Bulletin of Mathematical Analysis and Applications ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 2 Issue 3, Pages 100-108.

RIESZ PROJECTION AND WEYL'S THEOREM FOR HEREDITARILY ABSOLUTE-(p,r)-PARANORMAL OPERATORS

D.SENTHILKUMAR AND PRASAD.T

ABSTRACT. A bounded linear operator $T \in B(H)$, H a Hilbert space is hereditarily absolute-(p,r)-paranormal (HAP), if when ever $M \subseteq H$ is a closed invariant subspace of T, the restriction T|M of T to M is absolute-(p,r)paranormal. We study the necessary and sufficient condition for the selfadjoinness of Riesz Projection P_{λ} associated with $\lambda \in \sigma(T)$, T is hereditarily absolute-(p,r)-paranormal and show that Weyl's theorem holds for hereditarily absolute-(p,r)-paranormal operators.

1. INTRODUCTION AND PRILIMINARIES

Let B(H) denote the algebra of all bounded linear operators on infinite dimensional separable Hilbert space H. An operator $T \in B(H)$ is said to be p-paranormal if $|||T|^p U|T|^p x|| \ge |||T|^p x||^2$ for every unit vector x and p > 0, where the polar decomposition of T is defined by T = U|T|. The class of p-paranormal operators was introduced in [11], and have since been studied in [26] and [15]. An operator $T \in B(H)$ is said to be absolute (p,r)-paranormal for p > 0 and r > 0 if $|||T|^p |T^*|^r x||^r \ge |||T^*|^r x||^{p+r}$ for every unit vector x and normaloid if r(T) = ||T||, where r(T) denotes the spectral radius of T. The class of absolute (p,r)-paranormal operators have defined and studied by Yamazaki and Yanagida [27]. It is well known that every absolute (p,p)-paranormal is p-paranormal and every absolute (k,1)-paranormal is absolute-k-paranormal, see [27].

²⁰⁰⁰ Mathematics Subject Classification. 47A10,47A11.

Key words and phrases. Absolute-(p,r)-paranormal operators, Riesz projection, Weyl's theorem and single valued extension property.

^{©2010} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted February 22, 2010. Published August 20, 2010.

The quasinilpotent part $H_0(T)$ and the analytic core K(T) of a Hilbert space operator T are defined by

$$H_0(T) = \{ x \in H : \lim_{n \to \infty} \|T^n x\|^{\frac{1}{n}} = 0 \}$$

and

 $K(T) = \{x \in X : \text{there exists a sequence } \{x_n\} \subset X \text{ and } \delta > 0 \text{ for which } x = x_0, T(x_{n+1}) = x_n \text{ and } \|x_n\| \le \delta^n \|x\| \text{ for all } n = 1, 2, \dots\}.$

It is well known that $H_0(T)$ and K(T) are non - closed hyperinvariant subspaces of T such that $T^{-q}(0) \subseteq H_0(T)$ for all q=0, 1, 2, ... and TK(T)=K(T) [17]. An operator $T \in B(H)$ is said to be semi regular if T(H) is closed and $T^{-1}(0) \subset$ $T^{\infty}(H)=\bigcap_{n\in N} T^n(H)$. An operator T admits a generalized Kato decomposition , GKD for short , if there exists a pair of T - invarient closed subspaces (M, N) such that $H=M\oplus N$, the restriction T|M is quasinilpotent and T|N is semi regular. For more information, see [1] and [18].

If the range T(H) of $T \in B(H)$ is closed and $\alpha(T) = \dim(T^{-1}(0)) < \infty$ (resp., $\beta(T) = \dim(H/T(H)) < \infty$) then T is upper semi Fredholm (resp., lower semi Fredholm) operator. Let $\Phi_+(H)$ (resp., $\Phi_-(H)$) denote the semigroup of upper semi Fredholm (resp., lower semi Fredholm) operator on H. An operator $T \in B(H)$ is said to be semi Fredholm if $T \in \Phi_+(H) \cup \Phi_-(H)$ and Fredholm if $T \in \Phi_+(H) \cap \Phi_-(H)$. If T is semi Fredholm then the index of T is defined by

