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NEW CLASSES OF P-VALENT HARMONIC FUNCTIONS

R. M. EL-ASHWAH AND M. K. AOUF

Abstract. In the present paper we have studied new subclasses of p-valent

harmonic functions in the unit disc and obtain the basic properties such as
coefficient bound, distortion properties, extreme points and also we apply in-

tegral operator for the same.

1. Introduction

A continuous function f = u + iv is a complex valued harmonic function in a
complex domain C if both u and v are real harmonic in D. In any simply connected
domain D ⊂ C we can write f = ℎ + g , where ℎ and g are analytic in D. A
necessary and sufficient condition for f to be locally univalent and sense preserving

in D is that
∣∣∣ℎ′(z)∣∣∣ > ∣∣∣g′(z)∣∣∣, Clunie and Sheil - Small [7] (see also, [2], [8] and

[13]).

Denote by H the family of functions f = ℎ + g , which are harmonic univalent
and sense-preserving in the open unit disc U = {z : ∣z∣ < 1} with normalization
f(0) = ℎ(0) = fz(0)− 1 = 0.

Recently, Ahuja and Jahangiri [1] defined the class Hp(n)(p, n ∈ N = {1, 2, ....})
consisting of all p-valent harmonic functions f = ℎ + g that are sense-preserving
in U , and ℎ, g are of the form:

ℎ(z) = zp +

∞∑
k=n+p

akz
k, g(z) =

∞∑
k=n+p−1

bkz
k, ∣bn+p−1∣ < 1. (1.1)

For f = ℎ+g given by (1.1), the modified multiplier transformation of f is defined
as:

Dm,ℓ
p f(z) = Dm,ℓ

p ℎ(z) + (−1)mDm,ℓ
p g(z); (1.2)

where

Dm,ℓ
p ℎ(z) = zp +

∞∑
k=n+p

(
k + ℓ

p+ ℓ
)makz

k
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and

Dm,ℓ
p g(z) =

∞∑
k=n+p−1

(
k + ℓ

p+ ℓ
)mbkz

k

(see [5], [6], [10] and [14]). We note that Dm,0
p f(z) = Dm

p f(z), where Dm
p f(z) is

the p-valent Salagean operator (see [3] and [9]).

Also, the subclasses denoted by Hm
p (n) consist of harmonic functions fm = ℎ+gm,

so that ℎ and gm are of the form:

ℎ(z) = zp −
∞∑

k=n+p

akz
k, gm(z) = (−1)m

∞∑
k=n+p−1

bkz
k,

for ak, bk ≥ 0, ∣bn+p−1∣ < 1.

For 0 ≤ � < p,m ∈ N0 = N ∪ {0}, ℓ ≥ 0, � ≥ 0, p ∈ N and z = rei� ∈ U, a function
f in Hp(n) is said to be in the class Hm

p (n, ℓ;�, �) if

Re

⎧⎨⎩(1− �)pm
Dm,ℓ
p f(z)

∂m

∂�m
zp

+ �pm+1
Dm+1,ℓ
p f(z)

∂m+1

∂�m+1
zp

⎫⎬⎭ >
�

pm+1
,

where Dm,ℓ
p f is defined by (1.2).

We define the subclass H
m

p (n, ℓ;�, �) = Hm
p (n, ℓ;�, �) ∩Hm

p (n).

We note that : (i) H
m

p (n, 0;�, �) = H
m

p (n;�, �) (Yalcin et al. [15]);

(ii) H
0

p(n, 0;�, �) = Hp(n;�, �) (Ahuja and Jahangiri [1]);

(iii) H
m

p (n, ℓ; 0, �) = H
m

p P (n, ℓ;�)

=

{
f ∈ Hm

p (n) : Re

(
pm

Dm,ℓ
p f(z)
∂m

∂�m z
p

)
>

�

pm+1
, z ∈ U

}
;

(iv) H
m

p (n, ℓ; 1, �) = H
m

p Q(n, ℓ;�)

=

{
f ∈ Hm

p (n) : Re

(
pm+1

Dm+1,ℓ
p f(z)
∂m

∂�m z
p

)
>

�

pm+1
, z ∈ U

}
.

