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SUMS IN TERMS OF POLYGAMMA FUNCTIONS

ANTHONY SOFO

Abstract. We consider sums involving the product of reciprocal binomial
coefficient and polynomial terms and develop some double integral identities.

In particular cases it is possible to express the sums in closed form, give some

general results, recover some known results in Coffey [8] and produce new
identities.

1. Introduction

In a recent paper Coffey [8], considers summations over digamma and polygamma
functions and develops many results, namely two of his propositions are respectively
equations (58) and (66b)

∞∑
n=1

(−1)
n

n(n+ 1)p+1
= 1 + p− 2 ln 2 +

p∑
m=1

(
2−m − 1

)
� (m+ 1) (1.1)

and
∞∑
n=1

1

n(n+ 1)p+1
= 1 + p−

p∑
m=1

� (m+ 1) . (1.2)

Coffey [8] also constructs new integral representations for these sums. The major
aim of this paper is to investigate general binomial sums with various parameters
that then enables one to give more general representations of (1.1) and (1.2), thereby
generalizing the propositions of Coffey, both in closed form in terms of zeta functions
and digamma functions at possible rational values of the argument, and in double
integral form. The following definitions will be used throughout this paper. The
generalized hypergeometric representation pFq [⋅, ⋅], is defined as

pFq

[
a1, a2, ..., ap

b1, b2, ..., bq

∣∣∣∣∣ z
]

=

∞∑
n=0

(a1)n (a2)n ... (ap)n zn

(b1)n (b2)n ... (bq)n n!⎛⎜⎜⎝
p, q ∈ {0, 1, 2, 3...} ; p ≤ q + 1; p ≤ q and ∣z∣ <∞;
p = q + 1 and ∣z∣ < 1; p = q + 1, ∣z∣ = 1 and

Re

{
q∑

m=1
bm −

p∑
m=1

am

}
> 0, bm /∈ {0,−1,−2,−3, ...}
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where (w)� =

{
Γ(w+�)

Γ(w) , for � > 0

1, for � = 0
is Pochhammer’s symbol. The Gamma and

Beta functions are defined respectively as

Γ (z) =

∫ ∞
0

wz−1e−wdw, for Re (z) > 0,

and

B (s, z) =

∫ 1

0

ws−1 (1− w)
z−1

dw =
Γ (s) Γ (w)

Γ (s+ w)

for Re (s) > 0 and Re (z) > 0. The well known Riemann zeta function is defined as

� (z) =

∞∑
r=1

1

rz
, Re (z) > 1,

and we have
∞∑
r=1

(−1)r

rz
=
(
21−z − 1

)
� (z) , Re (z) > 0, z ∕= 1.

The generalized harmonic numbers of order � are given by

H(�)
n =

n∑
r=1

1

r�
for (�, n) ∈ ℕ := {1, 2, 3, ...} .

In the case of non integer values we may write the generalized harmonic numbers
in terms of polygamma functions

H(�)
z = � (�)− (−1)

�

Γ (�)
 (�−1) (z + 1) , z ∕= {−1,−2,−3, ...} (1.3)

and for � = 1,

H(1)
n = Hn =

1∫
0

1− tn

1− t
dt =

n∑
r=1

1

r
=  +  (n+ 1) ,

where  denotes the Euler-Mascheroni constant, defined by

 = lim
n→∞

(
n∑
r=1

1

r
− log (n)

)
= − (1) ≈ 0.5772156649015.....

and where  (z) denotes the Psi, or digamma function, defined by

 (z) =
d

dz
log Γ (z) =

Γ′ (z)

Γ (z)
=

∞∑
n=0

(
1

n+ 1
− 1

n+ z

)
− .

Furthermore

 (z + 1) =

∞∑
n=1

(
1

n
− 1

n+ z

)
− , (1.4)

2 (2z) =  (z) +  

(
z +

1

2

)
+ 2 ln 2, (1.5)

and the polygamma functions

 (k) (z + 1) =

∞∑
n=1

(−1)
k+1

k!

(n+ z)
k+1

=

∞∫
0

(−1)
k+1

tk e−(z+1)t

1− e−t
dt, (1.6)
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see [3]. The Lerch transcedent Φ (z, s, b) is defined as

Φ (z, s, b) =

∞∑
n=0

zn

(n+ b)
s , ∣z∣ < 1, b ∕= 0,−1,−2, ...

and the Hurwitz zeta function

� (s, b) = Φ (1, s, b) =

∞∑
n=0

1

(n+ b)
s , Re (s) > 1.