$$\operatorname{ind}(T) = \alpha(T) - \beta(T).$$

The ascent of T, $\operatorname{asc}(T)$, is the least non negative integer n such that $T^{-n}(0) = T^{-(n+1)}(0)$. If such n does not exist, then $\operatorname{asc}(T) = \infty$. The descent of T, $\operatorname{des}(T)$, is the least non negative integer n such that $T^n(H) = T^{n+1}(H)$. If such n does not exist, then $\operatorname{des}(T) = \infty$. We say that T is of finite ascent (resp., finite descent) if $\operatorname{asc}(T-\lambda) < \infty$ (resp., $\operatorname{des}(T-\lambda) < \infty$) for all complex numbers λ . It is well known that if $\operatorname{asc}(T)$ and $\operatorname{des}(T)$ are both finite then they are equal [14, Proposition 38.6].

An operator $T \in B(H)$ is Weyl if it is Fredholm of index zero and Browder if Tis Fredholm and $\operatorname{asc}(T) = \operatorname{des}(T) < \infty$. Let \mathbb{C} denote the set of complex numbers and let $\sigma(T)$ denote the spectrum of T. The Weyl spectrum $\sigma_w(T)$ and Browder spectrum $\sigma_b(T)$ of T are defined by

$$\sigma_w(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Weyl}\},\$$

$$\sigma_b(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Browder}\}.$$

Let $\pi_{00}(T)$ denote the set of eigenvalues of T of finite geometric multiplicity and let $\pi_0(T) := \sigma(T) \setminus \sigma_b(T)$ denote set of all Riesz points of T. According to Coburn [6], Weyl's theorem holds for T if

$$\sigma(T) \setminus \sigma_w(T) = \pi_{00}(T),$$

and that Browder's theorm holds for T if

$$\sigma(T) \setminus \sigma_w(T) = \pi_0(T).$$

Note that Weyl's theorem \implies Browder's theorem , see [13].

Hermann Weyl [25] examined the spectra of all compact perturbations T + K of a single hermitian operator T and discovered that $\lambda \in \sigma(T + K)$ for every compact operator K if and only if λ is not an isolated eigenvalue of finite multiplicity in $\sigma(T)$. This remarkable result is known as Weyl's theorem. Many mathematicians extended Weyl's theorem to several classes of operators including p-hyponormal [5], paranormal [4], w-hyponormal and Class A, see [12] and [22].

Let K(H) denote the ideal of all compact operators on H and let $\sigma_a(T)$ be the approximate point spectrum of $T \in B(H)$. The essential approximate point spectrum $\sigma_{ea}(T)$ is defined by

$$\sigma_{ea}(T) = \cap \{ \sigma_a(T+K) : K \in K(H) \}.$$

In [19], Rakočevič introduced the concept of a-Weyl's theorem. An operator $T \in B(H)$ holds a-Weyl's theorem if

$$\sigma_{ea}(T) = \sigma_a(T) \setminus \pi_{a0}(T),$$

where $\pi_{a0}(T) = \{\lambda \in \mathbb{C} : \lambda \in iso\sigma_a(T) \text{ and } 0 < \alpha(T-\lambda) < \infty\}$. This approximate point spectrum version of Weyl's theorem have been much investigated in [7] and [8].

An operator $T \in B(H)$ has the single valued extension property (SVEP) at $\lambda_0 \in \mathbb{C}$, if for every open disc D_{λ_0} centered at λ_0 the only analytic function $f : D_{\lambda_0} \to H$ which satisfies $(T - \lambda)f(\lambda) = 0$ for all $\lambda \in D_{\lambda_0}$ is the function $f \equiv 0$. We say that Thas SVEP if it has SVEP at every $\lambda \in \mathbb{C}$.

Let $T \in B(H)$ and let λ be an isolated point of $\sigma(T)$. If there exist a closed disc D_{λ} centered at λ that satisfies $D_{\lambda} \cap \sigma(T) = \{\lambda\}$, then the operator

$$P_{\lambda} = \frac{1}{2\pi i} \int_{\partial D_{\lambda}} (\lambda - T)^{-1} d\lambda$$

associated with λ is defined by familiar Cauchy integral[14] is called Riesz projection with respect to λ , which has the properties that $P_{\lambda}^2 = P_{\lambda}$, $P_{\lambda}T = TP_{\lambda}$, and $\sigma(T|P_{\lambda}H) = \{\lambda\}.$

Self-adjointness of Riesz Projection P_{λ} associated with $\lambda \in \sigma(T)$ for hyponormal operators has been proved by Stampfli [20] and this result was extended for whyponormal by Han, Lee and Wang [12], for class A and paranormal operators by Uchiyama ([23], [24]). Duggal [9] investigated the necessary and sufficient condition for the self-adjointness of Riesz Projection for operators of class CHN. In this paper, we show the necessary and sufficient condition for the self-adjointness of Riesz Projection associated with $\lambda \in iso\sigma(T)$ and Weyl's theorem holds for $T \in$ HAP.

