BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 2 Issue 2(2010), Pages 34-41.

EXCHANGE FORMULA FOR GENERALIZED LAMBERT TRANSFORM AND ITS EXTENSION TO BOEHMIANS

R. ROOPKUMAR, E. R. NEGRIN

ABSTRACT. We derive the exchange formula for the generalized Lambert transform, by defining a suitable product in the range of generalized Lambert transform from $\mathscr{E}'((0,\infty))$. We prove that the generalized Lambert transform from $\mathscr{E}'((0,\infty))$ into $\mathscr{E}((0,\infty))$ is continuous. Applying the exchange formula and continuity of generalized Lambert transform, we construct a new Boehmian space which will be the range of generalized Lambert transform on $\mathscr{B}(\mathscr{E}'((0,\infty)), \mathscr{D}((0,\infty)), *, \Delta_{+})$. We establish that the generalized Lambert transform on so one, onto and continuous with respect to δ -convergence and Δ -convergence. We also obtain the exchange formula for generalized Lambert transform in the context of Boehmians.

1. INTRODUCTION

We denote the set of all natural numbers and non-negative integers, respectively by \mathbb{N} and \mathbb{N}_0 . Let $\mathscr{E}((0,\infty))$ be the space of all infinitely differentiable complex valued functions on $(0,\infty)$ equipped with the Fréchet space topology given by the family of semi-norms [23, p. 36],

$$\gamma_{K,k}(\phi) = \sup_{x \in K} |\phi^{(k)}(x)|, \text{ where } K \subset (0,\infty) \text{ is compact and } k \in \mathbb{N}_0.$$
(1.1)

The dual space $\mathscr{E}'((0,\infty))$ of $\mathscr{E}((0,\infty))$ is called the space of compactly supported distributions on $(0,\infty)$. Throughout this paper, we use strong convergence in the space $\mathscr{E}'((0,\infty))$ which is defined as follows: (f_n) converges to f in $\mathscr{E}'((0,\infty))$, if for each bounded subset B of $\mathscr{E}((0,\infty))$,

$$\sup_{\phi \in B} |\langle f_n - f, \phi \rangle| \to 0 \text{ as } n \to \infty.$$

We recall the usual convolution defined on $\mathscr{E}'((0,\infty))$ by

$$\langle f * g, \phi \rangle = \langle f(t), \langle g(s), \phi(s+t) \rangle \rangle, \ \forall \phi \in \mathscr{E}((0,\infty)).$$
(1.2)

By $\mathscr{D}((0,\infty))$ and $\mathscr{D}'((0,\infty))$, as usual we mean the Schwartz testing function space of all smooth functions with compact support and the space of Schwartz

²⁰⁰⁰ Mathematics Subject Classification. 44A15, 44A35.

Key words and phrases. Boehmians, convolution, distributions of compact support, generalized Lambert transform.

^{©2010} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted March, 2010. Published April, 2010.

distributions respectively. It is well known that $\mathscr{D}((0,\infty))$ is a subset of $\mathscr{E}'((0,\infty))$ by the canonical identification.

Now we recall the theory of Lambert transform from the literature. Widder [22] introduced the Lambert transform of a suitable function by

$$F(x) = \int_0^\infty f(t) \frac{1}{e^{xt} - 1} dt, \ x > 0, \tag{1.3}$$

and R. R. Goldberg [3] generalized the Lambert transform by

$$F(x) = \int_0^\infty f(t) \sum_{k=1}^\infty a_k e^{-kxt} \, dt, \ x > 0, \tag{1.4}$$

where $\{a_k\}$ is a sequence of class C_r , for r > 0. That is, $A = \{a_k\}$ satisfies the following conditions.

(1) $a_k \ge 0, k = 1, 2, \dots$ (2) $a_k = O(k^{r-1}), k \to \infty$. (3) $a_1 > 0$. (4) $b_m = O(m^{r-1}), m \to \infty$ where $\sum a_d b_{n/d} = \begin{cases} 1, & p = 1 \end{cases}$

(4)
$$b_m = O(m'^{-1}), m \to \infty$$
 where $\sum_{d/p} a_d b_{p/d} = \begin{cases} 0, & p = 2, 3, \dots \end{cases}$

Observe that for $a_k = 1$, for all k = 1, 2, ..., the generalized Lambert transform (1.4) agrees with the Lambert transform (1.3).

