EXCHANGE FORMULA FOR GENERALIZED LAMBERT TRANSFORM AND ITS EXTENSION TO BOEHMIANS

R. ROOPKUMAR, E. R. NEGRIN

Abstract

We derive the exchange formula for the generalized Lambert transform, by defining a suitable product in the range of generalized Lambert transform on $\mathscr{E}^{\prime}((0, \infty))$. We prove that the generalized Lambert transform from $\mathscr{E}^{\prime}((0, \infty))$ into $\mathscr{E}((0, \infty))$ is continuous. Applying the exchange formula and continuity of generalized Lambert transform, we construct a new Boehmian space which will be the range of generalized Lambert transform on $\mathscr{B}\left(\mathscr{E}^{\prime}((0, \infty)), \mathscr{D}((0, \infty)), *, \Delta_{+}\right)$. We establish that the generalized Lambert transform on Boehmians is consistent with that on $\mathscr{E}^{\prime}((0, \infty))$, linear, one-toone, onto and continuous with respect to δ-convergence and Δ-convergence. We also obtain the exchange formula for generalized Lambert transform in the context of Boehmians.

1. Introduction

We denote the set of all natural numbers and non-negative integers, respectively by \mathbb{N} and \mathbb{N}_{0}. Let $\mathscr{E}((0, \infty))$ be the space of all infinitely differentiable complex valued functions on $(0, \infty)$ equipped with the Fréchet space topology given by the family of semi-norms [23, p. 36],

$$
\begin{equation*}
\gamma_{K, k}(\phi)=\sup _{x \in K}\left|\phi^{(k)}(x)\right|, \quad \text { where } K \subset(0, \infty) \text { is compact and } k \in \mathbb{N}_{0} \tag{1.1}
\end{equation*}
$$

The dual space $\mathscr{E}^{\prime}((0, \infty))$ of $\mathscr{E}((0, \infty))$ is called the space of compactly supported distributions on $(0, \infty)$. Throughout this paper, we use strong convergence in the space $\mathscr{E}^{\prime}((0, \infty))$ which is defined as follows: $\left(f_{n}\right)$ converges to f in $\mathscr{E}^{\prime}((0, \infty))$, if for each bounded subset B of $\mathscr{E}((0, \infty))$,

$$
\sup _{\phi \in B}\left|\left\langle f_{n}-f, \phi\right\rangle\right| \rightarrow 0 \text { as } n \rightarrow \infty
$$

We recall the usual convolution defined on $\mathscr{E}^{\prime}((0, \infty))$ by

$$
\begin{equation*}
\langle f * g, \phi\rangle=\langle f(t),\langle g(s), \phi(s+t)\rangle\rangle, \forall \phi \in \mathscr{E}((0, \infty)) \tag{1.2}
\end{equation*}
$$

By $\mathscr{D}((0, \infty))$ and $\mathscr{D}^{\prime}((0, \infty))$, as usual we mean the Schwartz testing function space of all smooth functions with compact support and the space of Schwartz

[^0]distributions respectively. It is well known that $\mathscr{D}((0, \infty))$ is a subset of $\mathscr{E}^{\prime}((0, \infty))$ by the canonical identification.

Now we recall the theory of Lambert transform from the literature. Widder [22] introduced the Lambert transform of a suitable function by

$$
\begin{equation*}
F(x)=\int_{0}^{\infty} f(t) \frac{1}{e^{x t}-1} d t, x>0 \tag{1.3}
\end{equation*}
$$

and R. R. Goldberg [3] generalized the Lambert transform by

$$
\begin{equation*}
F(x)=\int_{0}^{\infty} f(t) \sum_{k=1}^{\infty} a_{k} e^{-k x t} d t, x>0 \tag{1.4}
\end{equation*}
$$

where $\left\{a_{k}\right\}$ is a sequence of class C_{r}, for $r>0$. That is, $A=\left\{a_{k}\right\}$ satisfies the following conditions.
(1) $a_{k} \geq 0, k=1,2, \ldots$
(2) $a_{k}=O\left(k^{r-1}\right), k \rightarrow \infty$.
(3) $a_{1}>0$.
(4) $b_{m}=O\left(m^{r-1}\right), m \rightarrow \infty$ where $\sum_{d / p} a_{d} b_{p / d}= \begin{cases}1, & p=1 \\ 0, & p=2,3, \ldots\end{cases}$

Observe that for $a_{k}=1$, for all $k=1,2, \ldots$, the generalized Lambert transform (1.4) agrees with the Lambert transform (1.3).

