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A NEW SUBCLASS OF MEROMORPHIC FUNCTION WITH

POSITIVE COEFFICIENTS

S. KAVITHA, S. SIVASUBRAMANIAN, K. MUTHUNAGAI

Abstract. In the present investigation, the authors define a new class of
meromorphic functions defined in the punctured unit disk Δ∗ := {z ∈ ℂ : 0 <

∣z∣ < 1}. Coefficient inequalities, growth and distortion inequalities, as well

as closure results are obtained. We also prove a Property using an integral
operator and its inverse defined on the new class.

1. Introduction

Let Σ denote the class of normalized meromorphic functions f of the form

f(z) =
1

z
+

∞∑
n=1

anz
n, (1.1)

defined on the punctured unit disk

Δ∗ := {z ∈ ℂ : 0 < ∣z∣ < 1}.

The Hadamard product or convolution of two functions f(z) given by (1.1) and

g(z) =
1

z
+

∞∑
n=1

gnz
n (1.2)

is defined by

(f ∗ g)(z) :=
1

z
+

∞∑
n=1

angnz
n.

A function f ∈ Σ is meromorphic starlike of order � (0 ≤ � < 1) if

−ℜ
(
zf ′(z)

f(z)

)
> � (z ∈ Δ := Δ∗ ∪ {0}).

The class of all such functions is denoted by Σ∗(�). Similarly the class of convex
functions of order � is defined. Let ΣP be the class of functions f ∈ Σ with an ≥ 0.
The subclass of ΣP consisting of starlike functions of order � is denoted by Σ∗P (�).

Now, we define a new class of functions in Definition 1.

2000 Mathematics Subject Classification. 30C50.
Key words and phrases. Meromorphic functions, starlike function, convolution, positive coef-

ficients, coefficient inequalities, integral operator.
c⃝2010 Universiteti i Prishtinës, Prishtinë, Kosovë.
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Definition 1. Let 0 ≤ � < 1. Further, let f(z) ∈ Σp be given by (1.1), 0 ≤ � < 1
The class MP (�, �) is defined by

MP (�, �) =

{
f ∈ ΣP : ℜ

(
zf ′(z)

(�− 1)f(z) + �zf ′(z)

)
> �

}
.

Clearly, MP (�, 0) reduces to the class Σ∗P (�).
The class Σ∗P (�) and various other subclasses of Σ have been studied rather

extensively by Clunie [4], Nehari and Netanyahu [8], Pommerenke ([9], [10]), Royster
[11], and others (cf., e.g., Bajpai [2] , Mogra et al. [7], Uralegaddi and Ganigi [16],
Cho et al. [3], Aouf [3], and Uralegaddi and Somanatha [15]; see also Duren [[5],
pages 29 and 137], and Srivastava and Owa [[13], pages 86 and 429]) (see also [1]).

In this paper, we obtain the coefficient inequalities, growth and distortion in-
equalities, as well as closure results for the class MP (�, �). Properties of a certain
integral operator and its inverse defined on the new class MP (�, �) are also dis-
cussed.

2. Coefficients Inequalities

Our first theorem gives a necessary and sufficient condition for a function f to
be in the class MP (�, �).

Theorem 2.1. Let f(z) ∈ ΣP be given by (1.1). Then f ∈MP (�, �) if and only if

∞∑
n=1

{n+ �− ��(1 + n)} an ≤ 1− �. (2.1)

Proof. If f ∈Mp(�, �), then

ℜ
(

zf ′(z)

(�− 1)f(z) + �zf ′(z)

)
= ℜ

{
−1 +

∑∞
n=1 nanz

n+1

−1 +
∑∞
n=1(�− 1 + �n)anzn+1

}
> �.

By letting z → 1−, we have{
−1 +

∑∞
n=1 nan

−1 +
∑∞
n=1(�− 1 + �n)an

}
> �.

This shows that (2.1) holds.
Conversely assume that (2.1) holds. It is sufficient to show that∣∣∣∣ zf ′(z)− {(�− 1)f(z) + �zf ′(z)}

zf ′(z) + (1− 2�) {(�− 1)f(z) + �zf ′(z)}

∣∣∣∣ < 1 (z ∈ Δ).