Negrin [11] extended the Lambert transform to the space $\mathscr{E}'((0,\infty))$ of compactly supported distributions on $(0,\infty)$ by

$$F(x) = \left\langle f(t), \frac{1}{e^{xt} - 1} \right\rangle, \ x > 0.$$

$$(1.5)$$

N. Hayek, B. J. González and E. R. Negrin [4] extended the generalized Lambert transform to the context of compactly supported distributions on $(0, \infty)$ by

$$F(x) = \left\langle f(t), \sum_{k=1}^{\infty} a_k e^{-kxt} \right\rangle, \ x > 0.$$
(1.6)

It is proved that F is infinitely differentiable and the inversion formula is obtained as follows.

$$\langle f, \phi \rangle = \lim_{n \to \infty} \left\langle \frac{(-1)^n}{n!} \cdot \left(\frac{n}{t}\right)^{n+1} \cdot \sum_{m=1}^{\infty} b_m m^n \cdot D^n F\left(\frac{mn}{t}\right), \phi(t) \right\rangle, \qquad (1.7)$$

for every $\phi \in \mathscr{D}((0,\infty))$.

For our convenience, we denote the generalized Lambert transform of f and the Laplace transform of f, respectively by $\mathcal{L}_A f$, \hat{f} , where Laplace transform of f is defined by

$$\hat{f}(s) = \left\langle f(t), e^{-st} \right\rangle, \ s > 0.$$
(1.8)

By equation (1.7), if $\mathcal{L}_A f = \mathcal{L}_A g$ then f = g as members of $\mathscr{D}'((0,\infty))$. Since $\mathscr{D}((0,\infty))$ is dense in $\mathscr{E}((0,\infty))$, the equality holds in $\mathscr{E}'((0,\infty))$. In other words

$$\mathcal{L}_A: \mathscr{E}'((0,\infty)) \to \mathscr{E}((0,\infty)) \text{ is one-to-one.}$$
 (1.9)

2. Exchange formula and continuity

Now we define a new product \otimes for $F \in \mathcal{L}_A(\mathscr{E}'((0,\infty)))$ and $G \in \mathcal{L}_A(\mathscr{E}'((0,\infty)))$ by

$$(F \otimes G)(x) = \sum_{k=1}^{\infty} a_k \hat{f}(kx) \cdot \hat{g}(kx), \qquad (2.1)$$

where $f, g \in \mathscr{E}'((0, \infty))$ such that $\mathcal{L}_A f = F$ and $\mathcal{L}_A g = G$. We note that the above definition is well defined. Indeed, by using (1.9), we can find unique $f, g \in \mathscr{E}'((0, \infty))$ such that $F = \mathcal{L}_A f$ and $G = \mathcal{L}_A g$. Therefore supp $f \subset [a, b]$, supp $g \subset [c, d]$, for some $a, b, c, d \in (0, \infty)$. As $\mathscr{E}'((0, \infty))$ is a subset of Laplace-transformable generalized functions we can apply Theorem 3.10-2 of [23] and we get

$$|\hat{f}(kx)| \le e^{-kxa} P_1(kx), \text{ and } |\hat{g}(kx)| \le e^{-kxc} P_2(kx),$$
 (2.2)

for some polynomials P_1 and P_2 .

Since $\{a_k\}$ is of class C_r from the relation (2.2) the series in equation (2.1) converges.

Before discussing the exchange formula for the generalized Lambert transform, it is necessary to show that $f * g \in \mathscr{E}'((0,\infty))$ whenever $f, g \in \mathscr{E}'((0,\infty))$. We note that every $f \in \mathscr{E}'((0,\infty))$ can be viewed as Schwartz distribution on $(0,\infty)$ with compact support. We also note that if $f, g \in \mathscr{E}'((0,\infty))$ with supp $f \subset [a,b]$ and supp $g \subset [c,d]$, for some $a, b, c, d \in (0,\infty)$, with a < b and c < d then the Schwartz distribution f * g has compact support, in fact, supp $f * g \subset$ supp f + supp $g \subset$ [a + b, c + d]. Hence $f * g \in \mathscr{E}'((0,\infty))$.