Negrin 11 extended the Lambert transform to the space $\mathscr{E}^{\prime}((0, \infty))$ of compactly supported distributions on $(0, \infty)$ by

$$
\begin{equation*}
F(x)=\left\langle f(t), \frac{1}{e^{x t}-1}\right\rangle, x>0 \tag{1.5}
\end{equation*}
$$

N. Hayek, B. J. González and E. R. Negrin [4] extended the generalized Lambert transform to the context of compactly supported distributions on $(0, \infty)$ by

$$
\begin{equation*}
F(x)=\left\langle f(t), \sum_{k=1}^{\infty} a_{k} e^{-k x t}\right\rangle, x>0 \tag{1.6}
\end{equation*}
$$

It is proved that F is infinitely differentiable and the inversion formula is obtained as follows.

$$
\begin{equation*}
\langle f, \phi\rangle=\lim _{n \rightarrow \infty}\left\langle\frac{(-1)^{n}}{n!} \cdot\left(\frac{n}{t}\right)^{n+1} \cdot \sum_{m=1}^{\infty} b_{m} m^{n} \cdot D^{n} F\left(\frac{m n}{t}\right), \phi(t)\right\rangle \tag{1.7}
\end{equation*}
$$

for every $\phi \in \mathscr{D}((0, \infty))$.
For our convenience, we denote the generalized Lambert transform of f and the Laplace transform of f, respectively by $\mathcal{L}_{A} f, \hat{f}$, where Laplace transform of f is defined by

$$
\begin{equation*}
\hat{f}(s)=\left\langle f(t), e^{-s t}\right\rangle, s>0 \tag{1.8}
\end{equation*}
$$

By equation (1.7), if $\mathcal{L}_{A} f=\mathcal{L}_{A} g$ then $f=g$ as members of $\mathscr{D}^{\prime}((0, \infty))$. Since $\mathscr{D}((0, \infty))$ is dense in $\mathscr{E}((0, \infty))$, the equality holds in $\mathscr{E}^{\prime}((0, \infty))$. In other words

$$
\begin{equation*}
\mathcal{L}_{A}: \mathscr{E}^{\prime}((0, \infty)) \rightarrow \mathscr{E}((0, \infty)) \text { is one-to-one. } \tag{1.9}
\end{equation*}
$$

2. EXChange formula and continuity

Now we define a new product \otimes for $F \in \mathcal{L}_{A}\left(\mathscr{E}^{\prime}((0, \infty))\right)$ and $G \in \mathcal{L}_{A}\left(\mathscr{E}^{\prime}((0, \infty))\right)$ by

$$
\begin{equation*}
(F \otimes G)(x)=\sum_{k=1}^{\infty} a_{k} \hat{f}(k x) \cdot \hat{g}(k x) \tag{2.1}
\end{equation*}
$$

where $f, g \in \mathscr{E}^{\prime}((0, \infty))$ such that $\mathcal{L}_{A} f=F$ and $\mathcal{L}_{A} g=G$.
We note that the above definition is well defined. Indeed, by using 1.9, we can find unique $f, g \in \mathscr{E}^{\prime}((0, \infty))$ such that $F=\mathcal{L}_{A} f$ and $G=\mathcal{L}_{A} g$. Therefore supp $f \subset[a, b]$, supp $g \subset[c, d]$, for some $a, b, c, d \in(0, \infty)$. As $\mathscr{E}^{\prime}((0, \infty))$ is a subset of Laplace-transformable generalized functions we can apply Theorem 3.10-2 of [23] and we get

$$
\begin{equation*}
|\hat{f}(k x)| \leq e^{-k x a} P_{1}(k x), \text { and }|\hat{g}(k x)| \leq e^{-k x c} P_{2}(k x) \tag{2.2}
\end{equation*}
$$

for some polynomials P_{1} and P_{2}.
Since $\left\{a_{k}\right\}$ is of class C_{r} from the relation 2.2 the series in equation 2.1 converges.

Before discussing the exchange formula for the generalized Lambert transform, it is necessary to show that $f * g \in \mathscr{E}^{\prime}((0, \infty))$ whenever $f, g \in \mathscr{E}^{\prime}((0, \infty))$. We note that every $f \in \mathscr{E}^{\prime}((0, \infty))$ can be viewed as Schwartz distribution on $(0, \infty)$ with compact support. We also note that if $f, g \in \mathscr{E}^{\prime}((0, \infty))$ with supp $f \subset[a, b]$ and $\operatorname{supp} g \subset[c, d]$, for some $a, b, c, d \in(0, \infty)$, with $a<b$ and $c<d$ then the Schwartz distribution $f * g$ has compact support, in fact, supp $f * g \subset \operatorname{supp} f+\operatorname{supp} g \subset$ $[a+b, c+d]$. Hence $f * g \in \mathscr{E}^{\prime}((0, \infty))$.