2. Riesz projection and Weyl's Theorem

The class of p-paranormal operators inherit some of the properties of paranormal operators, as in the case, if T is invertible and p-paranormal then T^{-1} is p-paranormal [15]. If T is invertible and absolute (p,r)-paranormal, then T^{-1} is absolute-(r,p)-paranormal [27]. A part of an operator is a restriction of it to an invariant subspace. If T is paranormal then we see that every part of it is paranormal. Now we define class of hereditarily absolute-(p,r)-paranormal operators (HAP) as follows.

Definition 2.1. The class HAP of hereditarily absolute-(p,r)-paranormal operators between Hilbert Spaces consists of those operators $T \in B(H)$ for which, when ever $M \subseteq H$ is a closed invariant subspace of T, the restriction T|M of T to M is absolute-(p,r)-paranormal.

The class HAP is large; it contains , among others, the classes of hyponormal $(T \in B(H) : T^*T \ge TT^*)$, p-hyponormal $(T \in B(H) : (T^*T)^p \ge (TT^*)^p$, $0) and class A <math>(T \in B(H) : |T^2| \ge |T|^2)$ operators. Every class HAP operator is normaloid.

For hereditarily absolute-(p,r)-paranormal operators, isolated points of spectrum are simple poles of resolvent set.

Theorem 2.2. If $T \in HAP$, then every isolated point of $\sigma(T)$ is simple pole of the resolvent of T.

Proof. If $T \in HAP$ and λ is an isolated point of $\sigma(T)$, then

$$H = H_0(T - \lambda) \oplus K(T - \lambda)$$

where $H_0(T - \lambda) \neq \{0\}$ and $(T - \lambda)K(T - \lambda) = K(T - \lambda)$ [17]. If $\lambda = 0$, consider the hereditarily absolute (p,r)-paranormal operator $T|H_0(T)$. Since $T|H_0(T)$ is absolute (p,r)-paranormal, $T|H_0(T)$ is normaloid by [27, Theorem 8]. Therefore, $\sigma(T|H_0(T)) = \{0\}$ implies $T|H_0(T) = 0$. If $\lambda \neq 0$, we may assume $\lambda = 1$. Since $T|H_0(T-1)$ is hereditarily absolute (p,r) paranormal and $\sup ||(T|H_0(T-1))^n|| \leq 1$, where supremum is taken over all integers n, it follows that $T|H_0(T-1) = I|H_0(T-1)$ 1) by [16, Theorem 1.5.14] which implies that $H_0(T-1) = (T-1)^{-1}(0)$ and so $H_0(T - \lambda) = (T - \lambda)^{-1}(0)$. Hence $(T - \lambda)H = 0 \oplus (T - \lambda)K(T - \lambda) = 0 \oplus K(T - \lambda)$. Thus $H = (T - \lambda)^{-1}(0) \oplus (T - \lambda)H$. Hence λ is a simple pole of the resolvent of T.

An operator $T \in B(H)$ is said to be reguloid if λ is an isolated point of $\sigma(T)$ implies $(T-\lambda)^{-1}(0)$ and $(T-\lambda)H$ are complimented in H. Evidently, T is reguloid implies T is isoloid (i.e., every isolated point of $\sigma(T)$ is an eigenvalue of T). The following corollaries are immediate consequences of Theorem 2.2.

Corollary 2.3. If $T \in HAP$ then T is reguloid.

Corollary 2.4. If $T \in HAP$ then $\pi_0(T) = \pi_{00}(T)$.

Theorem 2.5. If $T \in HAP$ and $\lambda \in iso\sigma(T)$, then P_{λ} is self-adjoint if and only if $(T - \lambda)^{-1}(0) \subseteq (T^* - \overline{\lambda})^{-1}(0)$.