Theorem 2.1 (Exchange formula). If $f, g \in \mathscr{E}'((0, \infty))$ then $\mathcal{L}_A(f * g) = \mathcal{L}_A f \otimes \mathcal{L}_A g$.

Proof. First we observe from Proposition 2.2 of [4] that $(\mathcal{L}_A f)(x) = \sum_{k=1}^{\infty} a_k \hat{f}(kx)$. Now let $x \in (0, \infty)$ be arbitrary. Since $\sum_{k=1}^{\infty} a_k e^{-kxs}$ converges in $\mathscr{E}((0, \infty))$ and $\{e^{-kxt}\}, \{\hat{g}(kx)\}$ are bounded, we have the series $\sum_{k=1}^{\infty} a_k e^{-kxt} e^{-kxs}$ of functions of s and the series $\sum_{k=1}^{\infty} a_k \hat{g}(kx) e^{-kxt}$ of functions of t converge in $\mathscr{E}((0, \infty))$. Therefore $(\mathcal{L}_A(f * g))(x) = \langle f(t), \langle g(s), \sum_{k=1}^{\infty} a_k e^{-kx(s+t)} \rangle \rangle$

$$\begin{aligned} &= \left\langle f(t), \left\langle g(s), \sum_{k=1}^{\infty} a_k e^{-kxs} e^{-kxt} \right\rangle \right\rangle \\ &= \left\langle f(t), \left\langle g(s), \sum_{k=1}^{\infty} a_k e^{-kxs} e^{-kxt} \right\rangle \right\rangle \\ &= \left\langle f(t), \sum_{k=1}^{\infty} a_k \left\langle g(s), e^{-kxs} \right\rangle e^{-kxt} \right\rangle \\ &= \left\langle f(t), \sum_{k=1}^{\infty} a_k \hat{g}(kx) e^{-kxt} \right\rangle \\ &= \sum_{k=1}^{\infty} a_k \left\langle f(t), \hat{g}(kx) e^{-kxt} \right\rangle \\ &= \sum_{k=1}^{\infty} a_k \hat{f}(kx) \cdot \hat{g}(kx) \\ &= (\mathcal{L}_A f \otimes \mathcal{L}_A g)(x). \end{aligned}$$

Hence the theorem follows.

Theorem 2.2. The generalized Lambert transform $\mathcal{L}_A : \mathscr{E}'((0,\infty)) \to \mathscr{E}((0,\infty))$ is continuous.

Proof. Since $\mathscr{E}((0,\infty))$ is metrizable and the generalized Lambert transform is linear, it is enough to prove that $\mathcal{L}_A f_n \to 0$ as $n \to \infty$, whenever $f_n \to 0$ as $n \to \infty$ in $\mathscr{E}'((0,\infty))$. We observe that the functions $\psi_x(t) = \sum_{k=1}^{\infty} a_k e^{-kxt}, \ \forall t \in (0,\infty)$ constitute a bounded subset of $\mathscr{E}((0,\infty))$ if x ranges over a compact subset of \mathbb{R} . For given $k \in \mathbb{N}_0$ and $K \subset \mathbb{R}$ compact, we put $\mathcal{B} = \{\psi_x^{(k)} : x \in K\}$. Therefore from the equality

$$\sup_{x \in K} \left| (\mathcal{L}_A f_n)^{(k)}(x) \right| = \sup_{\phi \in \mathcal{B}} \left| \langle f_n, \phi \rangle \right|$$

and by the assumption $f_n \to 0$ as $n \to \infty$ in $\mathscr{E}'((0,\infty))$, we conclude that $\mathcal{L}_A f_n \to 0$ as $n \to \infty$ in $\mathscr{E}((0,\infty))$.

3. BOEHMIAN SPACE

J. Mikusiński and P. Mikusiński [7] introduced Boehmians as a generalization of distributions. An abstract construction of Boehmian space was given in [8] with two notions of convergence. Thereafter various Boehmian spaces have been defined and also various integral transforms have been extended on them, see [1, 2, 6, 9,10, 12, 13, 14, 15, 16, 17, 21].

First we recall the construction of an abstract Boehmian space from [8].

To consider the Boehmian space we need G, S, \star and Δ where G is a topological vector space, $S \subset G$ and $\star : G \times S \to G$ satisfying the following conditions. Let $\alpha, \beta \in G$ and $\zeta, \xi \in S$ be arbitrary.

