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APPROXIMATING SOLUTIONS FOR THE SYSTEM OF

�-STRONGLY ACCRETIVE OPERATOR EQUATIONS IN

REFLEXIVE BANACH SPACE

NIYATI GURUDWAN, B.K.SHARMA

Abstract. The purpose of this paper is to study a strong convergence of
multi-step iterative scheme to a common solution for a finite family of �-

strongly accretive operator equations in a reflexive Banach space with weakly
continuous duality map. As a consequence, the strong convergence theorem for

the multi-step iterative sequence to a common fixed point for finite family of �-

strongly pseudocontractive mappings are also obtained. The results presented
in this paper thus improve and extend the corresponding results of Inchan [7, 8],

Kang [10] and many others.

1. Introduction

Mann [15] and Ishikawa [9] iteration processes have been studied extensively by
various authors for approximating the solutions of nonlinear operator equations in
Banach spaces (e.g. [18] and the references therein). Liu [12], Osilike [19] and Xu [20]
introduced the concepts of Ishikawa and Mann iterative processes with errors for
nonlinear strongly accretive mappings in uniformly smooth Banach spaces. It is well
known that any strongly accretive and strongly pseudocontractive operators are �-
strongly accretive and �-strongly pseudocontractive respectively, but the converse
do not hold [18]. Also, every �-strongly pseudocontractive map with a nonempty
fixed point set is �-hemicontractive. In [4], Chidume and Osilike constructed an
operator which is �-hemicontractive but not �-strongly pseudocontractive. Many
authors extended the results for a more general class of �-strongly accretive oper-
ator(e.g. [11, 13, 18, 21] and the references therein).
Recently, Kang [10] studied the iterative approximation of solution of a demicontin-
uous �-strongly accretive operator in a uniformly smooth Banach space, improving
many of the previous results et.al. [18, 20].

On the other hand, Noor [17] suggested and analyzed three-step iteration pro-
cess introduced by Noor [16], for solving the nonlinear strongly accretive operator
equation in a uniformly smooth Banach space. It has been shown in [6] that the
three-step iterative scheme gives better numerical results than the two-step and
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one-step.
Motivated by above facts, Inchan [7] introduced and analyzed a multi-step itera-
tive scheme with errors for approximating common solution of nonlinear strongly
accretive operator equation.

Let K be nonempty convex subset of a uniformly smooth Banach space E and
let T1, T2, ⋅ ⋅ ⋅ , TN : K → K be mappings. For any given x ∈ K, and a fixed
positive integer N , the sequences {xn} defined by

x1 ∈ K,
x1n = a1nxn + b1nT1xn + c1nu

1
n,

x2n = a2nxn + b2nT2x
1
n + c2nu

2
n

...

xn+1 = xNn = aNn xn + bNn TNx
N−1
n + cNn u

N
n , n ≥ 1, (1.1)

where {a1n}, ⋅ ⋅ ⋅ , {aNn }, {b1n}, ⋅ ⋅ ⋅ , {bNn }, {c1n}, ⋅ ⋅ ⋅ , {cNn } are sequences in [0, 1] with
ain + bin + cin = 1 for all i = 1, 2, ⋅ ⋅ ⋅ , N and {u1n}, ⋅ ⋅ ⋅ , {uNn } are bounded sequence
in K.
This iteration scheme ( 1.1) is called the multi-step iteration with errors [7]. These
iterations introduce the Mann, Ishikawa, Three step iterations as a special case.
If N=3, T1 = T2 = T3 = T, an = a3n, bn = b2n, cn = c1n and cin = 0 ∀ i = 1, 2, ⋅ ⋅ ⋅ , N
then ( 1.1) reduces to the three-step iterations defined by Noor [17]:

xn+1 = (1− an)xn + anTyn,

yn = x2n = (1− bn)xn + bnTzn

zn = (1− cn)xn + cnTxn, n ≥ 1, (1.2)

where {an}, {bn}, {cn} are real sequences in [0, 1].

If N=2, T1 = T2 = T, a
′

n = a1n, b
′

n = b1n, c
′

n = c1n, an = a2n, bn = b2n and cn = c2n then
( 1.1) reduces to the Ishikawa iteration process with errors defined by Xu [20]:

xn+1 = anxn + bnTyn + cnun,

yn = a
′

nxn + b
′

nTxn + c
′

nvn, n ≥ 1, (1.3)

where {an}, {a
′

n}, {bn}, {b
′

n}, {cn}, {c
′

n} are real sequences in [0, 1] satisfying the

conditions an+bn+cn = 1 = a
′

n+b
′

n+c
′

n for all n ≥ 1 and {un}, {vn} are bounded
sequences in K.