Using (2.1), we see that∣∣∣∣ zf ′(z)− {(�− 1)f(z) + �zf ′(z)}
zf ′(z) + (1− 2�) {(�− 1)f(z) + �zf ′(z)}

∣∣∣∣
=

∣∣∣∣ ∑∞
n=1(1− �)(n+ 1)anz

n+1

−2(1− �) +
∑∞
n=1 [{1 + (1− 2�)�}n+ (1− 2�)(�− 1)] anzn+1

∣∣∣∣
≤

∑∞
n=1(1− �)(n+ 1)an

2(1− �)−
∑∞
n=1 [{1 + (1− 2�)�}n+ (1− 2�)(�− 1)] an

≤ 1.

Thus we have f ∈Mp(�, �). □

For the choice of � = 0, we get the following.
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Remark 2.2. Let f(z) ∈ ΣP be given by (1.1). Then f ∈ Σ∗P (�) if and only if
∞∑
n=1

(n+ �)an ≤ 1− �.

Our next result gives the coefficient estimates for functions in MP (�, �).

Theorem 2.3. If f ∈MP (�, �), then

an ≤
1− �

{n+ �− ��(1 + n)}
, n = 1, 2, 3, . . . .

The result is sharp for the functions Fn(z) given by

Fn(z) =
1

z
+

1− �
{n+ �− ��(1 + n)}

zn, n = 1, 2, 3, . . . .

Proof. If f ∈MP (�, �), then we have, for each n,

{n+ �− ��(1 + n)} an ≤
∞∑
n=1

{n+ �− ��(1 + n)} an ≤ 1− �.

Therefore we have

an ≤
1− �

{n+ �− ��(1 + n)}
.

Since

Fn(z) =
1

z
+

1− �
{n+ �− ��(1 + n)}

zn

satisfies the conditions of Theorem 2.1, Fn(z) ∈ MP (�, �) and the equality is at-
tained for this function. □

For � = 0, we have the following corollary.

Remark 2.4. If f ∈ Σ∗P (�), then

an ≤
1− �
n+ �

, n = 1, 2, 3, . . . .

Theorem 2.5. If f ∈MP (�, �), then

1

r
− 1− �

1 + �− 2��
r ≤ ∣f(z)∣ ≤ 1

r
+

1− �
1 + �− 2��

r (∣z∣ = r).

The result is sharp for

f(z) =
1

z
+

1− �
{1 + �− 2��}

z. (2.2)

Proof. Since f(z) = 1
z +

∑∞
n=1 anz

n, we have

∣f(z)∣ ≤ 1

r
+

∞∑
n=1

anr
n ≤ 1

r
+ r

∞∑
n=1

an.

Since,
∞∑
n=1

an ≤
1− �

1 + �− 2��
.

Using this, we have

∣f(z)∣ ≤ 1

r
+

1− �
1 + �− 2��

r.
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Similarly

∣f(z)∣ ≥ 1

r
− 1− �

1 + �− 2��
r.

The result is sharp for f(z) = 1
z + 1−�

1+�−2��z. □

Similarly we have the following:

Theorem 2.6. If f ∈MP (�, �), then

1

r2
− 1− �

1 + �− 2��
≤ ∣f ′(z)∣ ≤ 1

r2
+

1− �
1 + �− 2��

(∣z∣ = r).

The result is sharp for the function given by (2.2).

3. Neighborhoods for the class M
()
p (�, �)

In this section, we determine the neighborhood for the class M
()
p (�, �), which

we define as follows:

Definition 2. A function f ∈ Σp is said to be in the class M
()
p (�, �) if there exists

a function g ∈Mp(�, �) such that∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ < 1− , (z ∈ Δ, 0 ≤  < 1). (3.1)

Following the earlier works on neighborhoods of analytic functions by Goodman
[6] and Ruscheweyh [14], we define the �-neighborhood of a function f ∈ Σp by

N�(f) :=

{
g ∈ Σp : g(z) =

1

z
+

∞∑
n=1

bnz
n and

∞∑
n=1

n∣an − bn∣ ≤ �

}
. (3.2)

Theorem 3.1. If g ∈Mp(�, �) and

 = 1− �(1 + �− 2��)

2�− 2��
, (3.3)

then

N�(g) ⊂M ()
p (�, �).

