x, x)+\mu d(A y, y)+\delta d(x, y)$, for all $x, y \in X$.
Then the map A has the unique fixed point in X and for any $x \in X$, the iterative sequence $\left\{A^{n} x\right\}$ converges to the fixed point.

Remark 3.6. : Taking $\lambda=k$ and $\mu=\delta=0$ in Corollary 3.5, we get Theorem 1 of Huang et. al [3] even for a non-normal cone metric space.

Remark 3.7. : Taking $\lambda=\mu=k$ and $\delta=0$ in Corollary 3.5, $k \in[0,1 / 2)$ and we get Theorem 3 of Huang et. al [3] even for a non-normal cone metric space.

Remark 3.8. : Taking $\lambda=\mu=\delta=0$ and $\gamma=k$ in Corollary 3.4, $k \in[0,1 / 2)$ and we get Theorem 4 of Huang et. al [3] even for a non-normal cone metric space.

Example 3.9 (of Theorem 3.1). : Let $X=R^{+}, E=R^{2}, P=\left\{(x, y) \in R^{2}: x \geq\right.$ $0, y \geq 0\} \subseteq R^{2}$ be a cone in E. Fix a real number $\alpha>0$ and define $d: X \times X \rightarrow E$ by $d(x, y)=|x-y|(1, \alpha)$. Then (X, d) is a complete cone metric space. Define self maps A, B, S and T on X as follows:
$A(x)=B(x)=\frac{3 x}{4} \quad S(x)=T(x)=2 x$, forall x.
Conditions (3.1.1), (3.1.2) and(3.1.3) of Theorem 3.1 hold trivially. If we take $\lambda=$ $\frac{2}{5}, \mu=\frac{1}{110}, \gamma=\frac{1}{11}$ and $\delta=\frac{1}{4}$ the contractive condition (3.1.4) of above said Theorem holds good and 0 is the unique common fixed point of the maps A, B, S and T.

References

[1] M. Abbas, G Jungck, common fixed point results for non commuting mappings without continuity in Cone metric spaces, J. Math. Anal. Appl. 341(2008), 416-420.
[2] M. Arshad, Akbar Azam, Pasquale Vetro, Some Common Fixed Point Results in Cone Metric spaces, Fixed Point Theory and Applications in press (2009).
[3] L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007)1468-1476.
[4] D. Ilic, V. Rakocevic, Quasi-contraction on a cone metric space, Applied Mathematics Letters, article in press.
[5] Sh. Rezapour, R. Hamlbarani, Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings", J. Math. Anal. Appl. 345(2008) 719-724.
[6] B. Singh, Shishir Jain, A fixed point theorem in Menger space through weak compatibility, J. Math. Anal. Appl. 301(2005) 439-448.
[7] P. Vetro, Common fixed points in cone metric spaces, Rendiconti Del Circolo Matematico Di Palermo, Series II, Tomo Lvi (2007), 464-468.

Shobha Jain
Quantum School of Technology, Roorkee (Uttarkhand), India
E-mail address: shobajain1@yahoo.com
Shishir Jain
Shree Vaishnav Institute of Technology and Science, Indore(M.P.), India.
E-mail address: jainshishir11@rediff.com
Lal Bahadur
Retd. principal, Govt Arts and Commerce College, Indore(M.P.), India.
E-mail address: lalbahadur11@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 54H25, 47H10.
 Key words and phrases. Cone metric space, common fixed points, coincident point, Compatible maps, Weakly compatible maps.
 © 2010 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted November, 2009. Published January, 2010.