The Polylogarithmic function, see [25],

Lik (z) = PolyLog (k, z) =

∞∑
n=1

zn

nk

Sums of reciprocals of binomial coefficients appear in the calculation of mas-
sive Feynman diagrams [12] within several different approaches: for instance, as
solutions of differential equations for Feynman amplitudes, through a naive "-
expansion of hypergeometric functions within Mellin-Barnes technique or in the
framework of recently proposed algebraic approach [11]. There has recently been
renewed interest in the study of series involving binomial coefficients and a number
of authors have obtained either closed form representation or integral representa-
tion for some particular cases of these series. The interested reader is referred to
([1, 2, 4, 5, 6, 9, 10, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27]).

The following Lemma and Theorem are the main results presented in this paper.

2. the main results

The following Lemma will be useful in the proof of the main theorem.

Lemma 2.1. Let ∣z∣ ≤ 1, m > 1 and q ≥ 0. Then

∞∑
r=1

zr

(q + r)
m =

(−1)
m−1

(m− 1)!

1∫
0

z yq (ln (y))
m−1

1− zy
dy. (2.1)

Proof. First we expand 1
1−zy as a power series about y = 0, then interchange the

order of integration and summation so that

(−1)
m−1

(m− 1)!

1∫
0

z yq (ln (y))
m−1

1− zy
dy =

(−1)
m−1

(m− 1)!

∞∑
s=0

zs+1

1∫
0

yq+s (ln (y))
m−1

dy.

Now we successively integrate (m− 1) times so that

1∫
0

yq+s (ln (y))
m−1

dy =
(−1)

m−1
(m− 1)!

(q + s+ 1)
m

and replacing the counter s+ 1 = r we obtain (2.1). □

The next Lemma deals with four infinite sums.
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Lemma 2.2. Let a and r be positive real numbers. Then

∞∑
n=1

1

n (an+ r)
=
H

(1)
r
a

r
, (2.2)

∞∑
n=1

(−1)
n

n (an+ r)
=

1

r

{
H

(1)
r
2a
−H(1)

r
a

}
, (2.3)

∞∑
n=1

1

n (an+ b)
m+1 =

1

bm

(
m+1∑
s=1

(
b

a

)s−1

H
(s)
b
a

−
m+1∑
s=2

(
b

a

)s−1

� (s)

)
and (2.4)

∞∑
n=1

(−1)
n

n (an+ b)
m+1

=
1

bm+1

{
H

(1)
b
2a

−H(1)
b
a

}
+

m+1∑
p=2

a

bm+2

(
b

2a

)p (
H

(p)
b
2a

−H(p)
b
2a−

1
2

)
(2.5)

Proof.

∞∑
n=1

1

n (an+ r)
=

1

r

∞∑
n=1

(
1

n
− 1

n+ r
a

)
=

1

r

[
 +  

( r
a

+ 1
)]
, using (1.4)

=
H

(1)
r
a

r
, hence (2.2) is attained.

∞∑
n=1

(−1)
n

n (an+ r)
=

1

2r

[ ∞∑
n=1

(
1

n
− 1

n+ r
2a

)
−
∞∑
n=1

(
1

n
− 1

n+ r−a
2a

)
−
∞∑
n=1

1

n (2n− 1)

]

=
1

2r

[
− +  

( r
2a

+ 1
)

+  −  
(
r

2a
+

1

2

)
− 2 ln 2

]
,

from (1.5) we may write after substituting for  
(
r
2a + 1

2

)
∞∑
n=1

(−1)
n

n (an+ r)
=

1

2r

[
2 
( r

2a
+ 1
)
− 2 

( r
a

+ 1
)]

=
1

r

[
H

(1)
r
2a
−  −H(1)

r
a

+ 
]

, therefore (2.3) follows.