In this paper, we obtain sufficient coefficient bounds for functions in Hm
p (n, ℓ;�, �).

These sufficient coefficient conditions are shown to be also necessary for functions
in H

m

p (n, ℓ;�, �). A representation theorem, inclusion properties, and distortion

bounds for the class H
m

p (n, ℓ;�, �) are also obtained.
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2. Coefficient bounds

Theorem 1. Let f = ℎ+ g given by (1.1). Then f ∈ Hm
p (n, ℓ;�, �) if

∞∑
k=n+p

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�k + (1− �)p

p+ ℓ

∣∣∣∣ ∣ak∣+
∞∑

k=n+p−1

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�(k + ℓ)− (1− �)(p+ ℓ)

p+ ℓ

∣∣∣∣ ∣bk∣ ≤ pm+1 − �. (2.1)

Proof. Using the fact that Re� ≥ 0 if and only if ∣1 + �∣ ≥ ∣1− �∣ in U , it sufficies
to show that ∣∣pm+1 − �+ pm+1w

∣∣ ≥ ∣∣pm+1 + �− pm+1w
∣∣ , (2.2)

where

w(z) = (1− �)pm
Dm,ℓ
p f(z)

∂m

∂�m
zp

+ �pm+1
Dm+1,ℓ
p f(z)

∂m+1

∂�m+1
zp

.

Substituting for ℎ and g in w, we obtain∣∣pm+1 − �+ pm+1w
∣∣ ≥ 2pm+1 − �

−
∞∑

k=n+p

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣p+ ℓ+ �(k − p)

p+ ℓ

∣∣∣∣ ∣ak∣ ∣z∣k−p
−

∞∑
k=n+p−1

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣p+ ℓ− �(k + p+ 2ℓ)

p+ ℓ

∣∣∣∣ ∣bk∣ ∣z∣k−p
and ∣∣pm+1 + �− pm+1w

∣∣ ≤ �+

∞∑
k=n+p

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣p+ �(k − p)

p+ ℓ

∣∣∣∣ ∣ak∣ ∣z∣k−p
+

∞∑
k=n+p−1

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣p+ ℓ− �(k + p+ 2ℓ)

p+ ℓ

∣∣∣∣ ∣bk∣ ∣z∣k−p
these two inequalities in conjunction with the required condition (2.1) yields∣∣pm+1 − �+ pm+1w

∣∣− ∣∣pm+1 + �− pm+1w
∣∣

≥ 2

⎡⎣pm+1 − �−
∞∑

k=n+p

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣p+ �(k − p)

p+ ℓ

∣∣∣∣ ∣ak∣ −
∞∑

k=n+p−1

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣p+ ℓ− �(k + p+ 2ℓ)

p+ ℓ

∣∣∣∣ ∣bk∣
⎤⎦ ≥ 0.

The coefficient bound (2.1) gave in Theorem 1 is sharp for the function

f(z) = zp +

∞∑
k=n+p

(
p+ ℓ

k + ℓ
)m

(p+ ℓ)xk
pm+1 ∣�k + (1− �)p∣

zk

+

∞∑
k=n+p−1

(
p+ ℓ

k + ℓ
)m

(p+ ℓ)yk
pm+1 ∣�(k + ℓ)− (1− �)(p+ ℓ)∣

zk,
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where
∞∑

k=n+p

∣xk∣+
∞∑

k=n+p−1
∣yk∣ = pm+1 − �.