Proof. Let f ∈ N�(g). Then we find from (3.2) that

∞∑
n=1

n∣an − bn∣ ≤ �, (3.4)

which implies the coefficient inequality

∞∑
n=1

∣an − bn∣ ≤ �, (n ∈ ℕ). (3.5)

Since g ∈Mp(�, �), we have [cf. equation (2.1)]

∞∑
n=1

bn ≤
1− �

1 + �− 2��
, (3.6)
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so that ∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ <

∑∞
n=1 ∣an − bn∣

1−
∑∞
n=1 bn

=
�(1 + �− 2��)

2�− 2��
= 1− ,

provided  is given by (3.3). Hence, by definition, f ∈ M ()
p (�, �) for  given by

(3.3), which completes the proof. □

4. Closure Theorems

Let the functions Fk(z) be given by

Fk(z) =
1

z
+

∞∑
n=1

fn,kz
n, k = 1, 2, ...,m. (4.1)

We shall prove the following closure theorems for the class MP (�, �).

Theorem 4.1. Let the function Fk(z) defined by (4.1) be in the class MP (�, �) for
every k = 1, 2, ...,m. Then the function f(z) defined by

f(z) =
1

z
+

∞∑
n=1

anz
n (an ≥ 0)

belongs to the class MP (�, �), where an = 1
m

∑m
k=1 fn,k (n = 1, 2, ..)

Proof. Since Fn(z) ∈MP (�, �), it follows from Theorem 2.1 that

∞∑
n=1

{n+ �− ��(1 + n)} fn,k ≤ 1− � (4.2)

for every k = 1, 2, ..,m. Hence

∞∑
n=1

{n+ �− ��(1 + n)} an =

∞∑
n=1

{n+ �− ��(1 + n)}

(
1

m

m∑
k=1

fn,k

)

=
1

m

m∑
k=1

( ∞∑
n=1

{n+ �− ��(1 + n)} fn,k

)
≤ 1− �.

By Theorem 2.1, it follows that f(z) ∈MP (�, �). □

Theorem 4.2. The class MP (�, �) is closed under convex linear combination.

Proof. Let the function Fk(z) given by (4.1) be in the class MP (�, �). Then it is
enough to show that the function

H(z) = �F1(z) + (1− �)F2(z) (0 ≤ � ≤ 1)

is also in the class MP (�, �). Since for 0 ≤ � ≤ 1,

H(z) =
1

z
+

∞∑
n=1

[�fn,1 + (1− �)fn,2]zn,
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we observe that
∞∑
n=1

{n+ �− ��(1 + n)} [�fn,1 + (1− �)fn,2]

= �

∞∑
n=1

{n+ �− ��(1 + n)} fn,1 + (1− �)

∞∑
n=1

{n+ �− ��(1 + n)} fn,2

≤ 1− �.

By Theorem 2.1, we have H(z) ∈MP (�, �). □

Theorem 4.3. Let F0(z) = 1
z and Fn(z) = 1

z + 1−�
{n+�−��(1+n)}z

n for n = 1, 2, . . ..

Then f(z) ∈ MP (�, �) if and only if f(z) can be expressed in the form f(z) =∑∞
n=0 �nFn(z) where �n ≥ 0 and

∑∞
n=0 �n = 1.

Proof. Let

f(z) =

∞∑
n=0

�nFn(z)

=
1

z
+

∞∑
n=1

�n(1− �)

{n+ �− ��(1 + n)}
zn.

Then

∞∑
n=1

�n
1− �

{n+ �− ��(1 + n)}
{n+ �− ��(1 + n)}

(1− �)
=

∞∑
n=1

�n = 1− �0 ≤ 1.

By Theorem 2.1, we have f(z) ∈MP (�, �).
Conversely, let f(z) ∈MP (�, �). From Theorem 2.3, we have

an ≤
1− �

{n+ �− ��(1 + n)}
for n = 1, 2, ..

we may take

�n =
{n+ �− ��(1 + n)}

1− �
an for n = 1, 2, ...

and

�0 = 1−
∞∑
n=1

�n.

Then

f(z) =

∞∑
n=0

�nFn(z).