The partial fraction decomposition

1

n (an+ b)
m+1 =

1

bm+1

(
1

n
− 1

n+ b
a

−
m+1∑
s=2

(
b

a

)s−1
1(

n+ b
a

)s
)
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will be useful in the expansion of (2.4). Consider the sum (2.4)

∞∑
n=1

1

n (an+ b)
m+1 =

∞∑
n=1

(
1

bm+1

(
1

n
− 1

n+ b
a

)
−
m+1∑
s=2

a

bm+2

(
b

a

)s
1(

n+ b
a

)s
)

=
1

bm+1

∞∑
n=1

(
1

n
− 1

n+ b
a

)
−
m+1∑
s=2

a

bm+2

(
b

a

)s ∞∑
n=1

1(
n+ b

a

)s
using (1.6) and (2.3) we have

∞∑
n=1

1

n (an+ b)
m+1 =

1

bm+1
H

(1)
b
a

−
m+1∑
s=2

a (−1)
s

bm+2 (s− 1)!

(
b

a

)s
 (s−1)

(
b

a
+ 1

)
.

From (1.3)

∞∑
n=1

1

n (an+ b)
m+1 =

1

bm+1
H

(1)
b
a

−
m+1∑
s=2

a (−1)
s

bm+2 (s− 1)!

(
b

a

)s (
H

(s)
b
a

− � (s)
)

=

m+1∑
s=1

a

bm+2

(
b

a

)s
H

(s)
b
a

−
m+1∑
s=2

a

bm+2

(
b

a

)s
� (s)

and rearranging we obtain (2.4). For the last identity (2.5) let

∞∑
n=1

(−1)
n

n (an+ b)
m+1 =

∞∑
n=1

(−1)
n

(
1

bm+1

(
1

n
− 1

n+ b
a

)
−
m+1∑
p=2

a

bm+2

(
b

a

)p
1(

n+ b
a

)p
)

=

∞∑
n=1

(−1)
n

bm+1

(
1

n
− 1

n+ b
a

)
−
m+1∑
p=2

a

bm+2

(
b

a

)p ∞∑
n=1

(−1)
n(

n+ b
a

)p
from (2.3), and (1.6)

∞∑
n=1

(−1)
n

n (an+ b)
m+1 =

1

bm+1

(
H

(1)
b
2a

−H(1)
b
a

)
−
m+1∑
p=2

a

bm+2

(
b

2a

)p ∞∑
n=1

(
1(

n+ b
2a

)p − 1(
n+ b

2a −
1
2

)p
)

=
1

bm+1

(
H

(1)
b
2a

−H(1)
b
a

)

−
m+1∑
p=2

(−1)
p
a

(p− 1)!bm+2

(
b

2a

)p(
 (p−1)

(
b

2a
+ 1

)
−  (p−1)

(
b

2a
+

1

2

))
.

Applying (1.3)
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∞∑
n=1

(−1)
n

n (an+ b)
m+1 =

1

bm+1

(
H

(1)
b
2a

−H(1)
b
a

)
−
m+1∑
p=2

a

bm+2

(
b

2a

)p (
−H(p)

b
2a

+H
(p)
b
2a−

1
2

)
and rearranging we obtain (2.5). □

Remark. In the following Corollaries and remarks we encounter harmonic num-

bers at possible rational values of the argument, of the form H
(�)
r
a

where r =

1, 2, 3, ..., k, � = 1, 2, 3, ... and k ∈ ℕ. The polygamma function  (�) (z) is de-
fined as:

 (�) (z) =
d�+1

dz�+1
[log Γ (z)] =

d�

dz�
[ (z)] , z ∕= {0,−1,−2,−3, ...} .

To evaluate H
(�)
r
a

we have available a relation in terms of the polygamma function

 (�) (z) , (1.3), or, for rational arguments z = r
a ,

H
(�+1)
r
a

= � (�+ 1) +
(−1)

�

�!
 (�)

( r
a

+ 1
)

we also define

H
(1)
r
a

=  +  
( r
a

+ 1
)

, and H
(�)
0 = 0.

The evaluation of the polygamma function  (�)
(
r
a

)
at rational values of the argu-

ment can be explicitly done via a formula as given by Kölbig [14], (see also [13]),
or Choi and Cvijovic [7] in terms of the Polylogarithmic or other special functions.
Some specific values are given as, many others are listed in the book [24]:

 (n)

(
1

2

)
= (−1)

n
n!
(
2n+1 − 1

)
� (n+ 1)

H
(4)
1
2

= 16− 4� (2) , H
(2)
3
4

=
16

9
+ 8G− 5� (2) ,

H
(1)
1
3

=
3

2
− �

2
√

3
− 3 ln 3

2
, and H

(1)
5
6

=
6

5
+

√
3�

2
− 3 ln (3)

2
− 2 ln (2) .