1. $\zeta \star \xi = \xi \star \zeta \in S$; 2. $(\alpha \star \zeta) \star \xi = \alpha \star (\zeta \star \xi)$; 3. $(\alpha + \beta) \star \zeta = \alpha \star \zeta + \beta \star \zeta$; 4. If $\alpha_n \to \alpha$ as $n \to \infty$ in G and $\xi \in S$ then $\alpha_n \star \xi \to \alpha \star \xi$ as $n \to \infty$,

and Δ is a collection of sequences from S satisfying

(a) If $(\xi_n), (\zeta_n) \in \Delta$ then $(\xi_n \star \zeta_n) \in \Delta$.

(b) If $\alpha \in G$ and $(\xi_n) \in \Delta$ then $\alpha \star \xi_n \to \alpha$ in G as $n \to \infty$.

Let \mathscr{A} denote the collection of all pairs of sequences $((\alpha_n), (\xi_n))$ where $\alpha_n \in G$, $\forall n \in \mathbb{N} \text{ and } (\xi_n) \in \Delta \text{ satisfying the property}$

$$\alpha_n \star \xi_m = \alpha_m \star \xi_n, \ \forall \ m, n \in \mathbb{N}.$$

$$(3.1)$$

Each element of \mathscr{A} is called a quotient and it is denoted by α_n/ξ_n . Define a relation $\sim \text{ on } \mathscr{A} \text{ by}$

$$\alpha_n/\xi_n \sim \beta_n/\zeta_n \quad \text{if} \quad \alpha_n \star \zeta_m = \beta_m \star \xi_n, \ \forall \quad m, n \in \mathbb{N}.$$
 (3.2)

It is easy to verify that \sim is an equivalence relation on \mathscr{A} and hence it decomposes \mathscr{A} into disjoint equivalence classes. Each equivalence class is called a Boehmian and is denoted by $[\alpha_n/\xi_n]$. The collection of all Boehmians is denoted by $\mathscr{B} =$ $\mathscr{B}(G, S, \star, \Delta)$. Every element α of G is identified uniquely as a member of \mathscr{B} by $[(\alpha \star \xi_n)/\xi_n]$ where $(\xi_n) \in \Delta$ is arbitrary.

 \mathscr{B} is a vector space with addition and scalar multiplication defined as follows.

- $[\alpha_n/\xi_n] + [\beta_n/\zeta_n] = [(\alpha_n \star \zeta_n + \beta_n \star \xi_n)/(\xi_n \star \zeta_n)].$ $c [\alpha_n/\xi_n] = [(c\alpha_n)/\xi_n].$

The operation \star can be extended to $\mathscr{B} \times S$ by the following definition.

Definition 3.1. If $x = [\alpha_n / \xi_n] \in \mathcal{B}$, and $\zeta \in S$ then $x \star \zeta = [(\alpha_n \star \zeta) / \xi_n]$.

Now we recall the δ -convergence on \mathscr{B} .

Definition 3.2 (δ -Convergence). We say that $X_n \xrightarrow{\delta} X$ as $n \to \infty$ in \mathscr{B} if there exists a delta sequence (ξ_n) such that $X_n \star \xi_k \in G, \forall n, k \in \mathbb{N}, X \star \xi_k \in G, \forall k \in \mathbb{N}$ and for each $k \in \mathbb{N}$,

$$X_n \star \xi_k \to X \star \xi_k \text{ as } n \to \infty \text{ in } G.$$

The following lemma states an equivalent statement for δ -convergence.

Lemma 3.1. $X_n \xrightarrow{\delta} X$ as $n \to \infty$ in \mathscr{B} if and only if there exist $\alpha_{n,k}, \alpha_k \in G$ and $(\xi_k) \in \Delta$ such that $X_n = [\alpha_{n,k}/\xi_k], X = [\alpha_k/\xi_k]$ and for each $k \in \mathbb{N}$,

$$\alpha_{n,k} \to \alpha_k \text{ as } n \to \infty \text{ in } G.$$

Definition 3.3 (Δ -convergence). We say that $X_n \xrightarrow{\Delta} X$ as $n \to \infty$ in \mathscr{B} if there exists $(\xi_k) \in \Delta$ such that $(X_n - X) \star \xi_n \in G$ for all $n \in \mathbb{N}$ and $(X_n - X) \star \xi_n \to 0$ as $n \to \infty$ in G.

