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ON KENMOTSU MANIFOLD

AVIK DE

ABSTRACT. The object of the present paper is to construct an example of a
three-dimensional Kenmotsu manifold with n-parallel Ricci tensor. Condition
for a vector field to be Killing vector field in Kenmotsu manifold is obtained.

1. Introduction

The notion of Kenmotsu manifolds was defined by K. Kenmotsu [9]. Kenmotsu

proved that a locally Kenmotsu manifold is a warped product I x N of an interval
I and a Kaehler manifold N with warping function f(¢) = se!, where s is a non-
zero constant. Kenmotsu manifolds were studied by many authors such as G. Pitis
[14], De and Pathak [6], Jun, De and Pathak [8], Binh, Tamassy, De and Tarafdar
[5], Bagewadi and colaborates [2], [3], [4],0zgur [12],[13] and many others. In [6],
the authors proved that a three-dimensinal Kenmotsu manifold with n-parallel
Ricci tensor is of constant scalar curvature. In the present paper we like to verify
this theorem by a concrete example. We also like to obtain the condition for a
vector field in a Kenmotsu manifold to be Killing vector field. The present paper
is organized as follows:
In section 2 we recall some preliminary results. Section 3 contains an example
of three-dimensional Kenmotsu manifold satisfying n—parallel Ricci tensor. In
Section 4 we deduce conditions for a vector field in a Kenmotsu manifold to be
Killing.

2. Preliminaries

Let M?"*1(¢,&,m,g) be an almost contact Riemannian manifold, where ¢ is a
(1,1) tensor field, n is a 1-form and g is the Riemannian metric. It is well known

that [1], [16]

¢ =0, n(@X)=0, n(¢) =1, (2.1)
¢*(X) = =X +(X)E, (2.2)

9(X, &) = n(X), (2.3)
9(¢X,9Y) = g(X,Y) = n(X)n(Y), (2.4)
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for any vector fields X, Y on M . If, moreover,
Vxé =X —n(X), (2.6)

where V denotes the Riemannian connection of g, then (M, ¢,&,n, g) is called an
almost Kenmotsu manifold [9)].
In Kenmotsu manifolds the following relations hold[9]:

(Vxn)Y = g(¢X, ¢Y),
n(R(X,Y)Z) =n(Y)g(X, Z) —n(X)g(Y, Z),
R(X,Y)§ =n(X)Y —n(Y)X,
(@) R X)Y =n(Y)X —g(X,Y)E, (b) R(EX)E=X—n(X)E,  (
S(¢X,¢Y) = S(X.Y) + 2nn(X)n(Y), (
S(X,€) = —2nn(X), (
(VZzR)(X,Y){ = g(Z,X)Y — g(Z.Y)X - R(X,Y)Z, (

where R is the Riemannian curvature tensor and S is the Ricci tensor. In a
Riemannian manifold we also have

9(R(W, X)Y, Z) + g(R(W, X)Z,Y) = 0, (2.14)
for every vector fields X,Y, Z.

3. Example of a three-dimensional Kenmotsu manifold with n-parallel
Ricci tensor

Definition 3.1. The Ricci tensor S of a Kenmotsu manifold is called n-parallel
if it satisfies
(VxS)(¢Y,9Z) = 0. (3.1)

The notion of Ricci n—parallelity for Sasakian manifolds was introduced by M.
Kon [11].

In [6] the authors proved that a three-dimensional Kenmotsu manifold has -
parallel Ricci tensor if and only if it is of constant scalar curvature. In this section
we verify this theorem by a concrete example.

We consider the three-dimensional manifold M = {(z,y,2) € R3, (x,y,2) #
(0,0,0)}, where (x,y, z) are the standard coordinates in R®. The vector fields

0 0 0

el =2—, €ey=2z—, €e3= —za

Ox oy

are linearly independent at each point of M. Let g be the Riemannian metric
defined by

gler,e3) = glea,e3) = gler,e2) =0, g(er,e1) = glea,e2) = g(es, e3) = 1.
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Let 1 be the 1-form defined by n(Z) = g(Z, e3) for any Z € x(M). Let ¢ be the
(1,1) tensor field defined by ¢(e1) = —ea, ¢(e2) = e1, ¢(e3) = 0. Then using the
linearity of ¢ and g we have

n(es) =1, ¢*Z=-Z+n(Z)es, g(¢Z,¢W)=g(Z,W)—n(Z)n(W),

for any Z,W € x(M). Thus for e3 = &, (¢,£,m,9) defines an almost contact
metric structure on M.

Let V be the Levi-Civita connection with respect to the metric g. Then we
have

le1,e2] =0, [e1,e3] =e1, [e2,e3] =ea.

