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CERTAIN SUBCLASSES OF STRONGLY STARLIKE AND

STRONGLY CONVEX FUNCTIONS DEFINED BY

CONVOLUTION

ALKA RAO , VATSALA MATHUR

Abstract. In the present paper certain subclasses of strongly starlike and

strongly convex functions defined by convolution with the generalized Hur-

witz -Lerch Zeta function are investigated. Some inclusion relations are also
mentioned as special cases of our main results.

1. Introduction And Preliminaries

Let A denote the class of analytic functions f(z) defined in the open unit disk
D = { z ∈ C; ∣ z ∣ < 1} by

f(z) = z +

∞∑
k=2

akz
k. (1.1)

If g ∈ A is given by

g(z) = z +

∞∑
k=2

bkz
k,

then the Hadamard product (or convolution) f ∗ g is defined by

(f ∗ g) (z) = z +

∞∑
k=2

akbkz
k.

We say that a function f ∈ A is starlike of order � and belongs to the class S∗(�),if
it satisfies the inequality:

Re

(
zf ′(z)

f(z)

)
> � (z ∈ D; 0 ≤ � < 1) . (1.2)

A function f ∈ A is called strongly starlike of order � and f ∈ S∗s (�), if it satisfies
the inequality: ∣∣∣∣arg

(
zf ′(z)

f(z)

)∣∣∣∣ < �

2
� (z ∈ D; 0 < � ≤ 1).
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The class K of convex functions of order �, is a subclass of A where the functions
f ∈ A satisfy the inequality:

Re

(
1 +

zf ′′(z)

f ′(z)

)
> � (z ∈ D; 0 ≤ � < 1). (1.3)

We denote by Kc (�) a class of strongly convex functions of order � , if the following
inequality holds: ∣∣∣∣arg

(
1 +

zf ′′(z)

f ′(z)

)∣∣∣∣ < �

2
� (z ∈ D; 0 ≤ � < 1).

A function f(z) ∈ A is called strongly starlike of order � and type � (say f ∈
S∗s (�, �)), if it satisfies the inequality:∣∣∣∣arg

(
zf ′(z)

f(z)
− �

)∣∣∣∣ < �

2
� (z ∈ D; 0 ≤ � < 1, 0 < � ≤ 1). (1.4)

Also, that a function f(z) ∈ A is in the class of strongly convex functions of order
� and type � (denoted by f ∈ Kc (�, �)), if it satisfies the following inequality:∣∣∣∣arg

(
1 +

zf ′′ (z)

f ′ (z)
− �

)∣∣∣∣ < �

2
� (z ∈ D; 0 ≤ � < 1, 0 < � ≤ 1). (1.5)

It readily follows that

f(z) ∈ Kc (�, �) ⇐⇒ zf ′(z) ∈ S∗s (�, �)

and we note that
S∗s (0, �) = S∗s (�) ;Kc (0, �) = Kc (�)

and
S∗s (�, 1) = S∗s (�) ;Kc (�, 1) = Kc (�) .

Srivastava and Attiya [13] introduced and investigated following family of linear
operator which was further studied by Li [6] and Prajapat and Goyal [11]. This
operator is defined in terms of the Hadamard product of two analytic functions by

J�,�f = H�,� ∗ f(z) (z ∈ D;� ∈ C, � ∈ C∖Z0; f ∈ A) , (1.6)

where
H�,� = (1 + �)

�
['(z, �, �)− � �] (z ∈ D) (1.7)

and � is the generalized Hurwitz-Lerch Zeta function [14] defined by

� (z, �, �) =

∞∑
k=0

zk

(�+ k)
�

(1.8)

(� ∈ C, � ∈ C/Z0 wℎen ∣z∣ < 1,Re(�) > 1 wℎen ∣z∣ = 1) .

The function J�,�f(z) is also in the class A, since by using (1.1), we can write

J�,�f(z) = z +

∞∑
k=2

(
1 + �

k + �

)�
akz

k. (1.9)

Recently, a further extension of the Srivastava Attiya operator J�,� was introduced
and investigated by Darus and Al-Shaqsi [3] (see also Xiang et al.[15]) which is
defined by

Jc,d�,�f(z) = z +

∞∑
K=2

(
1 + �

k + �

)�
c! (k + d− 2) !

(d− 2) ! (k + c− 1) !
akz

k. (1.10)
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(z ∈ D,� ∈ C, � ∈ C∖Z0; f ∈ A ; c > −1 and d > 0) .