It is our purpose in this paper to establish strong convergence theorem of multi-
step [7] for approximating common solution of nonlinear �-strongly accretive op-
erator equations and corresponding common fixed points of nonlinear �-strongly
pseudocontractive mappings in a reflexive Banach space with weakly continuous
duality mapping, thus extending and improving the corresponding results of In-
chan [7, 8], Kang [10] and many others to a finite family and in a more general
space.
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2. Preliminaries

Let E be a real Banach space with dual E∗. The normalized duality mapping
from E to 2E

∗
is defined by

J(x) := {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 , ∥x∥ = ∥x∗∥},
where ⟨., .⟩ denotes the duality pairing between the elements of E and E∗.

Definition 2.1. ([2]) A mapping A : D(A) = E → E is said to be accretive if for
all x, y ∈ E, there exists j(x− y) ∈ J(x− y) such that

⟨Ax−Ay, j(x− y)⟩ ≥ 0.

The mapping A is said to be strongly accretive if there exists a constant k ∈ (0, 1)
such that for all x, y ∈ E, there exists j(x− y) ∈ J(x− y) such that

⟨Ax−Ay, j(x− y)⟩ ≥ k∥x− y∥2

and is said to be �- strongly accretive [18] if there is a strictly increasing function
� : [0,∞)→ [0,∞) with �(0) = 0 such that for any x, y ∈ E, there exists j(x−y) ∈
J(x− y) such that

⟨Ax−Ay, j(x− y)⟩ ≥ �(∥x− y∥) ∥x− y∥ .

Definition 2.2. ([3]) The mapping T : E → E is called pseudocontractive if for
all x, y ∈ E, there exists j(x− y) ∈ J(x− y) such that

⟨Tx− Ty, j(x− y)⟩ ≤ ∥x− y∥2 .

The mapping T is pseudocontractive if and only if (I − T ) is accretive and is
strongly pseudocontractive (respectively, �-strongly pseudocontractive) if and only
if (I − T ) is strongly accretive (respectively, �-strongly accretive).

Definition 2.3. The mapping T : E → E is called �-hemicontractive if F (T ) ∕= �
and there exists a strictly increasing function � : [0,∞) → [0,∞) with �(0) = 0
such that for any x ∈ E, q ∈ F (T ), there exists j(x− q) ∈ J(x− q) such that

⟨Tx− q, j(x− q)⟩ ≥ ∥x− y∥2 − �(∥x− y∥) ∥x− y∥ .

Definition 2.4. Recall that a gauge is a continuous strictly increasing function
' : [0,∞) → [0,∞) such that '(0) = 0 and limr→∞ '(r) = ∞. Associated with a
gauge ' is the duality map [2] J' : X → X∗ defined by

J'(x) = {x∗ ∈ X∗ : ⟨x, x∗⟩ = ∥x∥'(∥x∥), ∥x∗∥ = '(∥x∥)}, x ∈ X.

Clearly the normalized duality map J corresponds to the gauge '(t) = t. Brow-
der [2] initiated the study of certain classes of nonlinear operators by means of
a duality map J'. It also says that a Banach space X has a weakly continuous
duality map if there exists a gauge ' for which the duality map J' is single valued
and weak-to-weak∗ sequentially continuous (i.e. if {xn} is a sequence in X weakly
convergent to a point x, then the sequence {J'(xn)} converges weak∗ly to J'(x)).
Set for t ≥ 0,

Φ(t) =

∫ t

0

'(r)dr.

Then it is known that Φ is a convex function and

J'(x) = ∂Φ(∥x∥), x ∈ X,
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where ∂ denotes the sub-differential in the sense of convex analysis.
We shall need the following results.

Lemma 2.5. ([14]) Suppose that E is an arbitrary Banach space and A : E → E
is a continuous �-strongly accretive operator. Then the equation Ax = f has a
unique solution for any f ∈ E.

Lemma 2.6. ([5]) Assume that X has a weakly continuous duality map J' with
gauge '. Then for all x, y,∈ X, there holds the inequality

Φ(∥x+ y∥) ≤ Φ(∥x∥) + ⟨y, J'(x+ y)⟩.

Lemma 2.7. ([12]) Let {�n}∞n=0, {�n}∞n=0 and {n}∞n=0 be three nonnegative real
sequences satisfying the inequality

�n+1 ≤ (1− wn)�n + �n + n, ∀ n ≥ 0,

where {wn}∞n=0 ⊂ [0, 1],
∑∞
n=0 wn = +∞ and

∑∞
n=0 n < +∞. Then limn→∞ �n =

0.