Theorem 2.1 (Exchange formula).
If $f, g \in \mathscr{E}^{\prime}((0, \infty))$ then $\mathcal{L}_{A}(f * g)=\mathcal{L}_{A} f \otimes \mathcal{L}_{A} g$.
Proof. First we observe from Proposition 2.2 of [4] that $\left(\mathcal{L}_{A} f\right)(x)=\sum_{k=1}^{\infty} a_{k} \hat{f}(k x)$. Now let $x \in(0, \infty)$ be arbitrary. Since $\sum_{k=1}^{\infty} a_{k} e^{-k x s}$ converges in $\mathscr{E}((0, \infty))$ and $\left\{e^{-k x t}\right\},\{\hat{g}(k x)\}$ are bounded, we have the series $\sum_{k=1}^{\infty} a_{k} e^{-k x t} e^{-k x s}$ of functions of s and the series $\sum_{k=1}^{\infty} a_{k} \hat{g}(k x) e^{-k x t}$ of functions of t converge in $\mathscr{E}((0, \infty))$. Therefore

$$
\begin{aligned}
\left(\mathcal{L}_{A}(f * g)\right)(x) & =\left\langle f(t),\left\langle g(s), \sum_{k=1}^{\infty} a_{k} e^{-k x(s+t)}\right\rangle\right\rangle \\
& =\left\langle f(t),\left\langle g(s), \sum_{k=1}^{\infty} a_{k} e^{-k x s} e^{-k x t}\right\rangle\right\rangle \\
& =\left\langle f(t), \sum_{k=1}^{\infty} a_{k}\left\langle g(s), e^{-k x s}\right\rangle e^{-k x t}\right\rangle \\
& =\left\langle f(t), \sum_{k=1}^{\infty} a_{k} \hat{g}(k x) e^{-k x t}\right\rangle \\
& =\sum_{k=1}^{\infty} a_{k}\left\langle f(t), \hat{g}(k x) e^{-k x t}\right\rangle \\
& =\sum_{k=1}^{\infty} a_{k} \hat{f}(k x) \cdot \hat{g}(k x) \\
& =\left(\mathcal{L}_{A} f \otimes \mathcal{L}_{A} g\right)(x) .
\end{aligned}
$$

Hence the theorem follows.
Theorem 2.2. The generalized Lambert transform $\mathcal{L}_{A}: \mathscr{E}^{\prime}((0, \infty)) \rightarrow \mathscr{E}((0, \infty))$ is continuous.

Proof. Since $\mathscr{E}((0, \infty))$ is metrizable and the generalized Lambert transform is linear, it is enough to prove that $\mathcal{L}_{A} f_{n} \rightarrow 0$ as $n \rightarrow \infty$, whenever $f_{n} \rightarrow 0$ as $n \rightarrow \infty$ in $\mathscr{E}^{\prime}((0, \infty))$. We observe that the functions $\psi_{x}(t)=\sum_{k=1}^{\infty} a_{k} e^{-k x t}, \forall t \in(0, \infty)$ constitute a bounded subset of $\mathscr{E}((0, \infty))$ if x ranges over a compact subset of \mathbb{R}. For given $k \in \mathbb{N}_{0}$ and $K \subset \mathbb{R}$ compact, we put $\mathcal{B}=\left\{\psi_{x}^{(k)}: x \in K\right\}$. Therefore from the equality

$$
\sup _{x \in K}\left|\left(\mathcal{L}_{A} f_{n}\right)^{(k)}(x)\right|=\sup _{\phi \in \mathcal{B}}\left|\left\langle f_{n}, \phi\right\rangle\right|
$$

and by the assumption $f_{n} \rightarrow 0$ as $n \rightarrow \infty$ in $\mathscr{E}^{\prime}((0, \infty))$, we conclude that $\mathcal{L}_{A} f_{n} \rightarrow 0$ as $n \rightarrow \infty$ in $\mathscr{E}((0, \infty))$.

3. Boehmian space

J. Mikusiński and P. Mikusiński [7] introduced Boehmians as a generalization of distributions. An abstract construction of Boehmian space was given in [8] with two notions of convergence. Thereafter various Boehmian spaces have been defined and also various integral transforms have been extended on them, see [1, 2, 6, 2, 10, 12, 13, 14, 15, 16, 17, 21].

First we recall the construction of an abstract Boehmian space from 8 .
To consider the Boehmian space we need G, S, \star and Δ where G is a topological vector space, $S \subset G$ and $\star: G \times S \rightarrow G$ satisfying the following conditions.
Let $\alpha, \beta \in G$ and $\zeta, \xi \in S$ be arbitrary.

1. $\zeta \star \xi=\xi \star \zeta \in S ; 2$. $(\alpha \star \zeta) \star \xi=\alpha \star(\zeta \star \xi) ; \quad 3 .(\alpha+\beta) \star \zeta=\alpha \star \zeta+\beta \star \zeta ; 4$. If $\alpha_{n} \rightarrow \alpha$ as $n \rightarrow \infty$ in G and $\xi \in S$ then $\alpha_{n} \star \xi \rightarrow \alpha \star \xi$ as $n \rightarrow \infty$, and Δ is a collection of sequences from S satisfying
(a) If $\left(\xi_{n}\right),\left(\zeta_{n}\right) \in \Delta$ then $\left(\xi_{n} \star \zeta_{n}\right) \in \Delta$.
(b) If $\alpha \in G$ and $\left(\xi_{n}\right) \in \Delta$ then $\alpha \star \xi_{n} \rightarrow \alpha$ in G as $n \rightarrow \infty$.