It may be noted here that the operator Jc,d�,� contains the known Choi-Saigo-

Srivastava operator [2], the Srivastava-Attiya operator [13], the Owa and Srivastava
integral operator [9], the generalized Benardi-Libera-Livingston integral operator,
the operator, closely related to the multiplier transformation studied by Flett [4]
and Li [6], fractional differintegral operator studied by Patel and Mishra [10] and
several other operators ( see also [1], [5] and [7] ). We now observe some special
cases of the operator (1.10) which are given below.

J1,2
0,�f(z) = f(z), (1.11)

J1,2
1,0f(z) = z +

∞∑
k=2

1

k
akz

k =

∞∫
0

f (t)

t
dt, (1.12)

J1,2
1,b f(z) = z +

∞∑
k=2

(
1+b
k+b

)
akz

k

= 1+b
zb

z∫
0

tb−1f(t)dt = F (f)(z), b > −1,
(1.13)

J1,2
�,1f(z) = z +

∞∑
n=2

(
2

k + 1

)�
akz

k = I�f(z), (1.14)

where (1.12) and (1.13) are the well known Libera, generalized Benardi- Libera-
Livingston integral operators and (1.14) represents the operator closely related to
the multiplier transformation studied by Flett [4].
Using (1.10), it is easy to show that

z(Jc+1,d
�,� f)′(z) = (c+ 1)Jc,d�,�f (z)− cJc+1,d

�,� f (z) , (1.15)

z(Jc,d�+1,�f)′(z) = (�+ 1)Jc,d�,�f (z) − �Jc,d�+1,�f (z) , (1.16)

z(Jc,d�,�f)′(z) = dJc,d+1
�,� f (z)− (d−1) Jc,d�,�f (z) . (1.17)

Definition 1. We define a subclass of strongly starlike functions S∗s (�, �) by

S∗s (c, d;�, �;�, �) =

{
f : f ∈ A, Jc,d�,�f(z) ∈ S∗s (�, �)and

z(Jc,d�,�f)′(z)

(Jc,d�,�f)(z)
∕= �; z ∈ D

}
.

(1.18)
Definition 2. We define a subclass of strongly convex functions Kc (�, �) by

Kc (c, d;�, �;�, �) =

{
f : f ∈ A, Jc,d�,�f(z) ∈ Kc(�, �) and

(z(Jc,d�,�f)′)′(z)

(Jc,d�,�f)′(z)
∕= �; z ∈ D

}
.

(1.19)
From the above two definitions, the following relation holds:

f (z) ∈ Kc (c, d;�, �;�, �)⇐⇒ zf ′ (z) ∈ S∗s (c, d;�, �;�, �) . (1.20)

Recently, Prajapat, Raina and Srivastava [12] and Prajapat and Goyal [11] have
studied some inclusion relations for certain subclasses of strongly starlike and
strongly convex functions involving a family of fractional integral and Srivastava
Attiya operators respectively. In the present work we shall pursue similar consid-
erations and investigate some inclusion relations for the newly defined subclasses
stated in Definitions 1 and 2 above.
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To establish our main results, we shall apply the following lemma:
Lemma 1[8] Let a function p(z) be analytic in D with p(0) = 1 , p′(0) = 0 and
p(z) ∕= 0 (z ∈ D). If there exists a point z0 ∈ D such that

∣arg (p(z))∣ < �

2
� (∣z∣ < ∣z0∣) and ∣arg (p(z0))∣ = �

2
� (0 < � ≤ 1),

then
z0p
′ (z0)

p (z0)
= ik�,

where

k ≥ 1

2
(a+

1

a
) ≥ 1 wℎen arg (p (z0)) =

�

2
�,

k ≤ −1

2
(a+

1

a
) ≤ −1 wℎen arg (p (z0)) = −�

2
�,

and
(p(z0))1/� = ±ia (a > 0).

2. Main Results

Our first main result is given as follows:
Theorem 1. Let 0 ≤ � < 1, 0 < � ≤ 1, � ∈ C and min{� + �, c + 1, d} > 0,
then

S∗s (c, d;�, � ;�, �) ⊂ S∗s (c, d;�+ 1.� ;�, �) . (2.1)

Proof. Following [12], let us assume that the function f belongs the class S∗s (c, d;�, �;�, �)
and define a function p(z) by

p(z) =
1

1 �

(
z(Jc,d�+1,�f)′(z)

(Jc,d�+1,�f)(z)
− �

)
(z ∈ D). (2.2)

The function (2.2) is analytic in the unit disk D and p(0) = 1. Differentiation and
using (1.16), we find that

1

1 �

(
z(Jc,d�,�f)′(z)

(Jc,d�,�f)(z)
− �

)
= p(z) +

zp′(z)