3. Main Results

Theorem 3.1. Let E be a reflexive Banach space with weakly continuous du-
ality map J' with gauge ' and let {Ai}Ni=1 : E → E be continuous �-strongly
accretive operators. Let for i = 1, ⋅ ⋅ ⋅ , N, {uin}∞n=1 be bounded sequences in E and
{ain}∞n=1, {bin}∞n=1, {cin}∞n=1 be real sequences in [0, 1] satisfying (i)ain + bin + cin =
1, (ii)

∑∞
n=1 b

1
n = +∞, (iii)

∑∞
n=1 c

i
n <∞, (iv) limn→∞ bin = 0, ∀ i = 1, ⋅ ⋅ ⋅ , N and n ≥

1. For any given f, x1 ∈ E, define {Si}Ni=1 : E → E by Six = x − Aix + f, ∀ i =
1, ⋅ ⋅ ⋅ , N, and the iterative sequence {xn}∞n=1 with errors be defined by

x1 ∈ E,
x1n = a1nxn + b1nS1xn + c1nu

1
n,

x2n = a2nxn + b2nS2x
1
n + c2nu

2
n

...

xn+1 = xNn = aNn xn + bNn SNx
N−1
n + cNn u

N
n , n ≥ 1, (3.1)

If atleast one of the following condition:

each of the sequences{xin −Aixin}∞n=1are bounded (3.2)

or the sequences{Aixin}∞n=1are bounded,∀ i = 1, ⋅ ⋅ ⋅ , N, (3.3)

is fulfilled, then the sequence {xn}∞n=1 converges strongly to the unique solution of
the operator equations {Aix}Ni=1 = f .

Proof. By Lemma 2.5, equation Aix = f has unique solution q ∈ E (i =
1, ⋅ ⋅ ⋅ , N). Each Si is demicontinuous and q is unique fixed point of Si (i =
1, ⋅ ⋅ ⋅ , N).
For any x, y ∈ E, ∃ j'(x− y) ∈ J'(x− y) such that

⟨Six− Siy, j'(x− y)⟩ ≤ ∥x− y∥2(1− Pi(x, y))
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where Pi(x, y) = �i(∥x−y∥)
1+∥x−y∥+�i(∥x−y∥) ∈ [0, 1] i = 1, ⋅ ⋅ ⋅ , N .

Let q ∈
∩N
i=1 F (Si), where F (Si) is the fixed point set of Si and let P (x, y) =

infn≥0 mini{Pi(xn, y)} ∈ [0, 1].
Since each Ai(i = 1, ⋅ ⋅ ⋅ , N) is �-strongly accretive, so that

⟨Aix−Aiy, j'(x− y)⟩ ≥ ∥x− y∥�i(∥x− y∥),

which implies,

�i(∥x− y∥) ≤ ∥Aix−Aiy∥

also,

∥Six− Siy∥ ≤ ∥x− y∥+ ∥Aix−Aiy∥
≤ �−1i (∥Aix−Aiy∥) + ∥Aix−Aiy∥

and

∥Six− Siy∥ ≤ ∥x−Aix∥+ ∥y −Aiy∥

Thus either of ( 3.2), ( 3.3) implies {Sixin}∞n=1 are bounded.
For each i ∈ {1, 2, ⋅ ⋅ ⋅ , N}, we have

∥xn − xin∥ ≤ ain∥xn − xn∥+ bin∥xn − Sixi−1n ∥+ cin∥xn − uin∥
= bin∥xn − Sixi−1n ∥+ cin∥xn − uin∥
→ 0 as n→∞.

Put din = bin + cin, (i = 1, ⋅ ⋅ ⋅ , N) and

D = max{ max
1≤i≤N

sup
n≥1
{∥uin − q∥}, max

1≤i≤N
sup
x∈E
{∥Six− q∥}, ∥x1 − q∥} (3.4)

Clearly D <∞.
Next we will prove that ∀ n ∈ ℕ, ∥xn − q∥ ≤ D.
Infact, it is obviously true for n = 1. Using mathematical induction assume the
inequality is true for n = k. Then for n = k + 1,

∥xk+1 − q∥ = ∥aNk xk + bNk SNx
N−1
k + cNk u

N
k − q∥

≤ aNk ∥xk − q∥+ bNk ∥SNxN−1k − q∥+ cNk ∥uNk − q∥
≤ (aNk + bNk + cNk )D = D.