□
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5. Partial Sums

Silverman [12] determined sharp lower bounds on the real part of the quotients
between the normalized starlike or convex functions and their sequences of partial
sums. As a natural extension, one is interested to search results analogous to
those of Silverman for meromorphic univalent functions. In this section, motivated
essentially by the work of silverman [12] and Cho and Owa [3] we will investigate
the ratio of a function of the form

f(z) =
1

z
+

∞∑
n=1

anz
n, (5.1)

to its sequence of partial sums

f1(z) =
1

z
and fk(z) =

1

z
+

k∑
n=1

anz
n (5.2)

when the coefficients are sufficiently small to satisfy the condition analogous to

∞∑
n=1

{n+ �− ��(1 + n)} an ≤ 1− �.

For the sake of brevity we rewrite it as

∞∑
n=1

dn∣an∣ ≤ 1− �, (5.3)

where

dn := n+ �− ��(1 + n) (5.4)

More precisely we will determine sharp lower bounds for ℜ{f(z)/fk(z)} and ℜ{fk(z)/f(z)}.
In this connection we make use of the well known results thatℜ

{
1+w(z)
1−w(z)

}
> 0 (z ∈

Δ) if and only if !(z) =
∞∑
n=1

cnz
n satisfies the inequality ∣!(z)∣ ≤ ∣z∣. Unless other-

wise stated, we will assume that f is of the form (1.1) and its sequence of partial

sums is denoted by fk(z) = 1
z +

∑k
n=1 anz

n.

Theorem 5.1. Let f(z) ∈MP (�, �) be given by (5.1)satisfies condition, (2.1)

Re

{
f(z)

fk(z)

}
≥ dk+1(�, �)− 1 + �

dk+1(�, �)
(z ∈ U) (5.5)

where

dn(�, �) ≥
{

1− �, if n = 1, 2, 3, . . . , k
dk+1(�, �), if n = k + 1, k + 2, . . . .

(5.6)

The result (5.5) is sharp with the function given by

f(z) =
1

z
+

1− �
dk+1(�, �)

zk+1. (5.7)

Proof. Define the function w(z) by

1 + w(z)

1− w(z)
=
dk+1(�, �)

1− �

[
f(z)

fk(z)
− dk+1(�, �)− 1 + �

dk+1(�, �)

]
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=

1 +
k∑

n=1
anz

n+1 +
(
dk+1(�,�)

1−�

) ∞∑
n=k+1

anz
n+1

1 +
k∑

n=1
anzn+1

(5.8)

It suffices to show that ∣w(z)∣ ≤ 1. Now, from (5.8) we can write

w(z) =

(
dk+1(�,�)

1−�

) ∞∑
n=k+1

anz
n+1

2 + 2
k∑

n=1
anzn+1 +

(
dk+1(�,�)

1−�

) ∞∑
k=n+1

anzn+1

.

Hence we obtain

∣w(z)∣ ≤

(
dk+1(�,�)

1−�

) ∞∑
k=n+1

∣an∣

2− 2
k∑

n=1
∣an∣ −

(
dk+1(�,�)

1−�

) ∞∑
n=k+1

∣an∣

Now ∣w(z)∣ ≤ 1 if

2

(
dk+1(�, �)

1− �

) ∞∑
n=k+1

∣an∣ ≤ 2− 2

k∑
n=1

∣an∣

or, equivalently,

k∑
n=1

∣an∣+
dk+1(�, �)

1− �

∞∑
n=k+1

∣an∣ ≤ 1.

From the condition (2.1), it is sufficient to show that

k∑
n=1

∣an∣+
dk+1(�, �)

1− �

∞∑
n=k+1

∣an∣ ≤
∞∑
n=1

dn(�, �)

1− �
∣an∣

which is equivalent to

k∑
n=1

(
dn(�, �)− 1 + �

1− �

)
∣an∣

+

∞∑
n=k+1

(
dn(�, �)− dk+1(�, �)

1− �

)
∣an∣

≥ 0 (5.9)

To see that the function given by (5.7) gives the sharp result, we observe that for
z = rei�/k

f(z)

fk(z)
= 1 +

1− �
dk+1(�, �)

zn → 1− 1− �
dk+1(�, �)

=
dk+1(�, �)− 1 + �

dk+1(�, �)
when r → 1−.
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which shows the bound (5.5) is the best possible for each k ∈ ℕ. □

The proof of the next theorem is much akin to that of the earlier theorem and
hence we state the theorem without proof.