Theorem 2. Let fm = ℎ+ gm be given by (1.2). Then fm ∈ H
m

p (n, ℓ;�, �) if and
only if

∞∑
k=n+p

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�k + (1− �)p

p+ ℓ

∣∣∣∣ ak+

∞∑
k=n+p−1

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�(k + ℓ)− (1− �)(p+ ℓ)

p+ ℓ

∣∣∣∣ bk ≤ pm−1 − �. (2.3)

Proof. In view of Theorem 1, we only need to prove the only if part of the theorem,
since fm ∈ H

m

p (n, ℓ;�, �) ⊂ Hm
p (n, ℓ;�, �). If fm ∈ H

m

p (n, ℓ;�, �) then, for z =

rei� ∈ U, we get

Re

⎧⎨⎩(1− �)pm
Dm,ℓ
p fm(z)

∂m

∂�m
zp

+ �pm+1
Dm+1,ℓ
p fm(z)

∂m+1

∂�m+1
zp

⎫⎬⎭
= Re

⎧⎨⎩(1− �)pm

⎛⎜⎝Dm,ℓ
p ℎ(z) + (−1)mDm,ℓ

p gm(z)

∂m

∂�m
zp

⎞⎟⎠
+�pm+1

⎛⎜⎝Dm+1,ℓ
p ℎ(z)− (−1)mDm+1,ℓ

p gm(z)

∂m+1

∂�m+1
zp

⎞⎟⎠
⎫⎬⎭

= Re

⎧⎨⎩(1− �)

⎛⎝Dm,ℓ
p ℎ(z) + (−1)mDm,ℓ

p gm(z)

imzp

⎞⎠
+�

⎛⎝Dm+1,ℓ
p ℎ(z)− (−1)mDm+1,ℓ

p gm(z)

im+1zp

⎞⎠⎫⎬⎭
≥ 1−

∞∑
k=n+p

(
k + ℓ

p+ ℓ
)m
∣∣∣∣�k + (1− �)p

p+ ℓ

∣∣∣∣ akrk−p
−

∞∑
k=n+p−1

(
k + ℓ

p+ ℓ
)m
∣∣∣∣�(k + ℓ)− (1− �)(p+ ℓ)

p+ ℓ

∣∣∣∣ bkrk−p ≥ �

pm+1
.

This inequality must holds for all z ∈ U. In particular, choosing the values of z on
the positive real axis, letting r → 1, it yields the required condition.

Putting � = 0 in Theorem 2, we obtain the following corollary.

Corollary 1. Let fm = ℎ+ gm be given by (1.2). Then fm ∈ H
m

p P (n, ℓ;�) if and
only if

∞∑
k=n+p

pm+1(
k + ℓ

p+ ℓ
)m(

p

p+ ℓ
)ak +

∞∑
k=n+p−1

pm+1(
k + ℓ

p+ ℓ
)mbk ≤ pm+1 − �

Putting � = 1 in Theorem 2, we obtain the following corollary.
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Corollary 2. Let fm = ℎ+ gm be given by (1.2). Then fm ∈ H
m

p Q(n, ℓ;�) if and
only if

∞∑
k=n+p

pm+1(
k + ℓ

p+ ℓ
)m(

k

p+ ℓ
)ak +

∞∑
k=n+p−1

pm+1(
k + ℓ

p+ ℓ
)m+1bk ≤ pm+1 − �.

3. . Extreme points and distortion theorem

Our next theorem is on the extreme points of convex hulls of H
m

p (n, ℓ;�, �) denoted

by clco H
m

p (n, ℓ;�, �).