Proof. If $T \in HAP$ and $\lambda \in iso\sigma(T)$, then

$$H = H_0(T - \lambda) \oplus K(T - \lambda) = (T - \lambda)^{-1}(0) \oplus (T - \lambda)H$$

as a topological direct sum and ${\cal T}$ has matrix decomposition

 $T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix} \begin{pmatrix} (T - \lambda)^{-1}(0) \\ (T - \lambda)H \end{pmatrix}$ where $\sigma(T_1) = \{\lambda\}$ and $\sigma(T_3) = \sigma(T) \setminus \{\lambda\}$. Suppose that $(T - \lambda)^{-1}(0) \subseteq (T^* - \overline{\lambda})^{-1}(0)$. If $x = x_1 \oplus x_2 \in (T - \lambda)^{-1}(0)$, then $x_1 \in (T_1 - \lambda)^{-1}(0)$ and $x_2 = 0$. Since $(T - \lambda)^{-1}(0) \subseteq (T^* - \overline{\lambda})^{-1}(0)$, $(T^* - \overline{\lambda})(x_1 \oplus 0) = 0 \oplus T_2^* x_1 = 0$ and so T_2 is the zero operator. Thus $(T - \lambda)^{-1}(0)$ reduces T. Consequently, $P_{\lambda}^{-1}(0)^{\perp} = P_{\lambda}H$. Thus, P_{λ} is self-adjoint.

Conversely, suppose the Riesz Projection P_{λ} is self-adjoint. From [14, Theorem 49.1], $P_{\lambda}H = H_0(T-\lambda) = (T-\lambda)^{-1}(0)$ and $P_{\lambda}^{-1}(0) = K(T-\lambda) = (T-\lambda)H$. Since $P_{\lambda}H^{\perp} = P_{\lambda}^{-1}(0)$, and since $P_{\lambda}H^{\perp} = (T-\lambda)H^{\perp} = (T^* - \overline{\lambda})^{-1}(0)$, the condition $(T-\lambda)^{-1}(0) \subseteq (T^* - \overline{\lambda})^{-1}(0)$ is necessary.

Let M and N be linear subspaces of a Banach space X. Then M is said to be orthogonal to N, $M \perp N$, in the sense of G.Brikhoff, if $||x|| \leq ||x + y||$ for every $x \in M$ and $y \in N$. Note that in general this is not symmetric relation. when X is Hilbert Space it reduces to the usual (symmetric) orthogonality. If $T \in B(H)$ we shall write R(T) and N(T) for the range and null space of T and $\nu(T)$ denote the numerical radius of T.

Proposition 2.6. If $T \in HAP$, then $N(T - \alpha) \perp N(T - \beta)$ for distinct complex numbers $\alpha \neq 0$ and β .

Proof. Suppose $|\alpha| \geq |\beta|$. Let M denote the subspace generated by x and y such that $(T - \alpha)x = 0 = (T - \beta)y$ and $T_1 = T|M$. Then $\sigma(T_1) = \{\alpha, \beta\}$ and $r(T_1) = \nu(T_1) = |\alpha|$. Thus $\alpha \in \partial \nu(B(M), T_1)$, where $\partial \nu(B(M), T_1)$ denotes the boundary of the numerical range of $T_1 \in B(M)$. By [21, Proposition 1] it follows that $||(T_1 - \alpha)w + x|| \geq ||x||$ for $x \in N(T - \alpha)$ and $w \in M$. Let $P_{\alpha}(T_1)$ denotes the Riesz projection of T_1 associated with α , then $R(T_1 - \alpha) = R(I - P_{\alpha}(T_1)) = R(P_{\beta}(T_1)) = N(T_1 - \beta)$ implies $||x|| \leq ||x + y||$. If $|\alpha| < |\beta|$ then T_1 is invertible with $\sigma(T_1^{-1}) = \{\alpha^{-1}, \beta^{-1}\}$. Being hereditarily absolute-(p,r)-paranormal, T_1^{-1} also normaloid. Thus $r(T_1^{-1}) = |\alpha^{-1}|$ and $(T_1^{-1} - \alpha^{-1})x = 0 = (T_1^{-1} - \beta^{-1})y$. This completes the proof.