�+ �+ (1−�)p(z)
. (2.3)

Hence, the relations (2.2) and (2.3) imply that p(z) ∕= 0 and ∣arg(p(z))∣ < �
2� for 0 <

� ≤ 1 in D. Otherwise, there exists a z0 in D where the function p(z) satisfies the
conditions of Lemma 1 and in the case when arg(p(z0)) = �

2� and (p(z0))1/� =
ia, we get

arg

(
1

(1 �)

(
z(Jc,d�,�f)

′(z0)

(Jc,d�,�f)(z0)
− �

))
= arg(p(z0)) + arg

(
1 + zp′(z0)/p(z0)

�+�+(1 �)p(z0)

)
= �

2� + tan 1
(

k�(�+�+(1 �)a� cos ��2 )

(�+�)2+(1 �)2a2�+2(�+�)(1 �)a� cos ��2 +k�(1 �)a� sin ��
2

)
≥ �

2�
(
k ≥ 1

2 (a+ 1
a ) ≥ 1 and 0 < � ≤ 1

)
.

(2.4)

But this leads to a contradiction, as f ∈ S∗s (c, d;�, �;�, �).
On the same lines, we can show that when arg(p(z0)) = −�2� and (p(z0))1/� = −ia,

arg

(
1

(1 �)

(
z(Jc,d�,�f)′(z0)

(Jc,d�,�f)(z0)
− �

))
≤ −�

2
�

(
k ≤ −1

2
(a+

1

a
) ≤ −1 and 0 < � ≤ 1

)
.
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This is again a contradiction to the fact that f ∈ S∗s (c, d;�, �;�, �) . Therefore,
∣arg(p(z))∣ < �

2� in D and f ∈ S∗s (c, d;�+ 1, �;�, �) , which completes the proof
of Theorem 1.

Theorem 2. Let 0 ≤ � < 1, 0 < � ≤ 1 � ∈ C and min{�+ �, c+ 1, d} > 0, then

Kc (c, d;�, �;�, �) ⊂ Kc (c, d;�+ 1, � ;�, �) .

Proof. In view of Theorem 1 and relation (1.20), we find that

f (z) ∈ Kc (c, d;�, �;�, �) =⇒ zf ′ (z) ∈ S∗s (c, d;�, �;�, �)

=⇒ zf ′ (z) ∈ S∗s (c, d;�+ 1, �;�, �)

=⇒ f (z) ∈ Kc (c, d;�+ 1, � ;�, �) .

This completes the proof.

Remark 1. Above two theorems imply the following inclusions:

S∗s (c, d;�, �;�, �) ⊂ S∗s (c, d;�+ 1, �;�, �) ..... ⊂ S∗s (c, d;�+ n, �;�, �) ,

Kc (c, d;�, �;�, �) ⊂ Kc (c, d;�+ 1, �;�, �) ..... ⊂ Kc (c, d;�+ n, �;�, �) ,

for n ∈ N .
Our next result follows by taking into account the relation (1.15) and is given by:
Theorem 3. Let 0 ≤ � < 1, 0 < � ≤ 1, � ∈ C, � ∈ C∖Z−0 and min{c + �, c +
1, d} > 0, then

S∗s (c, d;�, �;�, �) ⊂ S∗s (c+ 1, d;�, �;�, �) .

Proof. The above inclusion can easily be proved by applying the relation (1.15)
and the method followed in Theorem 1.

Theorem 4. Let 0 ≤ � < 1, 0 < � ≤ 1, � ∈ C, � ∈ C∖Z−0 and min{c + �, c +
1, d} > 0, then

Kc (c, d;�, �;�, �) ⊂ Kc (c+ 1, d;�, �;�, �) .

Proof. With the help of (1.15) and Theorem 3, the result given by Theorem 4
can easily be proved by following the proof of Theorem 2.

Next, we prove the following result.
Theorem 5. Let 0 ≤ � < 1, 0 < � ≤ 1, � ∈ C, � ∈ C∖Z−0 and min{c + 1, d, d +
�− 1} > 0, then

S∗s (c, d+ 1;�, �;�, �) ⊂ S∗s (c, d;�, �;�, �) .

Proof. First we set

p(z) =
1

1 �

(
z(Jc,d�,�f)′(z)

(Jc,d�,�f)(z)
− �

)
(z ∈ D),

for f ∈ S∗s (c, d+ 1;�, �;�, �).
Now using (1.17), we get

d+ �− 1 + (1− �) p (z) = d

(
Jc,d+1
�,� f

)
(z)(

Jc,d�,�f
)

(z)
.
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Following the steps similar to that of Theorem 1, we can show that f ∈ S∗s (c, d;�, �;�, �),
which establishes the desired inclusion relation.