Theorem 5.2. Let f(z) ∈MP (�, �) be given by (5.1)satisfies condition, (2.1)

Re

{
fk(z)

f(z)

}
≥ dk+1(�, �)

dk+1(�, �) + 1− �
(z ∈ U) (5.10)

where
dk+1(�, �) ≥ 1− �

dn(�, �) ≥
{

1− �, if n = 1, 2, 3, . . . , k
dk+1(�, �), if n = k + 1, k + 2, . . . .

(5.11)

The result (5.10) is sharp with the function given by

f(z) =
1

z
+

1− �
dk+1(�, �)

zk+1. (5.12)

6. Radius of meromorphic starlikeness and meromorphic convexity

The radii of starlikeness and convexity for the class are given by the following
theorems for the class MP (�, �).

Theorem 6.1. Let the function f be in the class MP (�, �). Then f is meromor-
phically starlike of order �(0 ≤ � < 1), in ∣z∣ < r1(�, �, �), where

r1(�, �, �) = inf
n≥1

[
(1− �)(1− �)

(n+ 2− �) {n+ �− ��(1 + n)}

] 1
n+1

, (6.1)

Proof. Since,

f(z) =
1

z
+

∞∑
n=1

anz
n,

we get

f ′(z) = − 1

z2
+

∞∑
n=1

nanz
n−1.

It is sufficient to show that ∣∣∣∣−zf ′(z)f(z)
− 1

∣∣∣∣ ≤ 1− � (6.2)

or equivalently

∣∣∣∣zf ′(z)f(z)
+ 1

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

∞∑
n=1

(n+ 1)anz
n

1

z
−
∞∑
n=1

anz
n

∣∣∣∣∣∣∣∣∣∣
≤ 1− �

or
∞∑
n=1

(
n+ 2− �

1− �

)
an∣z∣n+1 ≤ 1,

for 0 ≤ � < 1, and ∣z∣ < r1(�, �, �). By Theorem 2.1, (6.2) will be true if(
n+ 2− �

1− �

)
∣z∣n+1 ≤ 1− �

{n+ �− ��(1 + n)}
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or, if

∣z∣ ≤
[

(1− �)(1− �)

(n+ 2− �) {n+ �− ��(1 + n)}

] 1
n+1

, n ≥ 1. (6.3)

This completes the proof of Theorem 6.1. □

Theorem 6.2. Let the function f in the class MP (�, �). Then f is meromorphically
convex of order �, (0 ≤ � < 1), in ∣z∣ < r2(�, �, �), where

r2(�, �, �) = inf
n≥1

[
(1− �)(1− �)

n (n+ 2− �) {n+ �− ��(1 + n)}

] 1
n+1

, n ≧ 1, (6.4)

Proof. Since,

f(z) =
1

z
−
∞∑
n=1

anz
n,

we get

f ′(z) = − 1

z2
−
∞∑
n=1

nanz
n−1.

It is sufficient to show that∣∣∣∣−1− zf ′′(z)

f ′(z)
− 1

∣∣∣∣ ≤ 1− � or equivalently (6.5)

∣∣∣∣zf ′′(z)f ′(z)
+ 2

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

∞∑
n=1

n(n+ 1)anz
n−1

− 1

z2
−
∞∑
n=1

nanz
n−1

∣∣∣∣∣∣∣∣∣∣
≤ 1− � or

∞∑
n=1

(
n(n+ 2− �)

1− �

)
an∣z∣n+1 ≤ 1,

for 0 ≤ � < 1, and ∣z∣ < r2(�, �, �). By Theorem 2.1, (6.5) will be true if(
n(n+ 2− �)

1− �

)
∣z∣n+1 ≤ (1− �)

{n+ �− ��(1 + n)}
or, if

∣z∣ ≤
[

(1− �)(1− �)

n(n+ 2− �) {n+ �− ��(1 + n)}

] 1
n+1

, n ≥ 1. (6.6)

This completes the proof of Theorem 6.2. □

7. Integral Operators

In this section, we consider integral transforms of functions in the class Mp(�, �).

