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NEW IMPLICIT METHOD FOR GENERAL NONCONVEX
VARIATIONAL INEQUALITIES

MUHAMMAD ASLAM NOOR

Abstract. In this paper, we suggest and analyze a new implicit iterative
projection method for solving general nonconvex variational inequalities. We

prove that the new implicit method is equivalent to the modified projection

method. Using this alternative equivalence between the implicit method and
the modified projection, we prove that the convergence of the new implicit

method requires only the partially relaxed strongly monotonicity, which is a

weaker condition that the monotonicity. We are also discuss several special
cases. Our method of proof is very simple.

1. Introduction

General variational inequalities involving two operators were introduced and
studied by Noor [8] in 1988. It turned out that a wide class of nonsymmetric and
odd-order unrelated problems, which arise in various branches of pure and applied
sciences can be studied in the unified framework of general variational inequalities.
General variational inequalities can be considered a significant and novel general-
ization of the variational inequalities, which were introduced and studied by Stam-
pacchia [30] in 1964. For applications, physical formulation, numerical methods
and other aspects of variational inequalities, see [1-30] and the references therein.
However, all the work carried out in this direction assumed that the underlying set
is a convex set. In many practical situations, a choice set may not be a convex set
so that the existing results may not be applicable. To handle such situations, Noor
[22] has introduced and considered a new class of variational inequalities, called
the general nonconvex variational inequality on the uniformly prox-regular sets. It
is well-known that uniformly prox-regular sets are nonconvex and include the con-
vex sets as special cases, see [4,5,29]. Using the projection operator, Noor [22] has
established the equivalence between the general nonconvex variational inequalities
and the fixed point problem. The main of this paper is to suggest and analyze an
implicit extragradient method for solving the general nonconvex variational inequal-
ities. It is well-known that the convergence of the extragradient method requires
that the operator must be monotone and Lipschitz continuous. It is known that the
evaluation of the Lipschitz continuity is itself a very difficult problems, To overcome
these drawbacks, several modifications have been suggested, see, for, example, [1-3,
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11,12] and the references therein. The main motivation of this paper is to improve
this criteria. We show that the implicit method is equivalent to the modified extra-
gradient method. We use this equivalence between the extragradient method and
the implicit method to show that the convergence of the implicit projection method
only requires only the partially relaxed strongly monotonicity, which is a weaker
condition than monotonicity. It is worth mention that we do not need the Lipschitz
continuity of the operator. In this sense, our result represents an improvement and
refinement of the known results.

2. Basic Concepts

Let H be a real Hilbert space whose inner product and norm are denoted by
〈·, ·〉 and ‖.‖ respectively. Let K be a nonempty closed convex set in H. The basic
concepts and definitions used in this paper are exactly the same as in Noor [17].
We now recall some basic concepts and results from nonsmotth analysis [5,29].
Definition 2.1 [5,29]. The proximal normal cone of K at u ∈ H is given by

NP
K(u) := {ξ ∈ H : u ∈ PK [u + αξ]},

where α > 0 is a constant and

PK [u] = {u∗ ∈ K : dK(u) = ‖u− u∗‖}.
Here dK(.) is the usual distance function to the subset K, that is

dK(u) = inf
v∈K

‖v − u‖.

The proximal normal cone NP
K(u) has the following characterization.

Lemma 2.1 [5,29]. Let K be a nonempty, closed and convex exists a constant
α > 0 such that

〈ζ, v − u〉 ≤ α‖v − u‖2, ∀v ∈ K.

Definition 2.2. The Clarke normal cone, denoted by NC
K(u), is defined as

NC
K(u) = co[NP

K(u)],

where co means the closure of the convex hull. Clearly NP
K(u) ⊂ NC

K(u), but the
converse is not true. Note that NP

K(u) is always closed and convex, whereas NC
K(u)

is convex, but may not be closed (Ref. 29].
Definition 2.3[29]. For a given r ∈ (0,∞], a subset Kr is said to be normalized
uniformly r-prox-regular if and only if every nonzero proximal normal to Kr can
be realized by an r-ball, that is,∀u ∈ Kr and 0 6= ξ ∈ NP

Kr
(u), one has

〈(ξ)/‖ξ‖, v − u〉 ≤ (1/2r)‖v − u‖2, ∀v ∈ Kr.