The following results Theorems 6-8 can be established by following the methods
given in [11] and [12]. Their proof-details can well be omitted here.
Theorem 6. Let 0 ≤ � < 1, 0 < � ≤ 1, � ∈ C, � ∈ C∖Z−0 and min{c + 1, d, d +
�− 1} > 0, then

Kc (c, d+ 1;�, �;�, �) ⊂ Kc (c, d;�, �;�, �) .

Theorem 7. Let f ∈ A, 0 ≤ � < 1, 0 < � ≤ 1, � ∈ C, � ∈ C∖Z−0 and min{b +

1, b+ �, c+ 1, d} > 0, and also let

(
z(Jc,d�,�F (f))′(z)

(Jc,d�,�F (f))(z)

)
∕= � (z ∈ D) , then

f(z) ∈ S∗s (c, d;�, �;�, �) =⇒ F (f(z)) ∈ S∗s (c, d;�, �;�, �) ,

where the operator F is defined by (1.13).

Theorem 8. Let f ∈ A and let

(
(z(Jc,d�,�F (f))′)′(z)

(Jc,d�,�F (f))′(z)

)
∕= � (z ∈ D) under the

restrictions to the parameters given in Theorem 7, then

f(z) ∈ Kc (c, d;�, �;�, �) =⇒ F (f(z)) ∈ Kc (c, d;�, �;�, �) .

3. Special cases of main results

First we note the following consequences of Theorems 1 and 2 when � = 1.

Corollary 1. Let f ∈ A and z
(
Jc,d�+1,�I


 (f(z))
)′
∕= �

(
Jc,d�+1,�I


 (f)
)

(z) , z ∈ D.

If ∣∣∣∣∣∣∣arg

⎛⎜⎝z
(
Jc,d�+
,� I


f (z)
)′

Jc,d�+
,�I

f (z)

− �

⎞⎟⎠
∣∣∣∣∣∣∣ <

�

2
�, (0 ≤ � < 1, 0 < � ≤ 1, 
 > 0)

then I
f(z) ∈ S∗s (c, d;�+ 1, �;�, �) , where I
 is the operator (1.14).

Corollary 2. Let f ∈ A and

(
z
(
Jc,d�+1,�I


 (f(z))
)′)′

∕= �
(
Jc,d�+1,�I


 (f)
)′

(z) , (z ∈

D). If∣∣∣∣∣∣∣∣∣arg

⎛⎜⎜⎜⎝
(
z
(
Jc,d�+
,� I


f (z)
)′)′

(
Jc,d�+
,�I


f (z)
)′ − �

⎞⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣ <

�

2
�, (0 ≤ � < 1, 0 < � ≤ 1, 
 > 0)

then I
f(z) ∈ Kc (c, d;�+ 1, �;�, �) , where I
 is the operator (1.14).

If we put � = 
 = 1 and c = 1, d = 2 in the above Corollaries 1 and 2, we
obtain Corollaries 2 and 4 of [11] .
Upon setting � = � = 1, c = 1, d = 2, and � = 1 in Theorems 1 and 2 we obtain
the following:
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Corollary 3. Let f ∈ A and zf(z) ∕= (�+ 1)
z∫
0

f(t)dt; (z ∈ D). If f(z) satis-

fies following condition Re (zf(z)) ∕= (�+ 1) Re(
z∫
0

f(t)dt) (0 ≤ � < 1) , then

4

z

z∫
0

1

u

u∫
0

f(t)dt du ∈ S∗ (�), (z, u ∈ D).

Corollary 4. Let f ∈ A and z2f ′(z) ∕= (�+ 1)

(
zf(z)−

z∫
0

f(t)dt

)
; z ∈ D. If f(z)

satisfies the condition,

Re
(
z2f ′(z)

)
∕= (�+ 1) Re

⎛⎝(�+ 1)

⎛⎝zf(z)−
z∫

0

f(t)dt

⎞⎠⎞⎠ (0 ≤ � < 1),

then

4

z

z∫
0

1

u

u∫
0

f(t)dt du ∈ K (�), (z, u ∈ D).

Remark 2. If we put c = 1, d = 2 Theorems 1, 2 , 7 and 8 would reduce to
the corresponding results due to Prajapat and Goyal [11]. Further by setting the
parameter � = 1 , the results due to Liu [7] follow for � > 0.
If � = 0 in our results the corresponding results for Choi-Saigo-Srivastava operator
[2] can be easily obtained.
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