Let \mathscr{A} denote the collection of all pairs of sequences $\left(\left(\alpha_{n}\right),\left(\xi_{n}\right)\right)$ where $\alpha_{n} \in G$, $\forall n \in \mathbb{N}$ and $\left(\xi_{n}\right) \in \Delta$ satisfying the property

$$
\begin{equation*}
\alpha_{n} \star \xi_{m}=\alpha_{m} \star \xi_{n}, \forall m, n \in \mathbb{N} \tag{3.1}
\end{equation*}
$$

Each element of \mathscr{A} is called a quotient and it is denoted by α_{n} / ξ_{n}. Define a relation \sim on \mathscr{A} by

$$
\begin{equation*}
\alpha_{n} / \xi_{n} \sim \beta_{n} / \zeta_{n} \quad \text { if } \quad \alpha_{n} \star \zeta_{m}=\beta_{m} \star \xi_{n}, \forall m, n \in \mathbb{N} \tag{3.2}
\end{equation*}
$$

It is easy to verify that \sim is an equivalence relation on \mathscr{A} and hence it decomposes \mathscr{A} into disjoint equivalence classes. Each equivalence class is called a Boehmian and is denoted by $\left[\alpha_{n} / \xi_{n}\right]$. The collection of all Boehmians is denoted by $\mathscr{B}=$ $\mathscr{B}(G, S, \star, \Delta)$. Every element α of G is identified uniquely as a member of \mathscr{B} by $\left[\left(\alpha \star \xi_{n}\right) / \xi_{n}\right]$ where $\left(\xi_{n}\right) \in \Delta$ is arbitrary.
\mathscr{B} is a vector space with addition and scalar multiplication defined as follows.

- $\left[\alpha_{n} / \xi_{n}\right]+\left[\beta_{n} / \zeta_{n}\right]=\left[\left(\alpha_{n} \star \zeta_{n}+\beta_{n} \star \xi_{n}\right) /\left(\xi_{n} \star \zeta_{n}\right)\right]$.
- $c\left[\alpha_{n} / \xi_{n}\right]=\left[\left(c \alpha_{n}\right) / \xi_{n}\right]$.

The operation \star can be extended to $\mathscr{B} \times S$ by the following definition.

Definition 3.1. If $x=\left[\alpha_{n} / \xi_{n}\right] \in \mathscr{B}$, and $\zeta \in S$ then $x \star \zeta=\left[\left(\alpha_{n} \star \zeta\right) / \xi_{n}\right]$.
Now we recall the δ-convergence on \mathscr{B}.
Definition 3.2 (δ-Convergence). We say that $X_{n} \stackrel{\delta}{\rightarrow} X$ as $n \rightarrow \infty$ in \mathscr{B} if there exists a delta sequence $\left(\xi_{n}\right)$ such that $X_{n} \star \xi_{k} \in G, \forall n, k \in \mathbb{N}, X \star \xi_{k} \in G, \forall k \in \mathbb{N}$ and for each $k \in \mathbb{N}$,

$$
X_{n} \star \xi_{k} \rightarrow X \star \xi_{k} \text { as } n \rightarrow \infty \text { in } G
$$

The following lemma states an equivalent statement for δ-convergence.
Lemma 3.1. $X_{n} \xrightarrow{\delta} X$ as $n \rightarrow \infty$ in \mathscr{B} if and only if there exist $\alpha_{n, k}, \alpha_{k} \in G$ and $\left(\xi_{k}\right) \in \Delta$ such that $X_{n}=\left[\alpha_{n, k} / \xi_{k}\right], X=\left[\alpha_{k} / \xi_{k}\right]$ and for each $k \in \mathbb{N}$,

$$
\alpha_{n, k} \rightarrow \alpha_{k} \text { as } n \rightarrow \infty \text { in } G
$$

Definition 3.3 (Δ-convergence). We say that $X_{n} \xrightarrow{\Delta} X$ as $n \rightarrow \infty$ in \mathscr{B} if there exists $\left(\xi_{k}\right) \in \Delta$ such that $\left(X_{n}-X\right) \star \xi_{n} \in G$ for all $n \in \mathbb{N}$ and $\left(X_{n}-X\right) \star \xi_{n} \rightarrow 0$ as $n \rightarrow \infty$ in G.