Theorem 7.1. Let the function f(z) given by (1) be in Mp(�, �). Then the integral
operator

F (z) = c

∫ 1

0

ucf(uz)du (0 < u ≤ 1, 0 < c <∞)

is in Mp(�, �), where

� =
(c+ 2) {1 + �− 2��} − c(1− �)

c(1− �) {1− 2�}+ (1 + �) {1− 2�} (c+ 2)
.
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The result is sharp for the function f(z) = 1
z + 1−�

{1+�−2��}z.

Proof. Let f(z) ∈Mp(�, �). Then

F (z) = c

∫ 1

0

ucf(uz)du

= c

∫ 1

0

(
uc−1

z
+

∞∑
n=1

fnu
n+czn

)
du

=
1

z
+

∞∑
n=1

c

c+ n+ 1
fnz

n.

It is sufficient to show that
∞∑
n=1

c {n+ � − ��(1 + n)}
(c+ n+ 1)(1− �)

an ≤ 1. (7.1)

Since f ∈Mp(�, �), we have

∞∑
n=1

{n+ �− ��(1 + n)}
(1− �)

an ≤ 1.

Note that (7.1) is satisfied if

c {n+ � − ��(1 + n)}
(c+ n+ 1)(1− �)

≤ {n+ �− ��(1 + n)}
(1− �)

.

Rewriting the inequality, we have

c {n+ � − ��(1 + n)} (1− �) ≤ (c+ n+ 1)(1− �) {n+ �− ��(1 + n)} .

Solving for �, we have

� ≤ (c+ n+ 1) {n+ �− ��(1 + n)} − cn(1− �)

c(1− �) {1− �(1 + n)}+ {(n+ �− ��(1 + n)} (c+ n+ 1)
= F (n).

A simple computation will show that F (n) is increasing and F (n) ≥ F (1). Using
this, the results follows. □

For the choice of � = 0, we have the following result of Uralegaddi and Ganigi
[15].

Remark 7.2. Let the function f(z) defined by (1) be in Σ∗p(�). Then the integral
operator

F (z) = c

∫ 1

0

ucf(uz)du (0 < u ≤ 1, 0 < c <∞)

is in Σ∗p(�), where � = 1+�+c�
1+�+c . The result is sharp for the function

f(z) =
1

z
+

1− �
1 + �

z.

Also we have the following:
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Theorem 7.3. Let f(z), given by (1), be in Mp(�, �),

F (z) =
1

c
[(c+ 1)f(z) + zf ′(z)] =

1

z
+

∞∑
n=1

c+ n+ 1

c
fnz

n, c > 0. (7.2)

Then F (z) is in Mp(�, �) for ∣z∣ ≤ r(�, �, �) where

r(�, �, �) = inf
n

(
c(1− �) {n+ �− ��(1 + n)}

(1− �)(c+ n+ 1) {n+ � − ��(1 + n)}

)1/(n+1)

, n = 1, 2, 3, . . . .

The result is sharp for the function fn(z) = 1
z + 1−�

{n+�−��(1+n)}z
n, n = 1, 2, 3, . . . .

Proof. Let w = zf ′(z)
(�−1)f(z)+�zf ′(z) . Then it is sufficient to show that∣∣∣∣ w − 1

w + 1− 2�

∣∣∣∣ < 1.

A computation shows that this is satisfied if

∞∑
n=1

{n+ � − ��(1 + n)} (c+ n+ 1)

(1− �)c
an∣z∣n+1 ≤ 1. (7.3)

Since f ∈Mp(�, �), by Theorem 2.1, we have

∞∑
n=1

{n+ �− ��(1 + n)} an ≤ 1− �.

The equation (7.3) is satisfied if

{n+ � − ��(1 + n)} (c+ n+ 1)

(1− �)c
an∣z∣n+1 ≤ {n+ �− ��(1 + n)} an

1− �
.

Solving for ∣z∣, we get the result. □

For the choice of � = 0, we have the following result of Uralegaddi and Ganigi
[15].

Remark 7.4. Let the function f(z) defined by (1) be in Σ∗p(�) and F (z) given by
(7.2). Then F (z) is in Σ∗p(�) for ∣z∣ ≤ r(�, �) where

r(�, �) = inf
n

(
c(1− �)(n+ �)

(1− �)(c+ n+ 1)(n+ �)

)1/(n+1)

, n = 1, 2, 3, . . . .

The result is sharp for the function fn(z) = 1
z + 1−�

n+�z
n, n = 1, 2, 3, . . . .
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