Theorem 3. Let fm be given by (1.2). Then fm ∈ H
m

p (n, ℓ;�, �) if and only if
fm can be expressed as

fm(z) = Xpℎp(z) +
∞∑

k=n+p

Xkℎk(z) +

∞∑
k=n+p−1

Ykgkm(z),

where

ℎp(z) = zp, ℎk(z) = zp − pm+1 − �∣∣∣�k+(1−�)p
p+ℓ

∣∣∣ pm+1(k+ℓp+ℓ )
m
zk

(k = n+ p, n+ p+ 1, ...), gkm(z) = zp + (−1)m
pm+1 − �∣∣∣�(k−�)−(1−�)(p+ℓ)p+ℓ

∣∣∣ pm+1(k+ℓp+ℓ )
m
zk

(k = n+ p− 1, n+ p, ...), Xp ≥ 0, Yn+p−1 ≥ 0, Xp +

∞∑
k=n+p

Xk

+

∞∑
k=n+p−1

Yk = 1 and Xk ≥ 0, Yk ≥ 0 for k = n+ p, n+ p+ 1, ... .

Proof. For functions fm of the form (2.2), we have

fm(z) = Xpℎp(z) +

∞∑
k=n+p

Xkℎk(z) +

∞∑
k=n+p−1

Ykgkm(z)

= zp −
∞∑

k=n+p

pm+1 − �

pm+1(k+ℓp+ℓ )
m
∣∣∣�k+(1−�)p

p+ℓ

∣∣∣Xkz
k

+(−1)m
∞∑

k=n+p−1

pm+1 − �

pm+1(k+ℓp+ℓ )
m
∣∣∣�(k+ℓ)−(1−�)(p+ℓ)p+ℓ

∣∣∣Ykzk.
Consequently, fm ∈ H

m

p (n, ℓ;�, �), since by (2.2), we have

∞∑
k=n+p

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�k + (1− �)p

p+ ℓ

∣∣∣∣ ak+

∞∑
k=n+p−1

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�(k + ℓ)− (1− �)(p+ ℓ)

p+ ℓ

∣∣∣∣ bk
=

∞∑
k=n+p

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�k + (1− �)p

p+ ℓ

∣∣∣∣
∣∣∣∣∣∣ pm+1 − �

pm+1(k+ℓp+ℓ )
m
∣∣∣�k+(1−�)p

p+ℓ

∣∣∣
∣∣∣∣∣∣ ∣Xk∣
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+

∞∑
k=n+p−1

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�(k + ℓ)− (1− �)(p+ ℓ)

p+ ℓ

∣∣∣∣
∣∣∣∣∣∣ pm+1 − �

pm+1(k+ℓp+ℓ )
m
∣∣∣�(k+ℓ)−(1−�)(p+ℓ)p+ℓ

∣∣∣
∣∣∣∣∣∣ ∣Yk∣

= (pm+1 − �)

⎛⎝ ∞∑
k=n+p

∣Xk∣+
∞∑

k=n+p−1

∣Yk∣

⎞⎠ = (pm+1 − �)(1−Xp)

≤ pm+1 − �
and so fm ∈ H

m

p (n, ℓ;�, �).

Conversely, suppose fm ∈ H
m

p (n, ℓ;�, �). Letting Xp = 1−
∞∑

k=n+p

Xk−
∞∑

k=n+p−1
Yk,

where

Xk =

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�k + (1− �)p

p+ ℓ

∣∣∣∣
pm+1 − �

ak

and

Yk =

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�(k + ℓ)− (1− �)(p+ ℓ)

p+ ℓ

∣∣∣∣
pm+1 − �

bk,

we obtain the required representation, since

fm(z) = zp −
∞∑

k=n+p

akz
k + (−1)m

∞∑
k=n+p−1

bkz
k

= zp −
∞∑

k=n+p

(pm+1 − �)Xk

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�k + (1− �)p

p+ ℓ

∣∣∣∣z
k

+(−1)m
∞∑

k=n+p−1

(pm+1 − �)Yk

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�(k + ℓ)− (1− �)(p+ ℓ)

p+ ℓ

∣∣∣∣z
k

= zp −
∞∑

k=n+p

(zp − ℎk(z))Xk −
∞∑

k=n+p−1

(zp − gkm(z))Yk(z)

= (1−
∞∑

k=n+p

Xk −
∞∑

k=n+p−1

Yk(z))zp +

∞∑
k=n+p

ℎk(z)Xk +

∞∑
k=n+p−1

gkm(z)Yk

= Xpℎp(z) +

∞∑
k=n+p

Xkℎk(z) +

∞∑
k=n+p−1

Ykgkm .