We construct a Boehmian space $\mathscr{B}_{1}=\mathscr{B}\left(\mathscr{E}^{\prime}((0, \infty)), \mathscr{D}((0, \infty)), *, \Delta_{+}\right)$where $*$ is the usual convolution defined in 1.2 and Δ_{+}is the collection of all sequences $\left(\delta_{n}\right)$ from $\mathscr{D}((0, \infty))$ satisfying the following properties.
(1) $\int_{0}^{\infty} \delta_{n}(t) d t=1, \forall n \in \mathbb{N}$.
(2) $\int_{0}^{\infty}\left|\delta_{n}(t)\right| d t \leq M, \forall n \in \mathbb{N}$ for some $M>0$.
(3) If $s\left(\delta_{n}\right)=\sup \left\{t \in(0, \infty): \delta_{n}(t) \neq 0\right\}$ then $s\left(\delta_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

It is well known that $\mathscr{E}^{\prime}((0, \infty))$ is contained in \mathscr{B}_{1} and one can prove that \mathscr{B}_{1} is properly larger than $\mathscr{E}^{\prime}(\mathbb{R})$, by modifying the example given in 8].

Another Boehmian space is given by

$$
\mathscr{B}_{2}=\mathscr{B}\left(\mathcal{L}_{A}\left(\mathscr{E}^{\prime}((0, \infty))\right), \mathcal{L}_{A}\left(\mathscr{E}^{\prime}((0, \infty))\right), \otimes, \mathcal{L}_{A}\left(\Delta_{+}\right)\right)
$$

where $\mathcal{L}_{A}\left(\Delta_{+}\right)=\left\{\left(\mathcal{L}_{A}\left(\delta_{n}\right)\right):\left(\delta_{n}\right) \in \Delta_{+}\right\}$.

4. Extended Lambert transform

Definition 4.1. The extended Lambert transform $\mathfrak{L}_{A}: \mathscr{B}_{1} \rightarrow \mathscr{B}_{2}$ is defined by

$$
\begin{equation*}
\mathfrak{L}_{A}\left(\left[f_{n} / \delta_{n}\right]\right)=\left[\mathcal{L}_{A} f_{n} / \mathcal{L}_{A} \delta_{n}\right] . \tag{4.1}
\end{equation*}
$$

It is necessary to verify that $\left[\mathcal{L}_{A} f_{n} / \mathcal{L}_{A} \delta_{n}\right] \in \mathscr{B}_{2}$ and this definition is independent of the representatives. Indeed, using $\left[f_{n} / \delta_{n}\right] \in \mathscr{B}_{1}$, we get

$$
\begin{equation*}
f_{n} * \delta_{m}=f_{m} * \delta_{n}, \forall m, n \in \mathbb{N} \tag{4.2}
\end{equation*}
$$

Since $f_{n} * \delta_{m} \in \mathscr{E}^{\prime}((0, \infty))$, we can apply the generalized Lambert transform on both sides and we get, in light of Theorem 2.1

$$
\begin{equation*}
\mathcal{L}_{A} f_{n} \otimes \mathcal{L}_{A} \delta_{m}=\mathcal{L}_{A} f_{m} \otimes \mathcal{L}_{A} \delta_{n}, \forall m, n \in \mathbb{N} \tag{4.3}
\end{equation*}
$$

Hence $\mathcal{L}_{A} f_{n} / \mathcal{L}_{A} \delta_{n}$ is a quotient and hence $\left[\mathcal{L}_{A} f_{n} / \mathcal{L}_{A} \delta_{n}\right] \in \mathscr{B}_{2}$. Moreover, if $\left[f_{n} / \delta_{n}\right]=\left[g_{n} / \epsilon_{n}\right]$ then

$$
\begin{equation*}
f_{n} * \epsilon_{m}=g_{m} * \delta_{n}, \forall m, n \in \mathbb{N} \tag{4.4}
\end{equation*}
$$

Again by the same reason, we get

$$
\begin{equation*}
\mathcal{L}_{A} f_{n} \otimes \mathcal{L}_{A} \epsilon_{m}=\mathcal{L}_{A} g_{m} \otimes \mathcal{L}_{A} \delta_{n}, \forall m, n \in \mathbb{N} \tag{4.5}
\end{equation*}
$$

and hence $\left[\mathcal{L}_{A} f_{n} / \mathcal{L}_{A} \delta_{n}\right]=\left[\mathcal{L}_{A} g_{n} / \mathcal{L}_{A} \epsilon_{n}\right]$.
Lemma 4.1. The extended Lambert transform on \mathscr{B}_{1} is consistent with the generalized Lambert transform on $\mathscr{E}^{\prime}((0, \infty))$.