So we conclude that

∥xn − q∥ ≤ D, ∀n ≥ 1. (3.5)

For any i = 1, 2, ⋅ ⋅ ⋅ , N , we see that

∥xin − q∥ = ∥ainxn + binSix
i−1
n + cinu

i
n − q∥

≤ ain∥xn − q∥+ bin∥Sixi−1n − q∥+ cin∥uin − q∥
≤ (ain + bin + cin)D

= D,
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it follows that {xin − q} are bounded sequences, for all i = 1, 2, ⋅ ⋅ ⋅ , N .
Consider for n ≥ 1, using Lemma 2.6

Φ(∥x1n − q∥) = Φ(∥a1nxn + b1nS1xn + c1nu
1
n − q∥)

≤ Φ(∥a1n(xn − q)∥) + ⟨b1n(S1xn − q) + c1n(u1n − q), j'(x1n − q)⟩
≤ Φ(∥a1n(xn − q)∥) + b1n⟨(S1xn − q), j'(xn − q)⟩

+ b1n⟨(S1xn − q), j'(x1n − xn)⟩+ c1n⟨(u1n − q), j'(x1n − q)⟩
≤ Φ(∥a1n(xn − q)∥) + b1n(1− P1(xn, q))∥xn − q∥2

+ b1n∥S1xn − q∥∥j'(x1n − q)∥+ c1n∥u1n − q∥∥j'(x1n − q)∥
≤ a1nΦ(∥xn − q∥) + �1

n + n,

where �1
n = b1n(1− P1(xn, q))∥xn − q∥2 + b1n∥S1xn − q∥∥j'(x1n − q)∥ and

n = c1n∥u1n − q∥∥j'(x1n − q)∥.
From boundedness of {xin−p}, it follows by conditions (ii) and (iii) that limn→∞ �1

n =
0 and

∑∞
n=1 n <∞.

Next,

Φ(∥x2n − q∥) = Φ(∥x2n − x1n + x1n − q∥)
≤ Φ(∥x1n − q∥) + ⟨x2n − x1n, j'(x2n − q)⟩
≤ Φ(∥x1n − q∥) + ∥x2n − x1n∥∥j'(x2n − q)∥
≤ a1nΦ(∥xn − q∥) + �2

n + n

where �2
n = �1

n + ∥x2n − x1n∥∥j'(x2n − q)∥.
By the proof above, we have limn→∞ ∥x2n−x1n∥ = 0 and so it follows that limn→∞ b2n =
0.
Next we note that,

Φ(∥x3n − q∥) = Φ(∥x3n − x2n + x2n − q∥)
≤ Φ(∥x2n − q∥) + ⟨x3n − x2n, j'(x3n − q)⟩
≤ Φ(∥x2n − q∥) + ∥x3n − x2n∥∥j'(x3n − q)∥
≤ a1nΦ(∥xn − q∥) + �3

n + n

where �3
n = �2

n + ∥x3n − x2n∥∥j'(x3n − q)∥.
Since limn→∞ ∥x3n − x2n∥ = 0, so it follows that limn→∞ b3n = 0.
By continuity of above method, there exists nonnegative real sequences {�Nn } with
limn→∞ �Nn = 0 and

∑∞
n=1 n <∞ such that

Φ(∥xn+1 − q∥) ≤ (1− b1n)Φ(∥xn − q∥) + �Nn + n.

Since 1 − b1n < 1 and b1n → 0 as n → ∞, there exists N ∈ ℕ and a real number r
such that

1− b1n < r < 1, ∀ n ≥ N.

Putting �n =
b1n�

1
n

1−r , we get that �n = o(b1n). Then

Φ(∥xn+1 − q∥) ≤ (1− b1n)Φ(∥xn − q∥) + �n + n.

It follows from Lemma 2.7,

lim
n→∞

Φ(∥xn − q∥) = 0
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⇒ lim
n→∞

∥xn − q∥ → 0.

□

Remark. (i) If the family {Ai}Ni=1 of mappings be such that A1 = A2 = ⋅ ⋅ ⋅ =
AN = A, where A is �-strongly accretive, then the result of [10] and the
references therein, holds as a special case of our theorem. Thus our result
extents [10] to a finite family of operators in a more general reflexive Ba-
nach space.

(ii) The strongly accretive operators in [7, 8] and the references therein, are
replaced by the more general �-strongly accretive operators.

Theorem 3.2. Let E, {uin}∞n=1, {ain}∞n=1, {bin}∞n=1, {cin}∞n=1 be as in Theorem 3.1
and let {Ti}Ni=1 : E → E be demicontinuous pℎi-strongly pseudocontractive opera-
tors. Then the iterative sequence {xn}∞n=1 with errors be defined by

x1 ∈ E,
x1n = a1nxn + b1nT1xn + c1nu

1
n,

x2n = a2nxn + b2nT2x
1
n + c2nu

2
n

...

xn+1 = xNn = aNn xn + bNn TNx
N−1
n + cNn u

N
n , n ≥ 1, (3.6)

converges strongly to the unique common fixed point of {Aix}Ni=1, if atleast one of
the following condition ( 3.2) or ( 3.3) is fulfilled.

Proof. Since we know that a mapping T is �-strongly pseudocontractive if and
only if (I − T ) is �-strongly accretive. Thus the proof follows from Theorem 3.1,
setting Si = I − Ti and f = 0. □
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