It is clear that the class of normalized uniformly prox-regular sets is sufficiently
large to include the class of convex sets, p-convex sets, C1,1submanifolds (possibly
with boundary) of H, the images under a C1,1 diffeomorphism of convex sets and
many other nonconvex sets; see [5,29]. Obviously, for r = ∞, the uniformly prox-
regularity of Kr is equivalent to the convexity of K. This class of uniformly prox-
regular sets have played an important part in many nonconvex applications such as
optimization, dynamic systems and differential inclusions. It is known that if Kr

is a uniformly prox-regular set, then the proximal normal cone NP
Kr

(u) is closed as
a set-valued mapping.
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We now recall the well known proposition which summarizes some important
properties of the uniformly prox-regular sets Kr.

Lemma 2.2. Let K be a nonempty closed subset of H, r ∈ (0,∞] and set
Kr = {u ∈ H : d(u, K) < r}. If Kr is uniformly prox-regular, then
(i) ∀u ∈ Kr, PKr

(u) 6= ∅.
(ii) ∀r′ ∈ (0, r), PKr

is Lipschitz continuous with constant r
r−r′ on Kr′ .

For given nonlinear operators T, g, we consider the problem of finding u ∈ H :
g(u) ∈ Kr such that

〈Tu, g(v)− g(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ Kr, (2.1)

which is called the general nonconvex variational inequality, introduced and stud-
ied by Noor [22].

It is well-known [5,29] that the union of two disjoint intervals [a,b] and [c,d] is a
prox-regular set with r = c−b

2 . We also consider the following simple example to
give an idea of the importance of the nonconvex sets.
Example 2.1 [25]. Let u = 〈x, y〉 and 〈t, z〉 belong to the real Euclidean plane
and consider Tu = 〈2x, 2(y−1)〉. Let K = t2+(z−2)2 ≥ 4, −2 ≤ t ≤ 2, z ≥ −2
be a subset of the Euclidean plane. Then one can easily show that the set K is a
prox-regular set Kr.

We note that, if Kr ≡ K, the convex set in H, then problem (2.1) is equivalent
to finding u ∈ H : g(u) ∈ K such that

〈Tu, g(v)− g(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (2.2)

which is known as the general variational inequality, introduced and studied by Noor
[8] in 1988. For the applications, numerical methods, formulation and other aspects
of the general variational inequalities (2.2), see [1-3,9-22,25] and the references
therein.

If g ≡ I, the identity operator, then problem (2.1) is equivalent to finding u ∈ Kr

such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ Kr, (2.3)

which is called the nonconvex variational inequality. For the formulation and nu-
merical methods for the nonconvex variational inequalities, see Noor [16-18,20-
22,25].

We note that, if Kr ≡ K, the convex set in H, and g ≡ I, the identity operator,
then problem (2.1) is equivalent to finding u ∈ K such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ K. (2.4)

Inequality of type (2.4) is called the variational inequality, which was introduced
and studied by Stampacchia [30] in 1964. It turned out that a number of unre-
lated obstacle, free, moving, unilateral and equilibrium problems arising in various
branches of pure and applied sciences can be studied via variational inequalities,
see [1-30] and the references therein.

If Kr is a nonconvex (uniformly prox-regular) set, then problem (1) is equivalent
to finding u ∈ Kr such that

0 ∈ ρTu + g(u)− g(u) + ρNP
Kr

(g(u)) (2.5)
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where NP
Kr

(g(u)) denotes the normal cone of Kr at g(u) in the sense of nonconvex
analysis. Problem (2.5) is called the general nonconvex variational inclusion prob-
lem associated with general nonconvex variational inequality (2.1). This equivalent
formulation plays a crucial and basic part in this paper. We would like to point
out this equivalent formulation allows us to use the projection operator technique
for solving the general nonconvex variational inequalities of the type (2.1).
Definition 2.4. An operator T : H → H with respect to an arbitrary operator g
is said to be:
(i) g-monotone iff

〈Tu− Tv, g(u)− g(v)〉 ≥ 0, ∀u, v ∈ H.