The main result of this paper is embodied in the following theorem.

Theorem 2.3. Let a be a positive real number, ∣t∣ ≤ 1 , j ≥ 0, and k ∈ ℕ ∪ {0} .
Then

Sk+1 (a, j, t) =

∞∑
n=1

tn

n (an+ j + 1)
k

(
an+ j + 1
j + 1

) (2.6)

=

⎧⎨⎩
(j+1)t(−1)k

ak k!

1∫
0

1∫
0

(1−x)j xa−1y
j+1
a (ln(y))k

1−txay dxdy, for k ≥ 1

at
1∫
0

(1−x)j+1 xa−1

1−txa dx, for k = 0

.
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= T0 a+k+1Fa+k

⎡⎢⎢⎢⎢⎢⎢⎣
1, 1,

k−terms︷ ︸︸ ︷
a+ j + 1

a
, ......,

a+ j + 1

a
,

(a−1)−terms︷ ︸︸ ︷
a+ 1

a
, .. . . . .,

2a− 1

a
2a+ j + 1

a
, ......,

2a+ j + 1

a︸ ︷︷ ︸
(k+1)−terms

,
a+ j + 2

a
, . . . ...,

a+ j + a

a︸ ︷︷ ︸
(a−1)−terms

∣∣∣∣∣∣∣∣∣∣∣∣
t

⎤⎥⎥⎥⎥⎥⎥⎦
(2.7)

where

T0 =
t (j + 1) B (j + 1, a+ 1)

(a+ j + 1)
k

.

Proof. Consider

∞∑
n=1

tn

n (an+ j + 1)
k

(
an+ j + 1
j + 1

) =

∞∑
n=1

(j + 1) tn Γ (j + 1) an Γ (an)

n (an+ j + 1)
k+1

Γ (an+ j + 1)

= a (j + 1)

∞∑
n=1

tn

(an+ j + 1)
k+1

B (an, j + 1)

now replacing the Beta function with its integral representation, we have

a (j + 1)

∞∑
n=1

tn

(an+ j + 1)
k+1

B (an, j + 1) =

∞∑
n=1

a (j + 1) tn

(an+ j + 1)
k+1

1∫
0

xan−1 (1− x)
j
dx

=
a (j + 1)

ak+1

1∫
0

(1− x)
j

x
dx

∞∑
n=1

(txa)
n(

n+ j+1
a

)k+1
.

By a justified changing the order of integration and summation, by the dominated
convergence theorem, we have,

∞∑
n=1

tn

n (an+ j + 1)
k

(
an+ j + 1
j + 1

) =
a (j + 1)

ak+1

∞∑
n=1

(txa)
n(

n+ j+1
a

)k+1

1∫
0

(1− x)
j

x
dx

=
(j + 1) t (−1)

k

ak k!

1∫
0

1∫
0

(1− x)
j
xa−1 y

j+1
a (ln (y))

k

1− txay
dxdy, for k ≥ 1

upon utilizing Lemma 2.1. The case of k = 0 follows in a similar way so that

S1 (a, j, t) =

∞∑
n=1

tn

n

(
an+ j + 1
j + 1

)

= at

1∫
0

(1− x)
j+1

xa−1

1− txa
dx,
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hence the integrals in (2.6) are attained. By the consideration of the ratio of

successive terms Un+1

Un
where

Un =
tn

n (an+ j + 1)
k

(
an+ j + 1
j + 1

)
we obtain the result (2.7). □

The following interesting corollaries follow from Theorem 2.3.

Corollary 2.4. Let t = 1 and a > 0. Also let j ≥ 0 and k ≥ 1 be integers. Then

Sk+1 (a, j, 1) =

∞∑
n=1

1

n (an+ j + 1)
k

(
an+ j + 1
j + 1

)

=
(j + 1) (−1)

k

ak k!