This completes the proof of Theorem 3.

The inclusion relations between the classesH
m

p P (n, ℓ;�), H
m

p Q(n, ℓ;�) andH
m

p (n, ℓ;�, �) for
different values of � are not so obvious. In the following theorem we discuss the
inclusion relation between the above mentiond classes.

Theorem 4. For n ∈ N and 0 ≤ � < p, we have

(i) H
m

p Q(n, ℓ;�) ⊂ Hm

p P (n, ℓ;�),

(ii) H
m

p Q(n, ℓ;�) ⊂ Hm

p (n, ℓ;�, �), 0 < � ≤ 1,
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(iii) H
m

p (n, ℓ;�, �) ⊂ Hm

p Q(n, ℓ;�), � ≥ 1.

Proof. (i) In view of Corollaries 1 and 2, since

∞∑
k=n+p

pm+1(
k + ℓ

p+ ℓ
)m

p

p+ ℓ
ak +

∞∑
k=n+p−1

pm+1(
k + ℓ

p+ ℓ
)mbk

≤
∞∑

k=n+p

pm+1(
k + ℓ

p+ ℓ
)m

k

p+ ℓ
ak +

∞∑
k=n+p−1

pm+1(
k + ℓ

p+ ℓ
)m+1bk

≤ pm+1 − �,
the result follows.

(ii) For 0 ≤ � < 1, we have

∞∑
k=n+p

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�k + (1− �)p

p+ ℓ

∣∣∣∣ ak+

∞∑
k=n+p−1

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�(k + ℓ)− (1− �)(p+ ℓ)

p+ ℓ

∣∣∣∣ bk
=

∞∑
k=n+p

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�(k − p) + p

p+ ℓ

∣∣∣∣ ak+

∞∑
k=n+p−1

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�(k + p) + ℓ(2�− 1)− p

p+ ℓ

∣∣∣∣ bk
≤

∞∑
k=n+p

pm+1(
k + ℓ

p+ ℓ
)m(

k

p+ ℓ
)ak +

∞∑
k=n+p−1

pm+1(
k + ℓ

p+ ℓ
)m+1bk ≤ pm+1 − �

by Corollary 2. Thus, (ii) is obtained from Theorem 2.

(iii) If � ≥ 1, then,

∞∑
k=n+p

pm+1(
k + ℓ

p+ ℓ
)m(

k

p+ ℓ
)ak +

∞∑
k=n+p−1

pm+1(
k + ℓ

p+ ℓ
)m+1bk+

≤
∞∑

k=n+p

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�(k − p) + p

p+ ℓ

∣∣∣∣ ak+

∞∑
k=n+p−1

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�(k + ℓ) + ℓ(2�− 1)− p

p+ ℓ

∣∣∣∣ bk ≤ pm+1 − �.

Thus, (iii) is obtained from Corollary 2.

Finally, we give a distortion theorem for functions in H
m

p (n, ℓ;�, �), which leads to
a covering result for this family.

Theorem 5. Let the functions fm(z) defined by (1.2) be in the class H
m

p (n, ℓ;�, �)(� ≥
1).Then for ∣z∣ = r < 1, we have

∣fm(z)∣ ≤ (1 + bn+p−1r
n−1)rp+
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pm+1 − �

pm+1(
n+ p+ ℓ

p+ ℓ
)m(

�n+ p

p+ ℓ
)

−

(
n+ p− 1 + ℓ

p+ ℓ
)m [�(n+ 2p− 1)− p+ ℓ(2�− 1)]

(
n+ p+ ℓ

p+ ℓ
)m(�n+ p)

bn+p−1

⎫⎬⎭ rn+p

and

∣fm(z)∣ ≥ (1− bn+p−1rn−1)rp−⎧⎨⎩
pm+1 − �

pm+1(
n+ p+ ℓ

p+ ℓ
)m(

�n+ p

p+ ℓ
)

−

(
n+ p− 1 + ℓ

p+ ℓ
)m [�(n+ 2p− 1)− p+ ℓ(2�− 1)]

(
n+ p+ ℓ

p+ ℓ
)m(�n+ p)

bn+p−1

⎫⎬⎭ rn+p.