(ii) partially relaxed strongly g-pseudomonotone, iff, there exists a constant α > 0
such that

〈Tu− Tv, g(z)− g(v)〉 ≥ −α‖g(u)− g(z)‖2, ∀u, v, z ∈ H.

Note that, for z = u, the partially relaxed strongly g-monotonicity reduces to g-
monotonicity.

3. Main Results

It is known that the general nonconvex variational inequalities (2.1) are equiva-
lent to the fixed point problem, which is the following.
Lemma 3.1[19]. u ∈ H : g(u) ∈ Kr is a solution of the general nonconvex
variational inequality (2.1) if and only if u ∈ Kr satisfies the relation

g(u) = PKr [g(u)− ρTu], (3.1)

where PKr
is the projection of H onto the uniformly prox-regular set Kr.

Lemma 3.1 implies that the general nonconvex variational inequality (2.1) is
equivalent to the fixed point problem (3.1). This alternative equivalent formulation
is very useful from the numerical and theoretical points of view. Using the fixed
point formulation (3.1), we suggest and analyze the following iterative methods for
solving the general nonconvex variational inequality (2.1).
Algorithm 3.1. For a given u0 ∈ H, find the approximate solution un+1 by the
iterative schemes

g(un+1) = PKr
[g(un)− ρTun], n = 0, 1, . . . ,

which is called the explicit iterative method. For the convergence analysis of Algo-
rithm 3.1, see Noor [19].

Using the idea of Noor [25], we now suggest and analyze the following iterative
method for solving the general nonlinear variational inequality 92.1).
Algorithm 3.2. For a given u0 ∈ H, find the approximate solution un+1 by the
iterative schemes

g(un+1) = PKr
[g(un+1)− ρTun+1], n = 0, 1, . . . .

Algorithm 3.2 is an implicit iterative method for solving the general nonconvex
variational inequalities (2.1).

To implement the Algorithm 3.2, we use the predictor-corrector technique. We
use Algorithm 3.1 as predictor and Algorithm 3.2 as a corrector to obtain the
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following predictor-corrector method for solving the general nonconvex variational
inequality (2.1).
Algorithm 3.3. For a given u0 ∈ H, find the approximate solution un+1 by the
iterative schemes

g(wn) = PKr
[g(un)− ρTun] (3.2)

g(un+1) = PKr
[g(wn)− ρTwn], n = 0, 1, . . . , (3.3)

Algorithm 3.3 is known as the modified extragradient method, which was suggested
and studied by Noor [22]. We would like to remark that this modified extragradient
method is quite different than the extragradient method, which was suggested by
Korpelevich [7]. Here we would like to point out that the implicit method (Algo-
rithm 3.2 ) and the extragradient method (Algorithm 3.3 ) are equivalent. We use
this equivalent to prove the convergence of the implicit projection method (Algo-
rithm 3.2) requires only the partially relaxed strongly monotonicity, which is the
main motivation of this paper.

If Kr ≡ K, then Algorithm 3.2 reduces to the following algorithm for solving
the general variational inequality (2.2), which was suggested and analyzed by Noor
[25].
Algorithm 3.4. For a given u0 ∈ H, find the approximate solution un+1 by the
iterative schemes

g(un+1) = PK [g(un+1)− ρTun+1], n = 0, 1, . . . ,

We would like to mention that one can obtain several new and previously known
iterative methods for solving the general nonconvex variational inequalities by se-
lecting the appropriate choice of the operators, and subspaces. For more details,
see Noor [12,22].