1∫
0

1∫
0

(1− x)
j
xa−1y

j+1
a (ln (y))

k

1− xay
dxdy, for k ≥ 1

(2.8)

=

k∑
s=0

As (j + 1)!

k+1−s∑
p=1

H
(p)
j+1
a

as+p−1 (j + 1)
k+2−s−p (2.9)

+

j∑
r=1

(−1)
r+1

(j + 1)

(j + 1− r)k+1

(
j
r

)
H

(1)
r
a
−

k∑
s=0

As (j + 1)!

k+1−s∑
p=2

� (p)

as+p−1 (j + 1)
k+2−s−p

where

As = lim
n→(− j+1

a )

[
1

s!

ds

dns

{
(an+ j + 1)

k+1

(an+ j + 1)
k+1 ∏j

r=1 (an+ r)

}]
, s = 0, 1, 2, ...k.

(2.10)

Proof. By expansion,
∞∑
n=1

1

n (an+ j + 1)
k

(
an+ j + 1
j + 1

) =

∞∑
n=1

(j + 1)!

n (an+ j + 1)
k

(an+ 1)j+1

=

∞∑
n=1

(j + 1)!

n (an+ j + 1)
k∏j+1

r=1 (an+ r)

=

∞∑
n=1

(j + 1)!

n (an+ j + 1)
k+1∏j

r=1 (an+ r)

=

∞∑
n=1

(j + 1)!

n

[
j∑
r=1

Br
an+ r

+

k∑
s=0

As

(an+ j + 1)
k+1−s

]
,

where

Br = lim
n→(− r

a )

{
an+ r

(an+ j + 1)
k+1∏j

r=1 (an+ r)

}
=

(−1)
r+1

j!

r

(j + 1− r)k+1

(
j

r

)
,
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As is defined by (2.10). Hence, after interchanging the sums, we have

∞∑
n=1

1

n (an+ j + 1)
k

(
an+ j + 1
j + 1

)
=

j∑
r=1

(j + 1)!Br

∞∑
n=1

1

n (an+ r)
+

k∑
s=0

(j + 1)!As

∞∑
n=1

1

n (an+ j + 1)
k+1−s

=

j∑
r=1

(−1)
r+1

(
j

r

)
j + 1

(j + 1− r)k+1
H

(1)
r
a

+

k∑
s=0

(j + 1)!As

⎛⎝k+1−s∑
p=1

H
(p)
j+1
a

as+p−1 (j + 1)
k+2−s−p −

k+1−s∑
p=2

� (p)

as+p−1 (j + 1)
k+2−s−p

⎞⎠
=

j∑
r=1

(−1)
r+1

(
j

r

)
j + 1

(j + 1− r)k+1
H

(1)
r
a

+

k∑
s=0

(j + 1)!As

k+1−s∑
p=1

H
(p)
j+1
a

as+p−1 (j + 1)
k+2−s−p −

k∑
s=0

(j + 1)!As

k+1−s∑
p=2

� (p)

as+p−1 (j + 1)
k+2−s−p

upon utilizing Lemma 2.2, which is the result (2.9). The degenerate case, for
j = −1, gives the known result

∞∑
n=1

1

aknk+1
=

1

ak
� (k + 1) .

The integral (2.8) follows from the integral in (2.6). □

A similar result is evident for the case t = −1.

Corollary 2.5. Let t = −1 and a > 0. Also let j ≥ 0 and k ≥ 1 be integers. Then

Sk+1 (a, j, −1) =

∞∑
n=1

(−1)
n

n (an+ j + 1)
k

(
an+ j + 1
j + 1

)

=
(j + 1) (−1)

k+1

ak k!

1∫
0

1∫
0

(1− x)
j
xa−1y

j+1
a (ln (y))

k

1 + xay
dxdy, for k ≥ 1

=

j∑
r=1

(−1)
r+1

(j + 1)

(j + 1− r)k+1

(
j
r

)(
H

(1)
r
2a
−H(1)

r
a

)
(2.11)

+

k∑
s=0

As (j + 1)!

as (j + 1)
k+1−s

(
H

(1)
j+1
2a

−H(1)
j+1
a

)
+

k∑
s=0

As (j + 1)! a1−s

(j + 1)
k+2−s

k+1−s∑
p=2

(
j + 1

2a

)p (
H

(p)
j+1
2a

−H(p)
j+1
2a −

1
2

)
Proof. The proof, uses (2.3) and (2.5) and follows the same details as that of Corol-
lary 2.4, and will not be given here.
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The degenerate case, for j = −1, gives the known result

∞∑
n=1

(−1)
n

aknk+1
=

1

(2a)
k

(
1− 2k

)
� (k + 1) .