We construct a Boehmian space $\mathscr{B}_1 = \mathscr{B}(\mathscr{E}'((0,\infty)), \mathscr{D}((0,\infty)), *, \Delta_+)$ where *is the usual convolution defined in (1.2) and Δ_+ is the collection of all sequences (δ_n) from $\mathscr{D}((0,\infty))$ satisfying the following properties.

- (1) $\int_{0}^{\infty} \delta_{n}(t) dt = 1, \ \forall n \in \mathbb{N}.$ (2) $\int_{0}^{\infty} |\delta_{n}(t)| dt \leq M, \ \forall n \in \mathbb{N} \text{ for some } M > 0.$

(3) If
$$s(\delta_n) = \sup\{t \in (0,\infty) : \delta_n(t) \neq 0\}$$
 then $s(\delta_n) \to 0$ as $n \to \infty$.

It is well known that $\mathscr{E}'((0,\infty))$ is contained in \mathscr{B}_1 and one can prove that \mathscr{B}_1 is properly larger than $\mathscr{E}'(\mathbb{R})$, by modifying the example given in [8].

Another Boehmian space is given by

$$\mathscr{B}_2 = \mathscr{B}(\mathcal{L}_A(\mathscr{E}'((0,\infty))), \mathcal{L}_A(\mathscr{E}'((0,\infty))), \otimes, \mathcal{L}_A(\Delta_+)))$$

where $\mathcal{L}_A(\Delta_+) = \{ (\mathcal{L}_A(\delta_n)) : (\delta_n) \in \Delta_+ \}.$

4. Extended Lambert transform

Definition 4.1. The extended Lambert transform $\mathfrak{L}_A : \mathscr{B}_1 \to \mathscr{B}_2$ is defined by

$$\mathfrak{L}_A\left([f_n/\delta_n]\right) = \left[\mathcal{L}_A f_n/\mathcal{L}_A \delta_n\right]. \tag{4.1}$$

It is necessary to verify that $[\mathcal{L}_A f_n / \mathcal{L}_A \delta_n] \in \mathscr{B}_2$ and this definition is independent of the representatives. Indeed, using $[f_n/\delta_n] \in \mathscr{B}_1$, we get

$$f_n * \delta_m = f_m * \delta_n, \ \forall m, n \in \mathbb{N}.$$

$$(4.2)$$

Since $f_n * \delta_m \in \mathscr{E}'((0,\infty))$, we can apply the generalized Lambert transform on both sides and we get, in light of Theorem 2.1

$$\mathcal{L}_A f_n \otimes \mathcal{L}_A \delta_m = \mathcal{L}_A f_m \otimes \mathcal{L}_A \delta_n, \ \forall m, n \in \mathbb{N}.$$
(4.3)

Hence $\mathcal{L}_A f_n / \mathcal{L}_A \delta_n$ is a quotient and hence $[\mathcal{L}_A f_n / \mathcal{L}_A \delta_n] \in \mathscr{B}_2$. Moreover, if $[f_n/\delta_n] = [g_n/\epsilon_n]$ then

$$f_n * \epsilon_m = g_m * \delta_n, \ \forall m, n \in \mathbb{N}.$$

$$(4.4)$$

Again by the same reason, we get

$$\mathcal{L}_A f_n \otimes \mathcal{L}_A \epsilon_m = \mathcal{L}_A g_m \otimes \mathcal{L}_A \delta_n, \ \forall m, n \in \mathbb{N},$$

$$(4.5)$$

and hence $[\mathcal{L}_A f_n / \mathcal{L}_A \delta_n] = [\mathcal{L}_A g_n / \mathcal{L}_A \epsilon_n].$

Lemma 4.1. The extended Lambert transform on \mathscr{B}_1 is consistent with the generalized Lambert transform on $\mathscr{E}'((0,\infty))$.