Proof. Let $f \in \mathscr{E}^{\prime}((0, \infty))$ be arbitrary. For any $\left(\delta_{n}\right) \in \Delta_{+}, f$ is represented by $\left[\left(f * \delta_{n}\right) / \delta_{n}\right] \in \mathscr{B}_{1}$. Now

$$
\mathfrak{L}_{A}\left[\left(f * \delta_{n}\right) / \delta_{n}\right]=\left[\mathcal{L}_{A}\left(f * \delta_{n}\right) / \mathcal{L}_{A} \delta_{n}\right]=\left[\left(\mathcal{L}_{A} f \otimes \mathcal{L}_{A} \delta_{n}\right) / \mathcal{L}_{A} \delta_{n}\right]
$$

which represents $\mathcal{L}_{A} f$ in \mathscr{B}_{2}. Thus we have proved the lemma.
Lemma 4.2. The extended Lambert transform $\mathfrak{L}_{A}: \mathscr{B}_{1} \rightarrow \mathscr{B}_{2}$ is a linear map.
Proof. Let $\left[f_{n} / \delta_{n}\right],\left[g_{n} / \epsilon_{n}\right] \in \mathscr{B}_{1}$ and $\alpha, \beta \in \mathbb{C}$. By using the linearity of \mathcal{L}_{A} : $\mathscr{E}^{\prime}((0, \infty)) \rightarrow \mathscr{E}((0, \infty))$ and by Theorem 2.1. we get $\mathfrak{L}_{A}\left(\alpha\left[f_{n} / \delta_{n}\right]+\beta\left[g_{n} / \epsilon_{n}\right]\right)$
$=\mathfrak{L}_{A}\left[\left(\left(\alpha f_{n}\right) * \epsilon_{n}+\left(\beta g_{n}\right) * \delta_{n}\right) /\left(\delta_{n} * \epsilon_{n}\right)\right]$
$=\mathfrak{L}_{A}\left[\left(\alpha\left(f_{n} * \epsilon_{n}\right)+\beta\left(g_{n} * \delta_{n}\right)\right) /\left(\delta_{n} * \epsilon_{n}\right)\right]$
$=\left[\mathcal{L}_{A}\left(\alpha\left(f_{n} * \epsilon_{n}\right)+\beta\left(g_{n} * \delta_{n}\right)\right) / \mathcal{L}_{A}\left(\delta_{n} * \epsilon_{n}\right)\right]$
$=\left[\left(\alpha \mathcal{L}_{A}\left(f_{n} * \epsilon_{n}\right)+\beta \mathcal{L}_{A}\left(g_{n} * \delta_{n}\right)\right) / \mathcal{L}_{A}\left(\delta_{n} * \epsilon_{n}\right)\right]$
$=\left[\left(\alpha\left(\mathcal{L}_{A} f_{n}\right) \otimes\left(\mathcal{L}_{A} \epsilon_{n}\right)+\beta\left(\mathcal{L}_{A} g_{n}\right) \otimes\left(\mathcal{L}_{A} \delta_{n}\right)\right) /\left(\mathcal{L}_{A} \delta_{n}\right) \otimes\left(\mathcal{L}_{A} \epsilon_{n}\right)\right]$
$=\left[\alpha\left(\mathcal{L}_{A} f_{n}\right) / \mathcal{L}_{A} \delta_{n}\right]+\left[\beta\left(\mathcal{L}_{A} g_{n}\right) / \mathcal{L}_{A} \epsilon_{n}\right]$
$=\alpha\left[\mathcal{L}_{A} f_{n} / \mathcal{L}_{A} \delta_{n}\right]+\beta\left[\mathcal{L}_{A} g_{n} / \mathcal{L}_{A} \epsilon_{n}\right]$
$=\alpha \mathfrak{L}_{A}\left[f_{n} / \delta_{n}\right]+\beta \mathfrak{L}_{A}\left[g_{n} / \epsilon_{n}\right]$
Hence the lemma follows.
Lemma 4.3. The extended Lambert transform $\mathfrak{L}_{A}: \mathscr{B}_{1} \rightarrow \mathscr{B}_{2}$ is one-to-one.
Proof. Let $X=\left[f_{n} / \delta_{n}\right], Y=\left[g_{n} / \epsilon_{n}\right] \in \mathscr{B}_{1}$. If $\mathfrak{L}_{A} X=\mathfrak{L}_{A} Y$ then we have

$$
\begin{equation*}
\mathcal{L}_{A} f_{n} \otimes \mathcal{L}_{A} \epsilon_{m}=\mathcal{L}_{A} g_{m} \otimes \mathcal{L}_{A} \delta_{n}, \forall m, n \in \mathbb{N} . \tag{4.6}
\end{equation*}
$$

Theorem 2.1 enables us to obtain

$$
\begin{equation*}
\mathcal{L}_{A}\left(f_{n} * \epsilon_{m}\right)=\mathcal{L}_{A}\left(g_{m} * \delta_{n}\right), \forall m, n \in \mathbb{N} \tag{4.7}
\end{equation*}
$$

By virtue of (1.9) it follows that

$$
\begin{equation*}
f_{n} * \epsilon_{m}=g_{m} * \delta_{n}, \text { as members of } \mathscr{E}^{\prime}((0, \infty)) \forall m, n \in \mathbb{N} \tag{4.8}
\end{equation*}
$$

Thus we get $X=Y$.
Lemma 4.4. The extended Lambert transform $\mathfrak{L}_{A}: \mathscr{B}_{1} \rightarrow \mathscr{B}_{2}$ is onto.
The proof is straightforward.
Theorem 4.5. The extended Lambert transform $\mathfrak{L}_{A}: \mathscr{B}_{1} \rightarrow \mathscr{B}_{2}$ is continuous with respect to the δ-convergence.