Proof. We prove the left hand side inequality for ∣fm∣ . The proof for the right hand
side inequality can be done by using similar arguments

Let fm ∈ H
m

p (n, ℓ;�, �), then from Theorem 2, we have

∣fm(z)∣ =

∣∣∣∣∣∣zp + (−1)mbn+p−1z
n+p−1 +

∞∑
k=n+p

(akz
k + (−1)mbkz

k)

∣∣∣∣∣∣
≥ rp − bn+p−1rn+p−1−

pm+1 − �

pm+1(
n+ p+ ℓ

p+ ℓ
)m(

�n+ p

p+ ℓ
)

∞∑
k=n+p

⎧⎨⎩
(
�n+ p

p+ ℓ
)

pm+1 − �
ak+

(
�n+ p

p+ ℓ
)

pm+1 − �
bk

⎫⎬⎭ pm+1(
n+ p+ ℓ

p+ ℓ
)mrk

≥ rp − bn+p−1rn+p−1−

pm+1 − �

pm+1(
n+ p+ ℓ

p+ ℓ
)m(

�n+ p

p+ ℓ
)

∞∑
k=n+p

⎧⎨⎩
(
�(k − p) + p

p+ ℓ
)

pm+1 − �
ak+

�(k + p)− p+ ℓ(2�− 1)

p+ ℓ

pm+1 − �
bk

⎫⎬⎭ pm+1(
k + ℓ

p+ ℓ
)mrk

≥ (1− bn+p−1rn−1)rp−
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pm+1−�
pm+1(

n+p+ℓ
p+ℓ )m(

�n+p
p+ℓ )

⎧⎨⎩1− pm+1
(
n+p+ℓ−1

p+ℓ )m
[
�(n+2p−1)−p+p(2�−1)

p+ℓ

]
pm+1−� bn+p−1

⎫⎬⎭ rn+p

≥ (1− bn+p−1rn−1)rp−⎧⎨⎩
pm+1 − �

pm+1(
n+ p+ ℓ

p+ ℓ
)m(

�n+ p

p+ ℓ
)

−

(
n+ p+ ℓ− 1

p+ ℓ
)m [�(n+ 2p− 1)− p+ p(2�− 1)]

(
n+ p+ ℓ

p+ ℓ
)m(�n+ p)

bn+p−1

⎫⎬⎭ rn+p.

This completes the proof of Theorem 5

The following covering result follows from the left side inequality in Theorem 5.

Corollary 3. Let fm ∈ H
m

p (n, ℓ;�, �), then the set{
w : ∣w∣ <

pm+1(
n+p+ℓ
p+ℓ )m(

�n+p
p+ℓ

)−pm−1+�−
{
pm+1(

n+p+ℓ
p+ℓ

)m(
�n+p
p+ℓ

)+pm+1(
n+p+ℓ−1

p+ℓ )m[�(n+2p−1)−p+p(2�−1)
p+ℓ ]

}
bn+p−1

pm+1(
n+p+ℓ
p+ℓ )m(�n+p

p+ℓ )

}
is included in fm(U).

Putting � = 0 in Theorem 5, we obtain the following corollary.