The Rimennian connection V of the metric g is given by
29(VxY,Z) = Xg(Y,2)+Yy(Z,X) - Z9(X,Y)

which is known as Koszul’s formula.
Koszul’s formula yields

v6163 =€, v€1€2 = O? Velel = 07
v62€3 = €2, v€262 = O? Vegel = 07
Ve3€3 = 0, V6362 = O, Ve3€1 = 0.

From the above it follows that the manifold satisfies Vx¢& = X — n(X)¢, for
& = e3. Hence the manifold is a Kenmotsu Manifold. With the help of the above
results we can verify the following:

R(e1,ez)ea =0, R(ei,e3)e3 = —eq, R(ez,e1)e1 = 0,
R(eg, e3)es = —ea, R(es, e1)er = 0, R(es,ez)es = 0,
R(el, 62)63 = O, R(EQ, 63)61 = 0, R(eg, 61)62 = 0

Now from the definition of the Ricci tensor in three dimensional manifold we
get

3
S(X,Y)=> g(R(e;, X)Y,e;). (3.2)
=1

From the components of the curvature tensor and (3.2) we get the following
results.

5(61,61) = 07 5(62762> = 07 5(63763) = _27
S(er,e2) =0, S(e1,e3) =0, S(ez,e3) = 0.

With the help of the above results we can easily verify the following :

(VxS)(oe1, pea) = 0, (VxS)(pez, pes) =0, (VxS)(er, per) =0,
(VxS)(de1, pes) = 0, (VxS)(oes, per) =0, (VxS)(de2, pea) = 0,
(VxS)(pe2, per) =0, (VxS)(oes, pes) =0, (VxS)(des, pes) = 0.
Thus we note that
(VxS)(¢Y,9Z) =0, (3.3)

for all X,Y,Z € x(M). Hence the Ricci tensor is n-parallel.
Here we also note that the scalar curvature of the manifold is —2 which is
constant.
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4. Conditions for a vector field in Kenmotsu manifold to be Killing

Definition 4.1. A vector field X on a Kenmotsu manifold is said to be conformal
Killing vector field[17] if
Lxg = py,
where p is a function on the manifold.
If p = 0, then the vector field X is said to be a Killing vector field.

Let the vector field X be a conformal Killing vector field on a Kenmotsu man-
ifold M?"+1. Then for a function p we get

(Lxg)(Y, Z) = pg(Y, Z). (4.1)

From (2.6) we get V¢£ = 0. So the integral curves are geodesics and we have from
(4.1), by putting Y = Z =¢

p=(Lxg)(& ).

Now

(Lxg)(§,§) =29(VeX,§).
Again

2Ve(9(X,€)) = 29(Ve X, §).
So, we have

p=(Lxg)(§§) =29(VeX,§) = 2Ve(g(X 5))- (4.2)

Now if X is orthogonal to &, p = 0 and hence (Lxg) = 0; i.e.,, X is a Killing
vector field. Thus we are in a position to state

Theorem 4.1. If a conformal Killing vector field X on a Kenmotsu manifold is
orthogonal to &, then X s Killing.

Let V be a vector field on a Kenmotsu manifold M?"*! such that Ly R = 0.
Now from (2.14) we have

9(R(W, X)Y, Z) + g(R(W, X)Z,Y) = 0.
Taking the Lie derivative of the above identity along V we get

(Lvg)(R(W, X)Y, Z) + (Lvg)(R(W, X)Z,Y) = 0. (4.3)
Putting W =Y = Z = ¢ in (4.3) and using (2.10)(b)we get

(Lyg)(X —n(X)¢,€) + (Lvg)(X —n(X)E,€) = 0,

or,

(Lvg)(X, &) = n(X)(Lvg)(&, &) (4.4)
Again putting W =Y = ¢ in (4.3) and using (2.10)(a) we get
(Lvg)(X = n(X)E, Z) + (Lvg)(n(2)X — g(X, 2)¢,£) =0,
(Lvg)(X, Z) = n(X)(Lvg) (& Z) + n(Z)(Lvg)(X,§) (4.5)
- (Lvg)(§,§9(X, Z) = 0.
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By (4.4), (4.5) yields
(Lvg)(X,Z) = (Lvg)(& §)9(X, Z),

- (Lvg) = (Lvg) (€. E)g. (4.6)

From (2.12) we know S(&,£) = —2n. Applying Lie derivative on it and keeping
in mind that Ly R = 0 implies LyS = 0, we get

S(Lyv§, &) = 0.

But S(X,&) = —2n. So, Ly¢ = 0. Hence g(Ly&,£) = 0. Thus (Lyg)(&, &) = 0. So,
in view of (4.2) we get p = 0. In other words the vector field V is Killing vector
field. Thus we can state

Theorem 4.2. If a vector field V' on a Kenmotsu manifold leaves the curvature
tensor invariant, then V is Killing vector field.
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