Proof. Let $X_{n} \xrightarrow{\delta} X$ as $n \rightarrow \infty$ in \mathscr{B}_{1}. Then by Lemma 3.1, there exists $f_{n, k}, f_{k} \in$ $\mathscr{E}^{\prime}((0, \infty)), \forall n, k \in \mathbb{N}$ and $\left(\delta_{k}\right) \in \Delta_{+}$such that $X_{n}=\left[f_{n, k} / \delta_{k}\right], X=\left[f_{k} / \delta_{k}\right]$ and for each $k \in \mathbb{N}$,

$$
\begin{equation*}
f_{n, k} \rightarrow f_{k} \text { as } n \rightarrow \infty \text { in } \mathscr{E}^{\prime}((0, \infty)) \tag{4.9}
\end{equation*}
$$

Applying Theorem 2.2, we get that for each $k \in \mathbb{N}$,

$$
\begin{equation*}
\mathcal{L}_{A} f_{n, k} \rightarrow \mathcal{L}_{A} f_{k} \text { as } n \rightarrow \infty \text { in } \mathscr{E}((0, \infty)) \tag{4.10}
\end{equation*}
$$

Being for each $n \in \mathbb{N}, \mathfrak{L}_{A} X_{n}=\left[\mathcal{L}_{A} f_{n, k} / \mathcal{L}_{A} \delta_{k}\right]$ and $\mathfrak{L}_{A} X=\left[\mathcal{L}_{A} f_{k} / \mathcal{L}_{A} \delta_{k}\right]$, again by Lemma 3.1, it follows that $\mathfrak{L}_{A} X_{n} \rightarrow \mathfrak{L}_{A} X$ as $n \rightarrow \infty$ in \mathscr{B}_{2}.

It is interesting to note that the operations $*$ and \otimes can be extended as binary operations on \mathscr{B}_{1} and \mathscr{B}_{2} by

$$
\begin{aligned}
{\left[f_{n} / \delta_{n}\right] *\left[g_{n} / \epsilon_{n}\right] } & =\left[\left(f_{n} * g_{n}\right) / \delta_{n} * \epsilon_{n}\right] \\
{\left[F_{n} / \mathcal{L}_{A} \delta_{n}\right] \otimes\left[G_{n} / \mathcal{L}_{A} \epsilon_{n}\right] } & =\left[\left(F_{n} \otimes G_{n}\right) /\left(\mathcal{L}_{A} \delta_{n} \otimes \mathcal{L}_{A} \epsilon_{n}\right)\right] .
\end{aligned}
$$

As a consequence of Theorem 2.1, the exchange formula of generalized Lambert transform holds in the context of Boehmians as follows.

Theorem 4.6. If $X, Y \in \mathscr{B}_{1}$ and $f \in \mathscr{D}((0, \infty))$ then (1) $\mathfrak{L}_{A}(X * Y)=\mathfrak{L}_{A} X \otimes \mathfrak{L}_{A} Y$; (2) $\mathfrak{L}_{A}(X * f)=\mathfrak{L}_{A} X \otimes \mathcal{L}_{A} f$.

Theorem 4.7. The extended Lambert transform $\mathfrak{L}_{A}: \mathscr{B}_{1} \rightarrow \mathscr{B}_{2}$ is continuous with respect to the Δ-convergence.

Proof. Let $X_{n} \xrightarrow{\Delta} X$ as $n \rightarrow \infty$ in \mathscr{B}_{1}. Then there exist $\left(\delta_{n}\right) \in \Delta_{+}$and $f_{n} \in$ $\mathscr{E}^{\prime}((0, \infty))$ such that $\left(X_{n}-X\right) * \delta_{n}=\left[\left(f_{n} * \delta_{k}\right) / \delta_{k}\right], \forall n \in \mathbb{N}$ and $f_{n} \rightarrow 0$ as $n \rightarrow \infty$ in $\mathscr{E}^{\prime}((0, \infty))$. Using the continuity of the generalized Lambert transform on $\mathscr{E}^{\prime}((0, \infty))$, we get $\mathcal{L}_{A} f_{n} \rightarrow 0$ as $n \rightarrow \infty$ in $\mathscr{E}((0, \infty))$. Using Theorems 2.1, 4.2, 4.6, for each $n \in \mathbb{N}$ we obtain

$$
\begin{aligned}
\left(\mathfrak{L}_{A} X_{n}-\mathfrak{L}_{A} X\right) \otimes \mathcal{L}_{A} \delta_{n} & =\mathfrak{L}_{A}\left(\left(X_{n}-X\right) * \delta_{n}\right) \\
& =\left[\mathcal{L}_{A}\left(f_{n} * \delta_{k}\right) / \mathcal{L}_{A} \delta_{k}\right] \\
& =\left[\left(\mathcal{L}_{A} f_{n} \otimes \mathcal{L}_{A} \delta_{k}\right) / \delta_{k}\right]
\end{aligned}
$$

and hence $\mathfrak{L}_{A} X_{n} \xrightarrow{\Delta} \mathfrak{L}_{A} X$ as $n \rightarrow \infty$ in \mathscr{B}_{2}.