Proof. Let $f \in \mathscr{E}'((0,\infty))$ be arbitrary. For any $(\delta_n) \in \Delta_+$, f is represented by $[(f * \delta_n)/\delta_n] \in \mathscr{B}_1$. Now

$$\mathfrak{L}_{A}\left[(f \ast \delta_{n})/\delta_{n}\right] = \left[\mathcal{L}_{A}(f \ast \delta_{n})/\mathcal{L}_{A}\delta_{n}\right] = \left[(\mathcal{L}_{A}f \otimes \mathcal{L}_{A}\delta_{n})/\mathcal{L}_{A}\delta_{n}\right]$$

which represents $\mathcal{L}_A f$ in \mathscr{B}_2 . Thus we have proved the lemma.

Lemma 4.2. The extended Lambert transform $\mathfrak{L}_A : \mathscr{B}_1 \to \mathscr{B}_2$ is a linear map.

Proof. Let $[f_n/\delta_n], [g_n/\epsilon_n] \in \mathscr{B}_1$ and $\alpha, \beta \in \mathbb{C}$. By using the linearity of \mathcal{L}_A : $\mathscr{E}'((0,\infty)) \to \mathscr{E}((0,\infty))$ and by Theorem 2.1, we get

 $\mathfrak{L}_A\left(\alpha\left[f_n/\delta_n\right] + \beta\left[g_n/\epsilon_n\right]\right)$

$$= \mathfrak{L}_{A} \left[((\alpha f_{n}) * \epsilon_{n} + (\beta g_{n}) * \delta_{n}) / (\delta_{n} * \epsilon_{n}) \right] \\= \mathfrak{L}_{A} \left[(\alpha (f_{n} * \epsilon_{n}) + \beta (g_{n} * \delta_{n})) / (\delta_{n} * \epsilon_{n}) \right] \\= \left[\mathcal{L}_{A} (\alpha (f_{n} * \epsilon_{n}) + \beta (g_{n} * \delta_{n})) / \mathcal{L}_{A} (\delta_{n} * \epsilon_{n}) \right] \\= \left[(\alpha \mathcal{L}_{A} (f_{n} * \epsilon_{n}) + \beta \mathcal{L}_{A} (g_{n} * \delta_{n})) / \mathcal{L}_{A} (\delta_{n} * \epsilon_{n}) \right] \\= \left[(\alpha (\mathcal{L}_{A} f_{n}) \otimes (\mathcal{L}_{A} \epsilon_{n}) + \beta (\mathcal{L}_{A} g_{n}) \otimes (\mathcal{L}_{A} \delta_{n})) / (\mathcal{L}_{A} \delta_{n}) \otimes (\mathcal{L}_{A} \epsilon_{n}) \right] \\= \alpha (\mathcal{L}_{A} f_{n} / \mathcal{L}_{A} \delta_{n}] + \left[\beta (\mathcal{L}_{A} g_{n} / \mathcal{L}_{A} \epsilon_{n} \right] \\= \alpha \mathcal{L}_{A} \left[f_{n} / \mathcal{L}_{A} \delta_{n} \right] + \beta \mathcal{L}_{A} \left[g_{n} / \mathcal{L}_{A} \epsilon_{n} \right] \\= \alpha \mathfrak{L}_{A} \left[f_{n} / \delta_{n} \right] + \beta \mathfrak{L}_{A} \left[g_{n} / \epsilon_{n} \right] \\ \text{ence the lemma follows.} \Box$$

Hε

Lemma 4.3. The extended Lambert transform $\mathfrak{L}_A : \mathscr{B}_1 \to \mathscr{B}_2$ is one-to-one.

Proof. Let
$$X = [f_n/\delta_n], Y = [g_n/\epsilon_n] \in \mathscr{B}_1$$
. If $\mathfrak{L}_A X = \mathfrak{L}_A Y$ then we have
 $\mathcal{L}_A f_n \otimes \mathcal{L}_A \epsilon_m = \mathcal{L}_A g_m \otimes \mathcal{L}_A \delta_n, \forall m, n \in \mathbb{N}.$ (4.6)

Theorem 2.1 enables us to obtain

$$\mathcal{L}_A(f_n * \epsilon_m) = \mathcal{L}_A(g_m * \delta_n), \, \forall m, n \in \mathbb{N}.$$
(4.7)

By virtue of (1.9) it follows that

$$f_n * \epsilon_m = g_m * \delta_n$$
, as members of $\mathscr{E}'((0,\infty)) \forall m, n \in \mathbb{N}$. (4.8)

Thus we get X = Y.