□

We give the following example to illustrate some of the above identities.

Example. From (2.11)

S3 (6, 2, −1) =

∞∑
n=1

(−1)
n

n (6n+ 3)
2

(
6n+ 3

3

) =
5

3
− 11

9
G− �

8

(
8
√

3− 139

9

)

− �3

144
+

(
26

9
+

3
√

3

4

)
ln 2− 3

√
3

2
ln
(√

3 + 1
)
,

here G is Catalan’s constant, defined by

G =

∞∑
r=0

(−1)
r

(2r + 1)
2 ≈ 0.915965....

Remark. The very special case of a = 1 and j = 0 allows one to evaluate (1.1)
and (1.2).

A recurrence relation for a degenerate case, j = 0, of Theorem 2.3 is embodied
in the following corollary.

Corollary 2.6. Let the conditions of Theorem 2.3 hold with j = 0 and put

S0
k+1 : = S0

k+1 (a, t) =
∑
n≥1

tn

n (an+ 1)
k+1

,

=
t

a+ 1
k+3Fk+2

⎡⎢⎢⎢⎣
(k+2)−terms︷ ︸︸ ︷
1, 1, ....., 1 , a+1

a

2, 2, ....., 2︸ ︷︷ ︸
(k+1)−terms

, 2a+1
a

∣∣∣∣∣∣∣∣∣ t
⎤⎥⎥⎥⎦ ,

then

S0
k+1 − S0

k +
1

ak
Φ

(
t, k + 1,

1

a

)
= a, for k ≥ 1

with solution

S0
k+1 = S0

1 + ak −
k∑
r=1

1

ar
Φ

(
t, r + 1,

1

a

)

where

S0
1 =

∑
n≥1

tn

n (an+ 1)
=

t

a+ 1
3F2

[
1, 1, a+1

a

2, 2a+1
a

∣∣∣∣∣ t
]

and Φ is the Lerch transcendent.
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Proof. We notice that

S0
k+1 = S0

k − a

⎡⎣∑
n≥0

tn

(an+ 1)
k+1
− 1

⎤⎦
hence the solution follows by iteration. □

Some examples are:
∙ For t = −1

S0
k+1 (a,−1) = S0

1 + ak −
k∑
r=1

1

ar
Φ

(
−1, r + 1,

1

a

)
, for k ≥ 1

= ak − ln (2) +
1

2

[
 

(
1

2a

)
−  

(
a+ 1

2a

)]
+

k∑
r=1

�
(
r + 1, a+1

2a

)
− �

(
r + 1, 2a+1

2a

)
2r+1ar

,

= ak +  

(
1

2a

)
−  

(
1

a

)
+

k∑
r=1

�
(
r + 1, a+1

2a

)
− �

(
r + 1, 2a+1

2a

)
2r+1ar

, using (1.5).

When a = 1, we obtain Coffey’s [8], result (1.1)

S0
k+1 (1,−1) = 1− 2 ln (2) + k +

k∑
r=1

(
2−r − 1

)
� (r + 1) .

When a = 2,

S0
k+1 (2,−1) = 2− �

2
− ln (2) + 2k +

k∑
r=1

�
(
r + 1, 3

4

)
− �

(
r + 1, 1

4

)
22r+1

.

∙ For t = 1

S0
k+1 (a, 1) = S0

1 + ak −
k∑
r=1

1

ar
Φ

(
1, r + 1,

1

a

)
, for k ≥ 1

=  + a (k + 1)−  
(

1

a

)
−

k∑
r=1

�
(
r + 1, 1

a

)
ar

.

When a = 1, we obtain Coffey’s [8] result (1.2), by noting that  (1) = −

S0
k+1 (1, 1) = 1 + k −

k∑
r=1

� (r + 1) .

When a = 2,

S0
k+1 (2, 1) = 2− 2 ln (2) + 2k −

k∑
r=1

(
2r+1 − 1

2r

)
� (r + 1) ,

similarly for a = 8,

S0
k+1 (8, 1) = 8 (1 + k)−�

2

√
3 + 2

√
2−4 ln (2)+

√
2 ln

(
3− 2

√
2
)
−

k∑
r=1

22r�

(
r + 1,

1

8

)
.
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