We now consider the convergence analysis of Algorithm 3.3 using the technique
of Noor [25] and this is the main motivation of our next result.
Theorem 3.1. Let u ∈ H : g(u) ∈ Kr be a solution of (2.1) and let un+1 be the
approximate solution obtained from Algorithm 3.3. If the operator T is partially
relaxed strongly g-monotone with constant α > 0, then

‖g(un+1)− g(u)‖2 ≤ ‖g(wn)− g(u)‖2 − (1− 2αρ)‖g(un+1)− g(wn)‖2(3.4)
‖g(wn)− g(u)‖2 ≤ ‖g(un)− g(u)‖2 − (1− 2αρ)‖g(wn)− g(un)‖2. (3.5)

Proof. Let u ∈ H : g(u) ∈ Kr be solution of (2.1). Then

〈Tu, g(v)− g(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ Kr. (3.6)

Take v = wn in (3.6), we have

〈Tu, g(wn)− g(u)〉 ≥ 0. (3.7)

Using Lemma 3.1, equation (3.2) can be written as

〈ρTun + g(wn)− g(un), g(v)− g(wn)〉 ≥ 0, ∀v ∈ H : g(v) ∈ Kr. (3.8)

Taking v = u in (3.8) and using (3.7), we have

〈g(wn)− g(un), g(u)− g(wn)〉 ≥ ρ〈Tun − Tu, g(wn)− g(u)〉
≥ −αρ‖g(un)− g(wn)‖2, (3.9)

since T is partially relaxed strongly g-monotone with constant α > 0.
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From (3.9), we have

‖g(u)− g(wn)‖2 ≤ ‖g(u)− g(un)‖2 − (1− 2αρ)‖g(wn)− g(un)‖2,

the required result (3.5).
Now taking v = un+1 in (3.6), we have

〈Tu, g(un+1)− g(u)〉 ≥ 0. (3.10)

Using Lemma 3.1, we rewrite (3.3) in the equivalent form as:

〈ρTwn + g(un+1)− g(wn), g(v)− g(un+1)〉 ≥ 0, ∀v ∈ H : g(v) ∈ Kr. (3.11)

Taking v = u in (3.11), we have

〈ρTwn + g(un+1)− g(wn), g(u)− g(un+1)〉 ≥ 0. (3.12)

From (3.10), (3.12) and using the partially relaxed strongly g-monotonicity of T
with constant α > 0, we have

‖g(un+1)− g(u)‖2 ≤ ‖g(wn)− g(u)‖2 − (1− 2αρ)‖g(un+1)− g(w)n‖2,

the required result (3.4). �

Theorem 3.2. Let u ∈ H : g(u) ∈ Kr be a solution of (1) and let un+1 be the
approximate solution obtained from Algorithm 3.3. Let H be a finite dimensional
space and g−1 exist. If 0 < ρ < 1

2α , then limn→∞ un = u.

Proof. Let ū ∈ H : g(ū) ∈ Kr be a solution of (3.1). Then, the sequences
{‖g(un)− g(ū)‖} is nonincreasing and bounded and

∞∑
n=0

(1− 2αρ)‖g(un+1)− g(wn)‖2 ≤ ‖g(w0)− g(u)‖2

∞∑
n=0

(1− 2αρ)‖g(wn)− g(un)‖2 ≤ ‖g(u0)− g(u)‖2,

which implies

lim
n→∞

‖g(un+1)− g(wn)‖ = 0

lim
n→∞

‖g(wn)− g(un)‖ = 0.

Thus

lim
n→∞

‖g(un+1)− g(un)‖ = | lim
n→∞

‖g(un+1)− g(wn)‖

+ lim
n→∞

‖g(wn)− g(u)‖ = 0. (3.13)

Since g−1 exists, it follows that

lim
n→∞

‖un+1)− un‖ = 0.

Let û be a cluster point of {un}; there exists a subsequence {uni
} such that {uni

}
converges to û. Replacing un+1 by uni

in (3.8), wn by uni
in (3.12) and taking the

limits and using (3.13), we have

〈T û, g(v)− g(û)〉 ≥ 0, ∀v ∈ H : g(v) ∈ Kr.

This shows that û ∈ Kr solves the general nonconvex variational inequality (2.1)
and

‖g(un+1)− g(û)‖2 ≤ ‖g(un)− g(û)‖2,
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which implies that the sequence {un} has a unique cluster point and limn→∞ un =
û, is the solution of (2.1), the required result. �.
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