Lemma 4.4. The extended Lambert transform $\mathfrak{L}_A : \mathscr{B}_1 \to \mathscr{B}_2$ is onto.

The proof is straightforward.

Theorem 4.5. The extended Lambert transform $\mathfrak{L}_A : \mathscr{B}_1 \to \mathscr{B}_2$ is continuous with respect to the δ -convergence.

Proof. Let $X_n \xrightarrow{\delta} X$ as $n \to \infty$ in \mathscr{B}_1 . Then by Lemma 3.1, there exists $f_{n,k}, f_k \in \mathscr{E}'((0,\infty)), \forall n,k \in \mathbb{N}$ and $(\delta_k) \in \Delta_+$ such that $X_n = [f_{n,k}/\delta_k], X = [f_k/\delta_k]$ and for each $k \in \mathbb{N}$,

$$f_{n,k} \to f_k \text{ as } n \to \infty \text{ in } \mathscr{E}'((0,\infty)).$$
 (4.9)

Applying Theorem 2.2, we get that for each $k \in \mathbb{N}$,

$$\mathcal{L}_A f_{n,k} \to \mathcal{L}_A f_k \text{ as } n \to \infty \text{ in } \mathscr{E}((0,\infty)).$$
 (4.10)

Being for each $n \in \mathbb{N}$, $\mathfrak{L}_A X_n = [\mathcal{L}_A f_{n,k}/\mathcal{L}_A \delta_k]$ and $\mathfrak{L}_A X = [\mathcal{L}_A f_k/\mathcal{L}_A \delta_k]$, again by Lemma 3.1, it follows that $\mathfrak{L}_A X_n \to \mathfrak{L}_A X$ as $n \to \infty$ in \mathscr{B}_2 . \Box

It is interesting to note that the operations * and \otimes can be extended as binary operations on \mathscr{B}_1 and \mathscr{B}_2 by

$$[f_n/\delta_n] * [g_n/\epsilon_n] = [(f_n * g_n)/\delta_n * \epsilon_n],$$

$$[F_n/\mathcal{L}_A\delta_n] \otimes [G_n/\mathcal{L}_A\epsilon_n] = [(F_n \otimes G_n)/(\mathcal{L}_A\delta_n \otimes \mathcal{L}_A\epsilon_n)].$$

As a consequence of Theorem 2.1, the exchange formula of generalized Lambert transform holds in the context of Boehmians as follows.

Theorem 4.6. If $X, Y \in \mathscr{B}_1$ and $f \in \mathscr{D}((0,\infty))$ then (1) $\mathfrak{L}_A(X*Y) = \mathfrak{L}_A X \otimes \mathfrak{L}_A Y$; (2) $\mathfrak{L}_A(X*f) = \mathfrak{L}_A X \otimes \mathfrak{L}_A f$.

Theorem 4.7. The extended Lambert transform $\mathfrak{L}_A : \mathscr{B}_1 \to \mathscr{B}_2$ is continuous with respect to the Δ -convergence.

Proof. Let $X_n \xrightarrow{\Delta} X$ as $n \to \infty$ in \mathscr{B}_1 . Then there exist $(\delta_n) \in \Delta_+$ and $f_n \in \mathscr{E}'((0,\infty))$ such that $(X_n - X) * \delta_n = [(f_n * \delta_k)/\delta_k]$, $\forall n \in \mathbb{N}$ and $f_n \to 0$ as $n \to \infty$ in $\mathscr{E}'((0,\infty))$. Using the continuity of the generalized Lambert transform on $\mathscr{E}'((0,\infty))$, we get $\mathcal{L}_A f_n \to 0$ as $n \to \infty$ in $\mathscr{E}((0,\infty))$. Using Theorems 2.1, 4.2, 4.6, for each $n \in \mathbb{N}$ we obtain

$$\begin{aligned} (\mathfrak{L}_A X_n - \mathfrak{L}_A X) \otimes \mathcal{L}_A \delta_n &= \mathfrak{L}_A ((X_n - X) * \delta_n) \\ &= [\mathcal{L}_A (f_n * \delta_k) / \mathcal{L}_A \delta_k] \\ &= [(\mathcal{L}_A f_n \otimes \mathcal{L}_A \delta_k) / \delta_k], \end{aligned}$$

and hence $\mathfrak{L}_A X_n \xrightarrow{\Delta} \mathfrak{L}_A X$ as $n \to \infty$ in \mathscr{B}_2 .