For an operator $T \in B(H)$, the reduced minimum modulus is defined by

D.SENTHILKUMAR, PRASAD.T

$$\gamma(T) = \inf\{\frac{\|Tx\|}{dist(x,(T)^{-1}(0))} : x \in H \setminus T^{-1}(0)\}.$$

Obviously $\gamma(T^*) = \gamma(T)$, and T(H) is closed if and only if $\gamma(T) > 0[10]$.

Theorem 2.7. If $T \in HAP$, then T and T^* have SVEP at points $\lambda \in \sigma(T) \setminus \sigma_w(T)$.

Proof. Let $\lambda \in \sigma(T) \setminus \sigma_w(T)$ then $(T - \lambda)$ is Fredhlom of index zero. Suppose that the point spectrum of T clusters at λ , then there exists a sequence $\{\lambda_n\}$ of non zero eigenvalues of T converging to λ . Choose $\lambda_m \in \{\lambda_n\}$. By Proposition 2.6 eigenspaces corresponding to non zero eigenvalues of T are mutually orthogonal, and if $\lambda = 0$ then eigenspaces corresponding to the eigenvalue λ_m is orthogonal to the eigenspaces corresponding to the eigenvalue 0. Then $dist(x, (T - \lambda)^{-1}(0)) \geq 1$ for every unit vector $x \in (T - \lambda_m)^{-1}(0)$. We have

 $\delta(\lambda_m, \lambda) = \sup\{dist(x, (T - \lambda)^{-1}(0)) : x \in (T - \lambda_m)^{-1}(0), \|x\| = 1\} \ge 1 \text{for all m.}$ Thus

$$\gamma(T-\lambda) = \frac{|\lambda_m - \lambda|}{\delta(\lambda_m, \lambda)} \to 0 \text{ as } m \to \infty$$

which contradicts the fact that $(T - \lambda)H$ is closed. Hence the point spectrum of T does not clusters at λ . Applying [3, Corollary 2.10], it follows that T and T^* has SVEP at λ .

Theorem 2.8. If $T \in HAP$, then T and T^{*} holds Weyl's theorem.

Proof. By Theorem 2.7, T have SVEP at points $\lambda \in \sigma(T) \setminus \sigma_w(T)$. Recall from Corollary 2.4 that $\pi_0(T) = \pi_{00}(T)$. Applying [10, Theorem 2.3], it follows that T satisfies Weyl's Theorem.

Now we show that T^* holds Weyl's theorem. Since T satisfies Weyl's theorem, T^* satisfies Browder's theorem. Then

$$\sigma(T^*) \setminus \sigma_w(T^*) = \pi_0(T^*).$$

The inclusion $\pi_0(T^*) \subseteq \pi_{00}(T^*)$ holds for all $T \in B(H)$. To prove the opposite inclusion, let $\lambda \in \pi_{00}(T^*)$ then $\lambda \in iso\sigma(T)$ and so

$$H = (T - \lambda)^{-1}(0) \oplus (T - \lambda)H.$$

Thus

$$H^* = (T^* - \lambda I^*)H^* \oplus (T^* - \lambda I^*)^{-1}(0).$$

106

It follows that λ is the simple pole of the resolvent of T^* and so $T^* - \lambda I^*$ has closed range. Since T^* has SVEP and $0 \leq \alpha (T^* - \lambda I^*) < \infty$, both $\operatorname{asc}(T^* - \lambda I^*)$ and $\operatorname{des}(T^* - \lambda I^*)$ are finite. Then $\beta (T^* - \lambda I^*) < \infty$ by [14, Proposition 38.6]. Hence $T^* - \lambda I^*$ is Browder and so $\lambda \in \pi_0(T^*)$. Thus T^* satisfies Weyl's theorem. \Box

Theorem 2.9. Let $T \in HAP$. Then both T and T^* holds a-Weyl's theorem.

Proof. By Theorem 2.8, Weyl's theorem holds for T. Since T^* has SVEP, a-Weyl's theorem holds for T by [2, Theorem 3.6]. From Theorem 2.8, T^* satisfies Weyl's theorem and by Theorem 2.7, T has SVEP. Applying [2, Theorem 3.6], T^* satisfies a-Weyl's theorem.

Ackwnoledgement. The authors are grateful to referee for helpful remarks and suggestions.