Acknowledgement. The authors would like to thank the anonymous referee for his/her valuable suggestions.

References

[1] J. J. Betancor, M. Linares and J. M. R. Méndez, The Hankel transform of integrable Boehmians, Appl. Anal. 58 (1995) 367 - 382.
[2] J. J. Betancor, M. Linares and J. M. R. Méndez, Ultraspherical transform of summable Boehmians, Math. Japon. 44 (1996) $81-88$.
[3] R. R. Goldberg, An inversion of generalized Lambert transforms, Duke Math. J. 25 (1958) 459-476.
[4] N. Hayek, B. J. González and E. R. Negrin, The generalized Lambert transform on distributions of compact support, J. Math. Anal. Appl. 275 (2002) 938 - 944.
[5] V. Karunakaran and R. Roopkumar, Boehmians and their Hilbert transforms, Integral Transforms Spec. Funct. 13 (2002) 131 - 141.
[6] V. Karunakaran and R. Roopkumar, Ultra Boehmians and their Fourier transforms, Fract. Calc. Appl. Anal. 5 (2) (2002) 181 - 194.
[7] J. Mikusiński and P. Mikusiński, Quotients de suites et leurs applications dans l'anlyse fonctionnelle, C. R. Acad. Sc. Paris 293 (1981) Sér. I, 463 - 464.
[8] P. Mikusiński, Convergence of Boehmians, Japan. J. Math. 9 (1983) 159 - 179.
[9] P. Mikusiński, The Fourier transform of tempered Boehmians, Fourier Analysis, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York, (1994) 303 - 309.
[10] P. Mikusiński, A. Morse and D. Nemzer, The two sided Laplace Transform for Boehmians, Integral Transforms Spec. Funct. 2 (3) (1994) $219-230$.
[11] E. R. Negrin, The Lambert transform on $\mathscr{E}^{\prime}(I)$, Portugal. Math. 50 (1993) $359-363$.
[12] D. Nemzer, The Laplace transform on a class of Boehmians, Bull. Austral. Math. Soc. 46 (1992) 347 - 352.
[13] R. Roopkumar, Wavelet analysis on a Boehmian Space, Int. J. Math. Math. Sci. 2003 (15) (2003) 917 - 926.
[14] R. Roopkumar, On extension of Fourier transform, Int. J. Math. Game Theory Algebra 13 (2003) $465-474$.
[15] R. Roopkumar, Generalized Radon transform, Rocky Mountain J. Math. 36 (4) (2006) 1375 - 1390.
[16] R. Roopkumar, Stieltjes transform for Boehmians, Integral Transforms Spec. Funct. 18 (11) (2007) $845-853$.
[17] R. Roopkumar, Mellin transform for Boehmians, Bull. Inst. Math. Acad. Sinica, 4 (2009) 75 -96.
[18] R. Roopkumar, An Extension of distributional wavelet transform, Colloq. Math., 115 (2) (2009) 195 - 206.
[19] R. Roopkumar, Convolution theorems for wavelet transform on tempered distributions and their extensions to tempered Boehmians, Asian-Eur. J. Math., 2 (1), (2009) 115 - 125
[20] R. Roopkumar, Ridgelet transform on square integrable Boehmians, Bull. Korean Math. Soc., 46 (5), (2009) 835 - 844.
[21] Ah. I. Zayed and P. Mikusiński, On the extension of the Zak transform, Methods Appl. Anal. 2 (2) (1995) $160-172$.
[22] D. V. Widder, An inversion of the Lambert transform, Math. Mag. 23 (1950) 171 - 182.
[23] A. H. Zemanian Generalized Integral Transformations, John Wiley \& Sons Inc., New York, 1968.
R. Roopkumar

Department of Mathematics, Alagappa University, Karaikudi - 630 003, India.
E-mail address: roopkumarr@rediffmail.com
E. R. Negrin

Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna, Canary Islands, Spain.

E-mail address: enegrin@ull.es

[^0]: 2000 Mathematics Subject Classification. 44A15, 44A35.
 Key words and phrases. Boehmians, convolution, distributions of compact support, generalized Lambert transform.
 (c) 2010 Universiteti i Prishtinës, Prishtinë, Kosovë.

 Submitted March, 2010. Published April, 2010.