Acknowledgement. The authors would like to thank the anonymous referee for his/her valuable suggestions.

References

- J. J. Betancor, M. Linares and J. M. R. Méndez, The Hankel transform of integrable Boehmians, Appl. Anal. 58 (1995) 367 – 382.
- [2] J. J. Betancor, M. Linares and J. M. R. Méndez, Ultraspherical transform of summable Boehmians, Math. Japon. 44 (1996) 81 – 88.
- [3] R. R. Goldberg, An inversion of generalized Lambert transforms, Duke Math. J. 25 (1958) 459 - 476.
- [4] N. Hayek, B. J. González and E. R. Negrin, The generalized Lambert transform on distributions of compact support, J. Math. Anal. Appl. 275 (2002) 938 – 944.
- [5] V. Karunakaran and R. Roopkumar, Boehmians and their Hilbert transforms, Integral Transforms Spec. Funct. 13 (2002) 131 – 141.
- [6] V. Karunakaran and R. Roopkumar, Ultra Boehmians and their Fourier transforms, Fract. Calc. Appl. Anal. 5 (2) (2002) 181 – 194.
- [7] J. Mikusiński and P. Mikusiński, Quotients de suites et leurs applications dans l'anlyse fonctionnelle, C. R. Acad. Sc. Paris 293 (1981) Sér. I, 463 – 464.
- [8] P. Mikusiński, Convergence of Boehmians, Japan. J. Math. 9 (1983) 159 179.
- [9] P. Mikusiński, The Fourier transform of tempered Boehmians, Fourier Analysis, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York, (1994) 303 – 309.

- [10] P. Mikusiński, A. Morse and D. Nemzer, The two sided Laplace Transform for Boehmians, Integral Transforms Spec. Funct. 2 (3) (1994) 219 – 230.
- [11] E. R. Negrin, The Lambert transform on $\mathscr{E}'(I)$, Portugal. Math. 50 (1993) 359 363.
- [12] D. Nemzer, The Laplace transform on a class of Boehmians, Bull. Austral. Math. Soc. 46 (1992) 347 – 352.
- [13] R. Roopkumar, Wavelet analysis on a Boehmian Space, Int. J. Math. Math. Sci. 2003 (15) (2003) 917 – 926.
- [14] R. Roopkumar, On extension of Fourier transform, Int. J. Math. Game Theory Algebra 13 (2003) 465 – 474.
- [15] R. Roopkumar, Generalized Radon transform, Rocky Mountain J. Math. 36 (4) (2006) 1375 – 1390.
- [16] R. Roopkumar, Stieltjes transform for Boehmians, Integral Transforms Spec. Funct. 18 (11) (2007) 845 – 853.
- [17] R. Roopkumar, Mellin transform for Boehmians, Bull. Inst. Math. Acad. Sinica, 4 (2009) 75 - 96.
- [18] R. Roopkumar, An Extension of distributional wavelet transform, Colloq. Math., 115 (2) (2009) 195 – 206.
- [19] R. Roopkumar, Convolution theorems for wavelet transform on tempered distributions and their extensions to tempered Boehmians, Asian-Eur. J. Math., 2 (1), (2009) 115 – 125
- [20] R. Roopkumar, Ridgelet transform on square integrable Boehmians, Bull. Korean Math. Soc., 46 (5), (2009) 835 – 844.
- [21] Ah. I. Zayed and P. Mikusiński, On the extension of the Zak transform, Methods Appl. Anal. 2 (2) (1995) 160 – 172.
- [22] D. V. Widder, An inversion of the Lambert transform, Math. Mag. 23 (1950) 171 182.
- [23] A. H. Zemanian Generalized Integral Transformations, John Wiley & Sons Inc., New York, 1968.

R. ROOPKUMAR

DEPARTMENT OF MATHEMATICS, ALAGAPPA UNIVERSITY, KARAIKUDI - 630 003, INDIA. *E-mail address:* roopkumarr@rediffmail.com

E. R. Negrin

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, UNIVERSIDAD DE LA LAGUNA, 38271 LA LAGUNA, CANARY ISLANDS, SPAIN.

E-mail address: enegrin@ull.es