References

- P. Aiena, "Fredhlom and Local Specral Theory, with Application to Multipliers", Kluwer Acad. Publishers, Dordrecht, 2004.
- [2] P. Aiena, Classes of operators satisfying a-Weyls theorem, Studia Math. 169(2005), 105-122.
- [3] P. Aiena and O. Monsalve, The single valued extension property and the generalized Kato decomposition property, Acta Sci. Math (Szeged). 67(2001), 461-477.
- [4] N.N. Chourasia and P.B. Ramanujan, *Paranormal operators on Banach spaces*, Bull. Austral. Math. Soc. 21(1980),161-168.
- [5] M. Cho, M. Itoh and S. Oshiro, Weyl's theorem holds for p-hyponormal operators, Glasgow. Math. J. 39(1997), 217-220.
- [6] L.A. Cuburn, Weyl's theorem for non-normal operators, Michigan .Math. J. 13(1966), 285-288.
- [7] D.S. Djordjević, Operators obeying a-Weyl's theorem, Publ. Math. Debrecen. 55(1999), 283-298.
- [8] D.S. Djordjević and S.V. Djordjević, On a-Weyl's theorem, Rev. Roum. Math. Pures. Appl. 44(1999), 361-369.
- [9] B.P. Duggal, Hereditarily normaloid operators, Extracta Mathematicae. 20(2005), 203 -217.
- [10] B.P. Duggal and S.V. Djordjević, Weyl's theorem through finite ascent property, Bol. Soc. Mat. Mexicana. 10(2004), 139-147.
- [11] M. Fujii, S. Izumino and R. Nakamoto, Classes of operators determined by the Heinz-Kato-Furuta inequality and the Holder-McCarthy inequality, Nihonkai Math. J. 5(1994), 61-67.
- [12] Y.M. Han, J.I. Lee and D. Wang, Riesz idemptant and Weyl's theorem for w-hyponormal operators, Integr. Equat. Oper. Theory. 53(2005), 51-60.

- [13] R.E. Harte and W.Y. Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349(1997), 2115-2124.
- [14] H.G. Heuser," Functional Analysis", John Willy and Sons, Ltd., Chichester, 1982.
- [15] M.Y. Lee and S.H. Lee , On class of operators related to paranormal operators , J. korean Math. Soc. 44(2007), 25-34.
- [16] K.B. Laursen and M.M. Neumann, "Introduction to Local Specral Theory", Clarendon Press, Oxford, 2000.
- [17] M. Mbekhta, Generalisation de la decomposition de Kato aux operateurs paranormaux et spectraux, Glasgow. Math. J. 29(1987),159-175.
- [18] V. Müller, "Spectral Theory of Linear Operators", Operator Theory advances and Appl. 139, Brikshauser, 2003.
- [19] V.Rakočević, Operators obeying a-Weyl's theorem, Rev. Roum. Math. Pures Appl. 34(1989),915-919.
- [20] J.G. Stampfli, Hyponormal operators and spectral density, Trans.Amer. Math. Soc. 117(1965), 469-476.
- [21] A.M. Sinclair, Eigen-values in the boundary of the numerical range, Pacific J. Math. 35(1970), 213-216.
- [22] A. Uchiyama, Weyl's theorem for class A operators, Math. Inequalities and Appl. 1(2000),143-150.
- [23] A. Uchiyama, On the Riesz idempotent of class A operators, Math. Inequalities and Appl. 5(2002), 291-298.
- [24] A. Uchiyama, On the isolated point of spectrum of paranormal operators, Integer. Equat. Oper. Theory. 55,(2006), 145-151.
- [25] H. Weyl, Über beschränkte quadratische Formen, dern Differenz vollstig ist, Rend. Circ. mat. Palermo. 27(1909), 373-392.
- [26] T. Yamazaki and M. Yanagida, A Characterization of log-hyponormal operators via pparanormality, Scientiae mathematicae. 3(2000), 19-21.
- [27] T. Yamazaki and M. Yanagida, A further generalization of paranormal operators, Scientiae mathematicae. 3(2000), 23-31.

D.Senthilkumar and Prasad. T

Department of Mathematics, Government Arts College (Autonomous), Coimbatore, Tamilnadu, India - 641018.

E-mail address: senthilsenkumhari@gmail.com

E-mail address: prasadvalapil@gmail.com (Corresponding author)