Corollary 4. Let the functions fm(z) defined by (1.2) be in the class H
m

p P (n, ℓ;�), then
for ∣z∣ = r < 1,

∣fm(z)∣ ≤ (1 + bn+p−1r
n−1)rp+⎧⎨⎩

pm+1 − �

pm+1(
n+ p+ ℓ

p+ ℓ
)m(

p

p+ ℓ
)

+

(
n+ p− 1 + ℓ

p+ ℓ
)m

(
n+ p+ ℓ

p+ ℓ
)m(

p

p+ ℓ
)

bn+p−1

⎫⎬⎭ rn+p

and

∣fm(z)∣ ≥ (1− bn+p−1rn−1)rp−⎧⎨⎩
pm+1 − �

pm+1(
n+ p+ ℓ

p+ ℓ
)m(

p

p+ ℓ
)

+

(
n+ p− 1 + ℓ

p+ ℓ
)m

(
n+ p+ ℓ

p+ ℓ
)m(

p

p+ ℓ
)

bn+p−1

⎫⎬⎭ rn+p.

Putting � = 1 in Theorem 5, we obtain the following corollary.

Corollary 5. Let the functions fm(z) defined by (1.2) be in the class H
m

p Q(n, ℓ;�). Then
for ∣z∣ = r < 1, we have

∣fm(z)∣ ≤ (1 + bn+p−1r
n−1)rp+⎧⎨⎩

pm+1 − �

pm+1(
n+ p+ ℓ

p+ ℓ
)m(

n+ p

p+ ℓ
)

−
(
n+ p− 1 + ℓ

p+ ℓ
)m+1

(
n+ p+ ℓ

p+ ℓ
)m(

n+ p

p+ ℓ
)

⎫⎬⎭ bn+p−1
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and

∣fm(z)∣ ≥ (1− bn+p−1rn−1)rp−⎧⎨⎩
pm+1 − �

pm+1(
n+ p+ ℓ

p+ ℓ
)m(

n+ p

p+ ℓ
)

−
(
n+ p− 1 + ℓ

p+ ℓ
)m+1

(
n+ p+ ℓ

p+ ℓ
)m(

n+ p

p+ ℓ
)

bn+p−1

⎫⎬⎭ rn+p.

Now we will examine the closure properties of the class H
m

p (n, ℓ;�, �) under the
generalized Bernardi-Libera-Livingston integral operator ( see [4], [11] and [12])
Lc,p(f) which is defined by

Lc,p(f)(z) =
c+ p

zc

z∫
0

tc−1f(t)dt (c > −p). (3.1)

Theorem 6. Let f ∈ Hm

p (n, ℓ;�, �). Then Lc,p(f)(z) belongs to the class H
m

p (n, ℓ;�, �).

Proof. From the representation of Lc,p(f)(z), it follows that

Lc,p(f)(z) =
c+ p

zc

z∫
0

tc−1
{
ℎ(t) + g(t)

}
dt

=
c+ p

zc

⎧⎨⎩
z∫

0

tc−1(tp −
∞∑

k=n+p

∣ak∣ tk)dt+

z∫
0

tc−1(

∞∑
k=n+p−1

∣bk∣ tk)dt

⎫⎬⎭
= zp −

∞∑
k=n+p

Akz
k +

∞∑
k=n+p−1

Bkz
k,

where

Ak = (
c+ p

c+ k
)ak and Bk = (

c+ p

c+ k
)bk.

Therefore
∞∑

k=n+p

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�k + (1− �)p

p+ ℓ

∣∣∣∣ ( c+ p

c+ k
)ak

+

∞∑
k=n+p−1

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�(k + ℓ)− (1− �)(p+ ℓ)

p+ ℓ

∣∣∣∣ ( c+ p

c+ k
)bk

≤
∞∑

k=n+p−1

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�k + (1− �)p

p+ ℓ

∣∣∣∣ ak
+

∞∑
k=n+p−1

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�(k + ℓ)− (1− �)(p+ ℓ)

p+ ℓ

∣∣∣∣ bk ≤ pm+1 − �.

Since f ∈ Hm

p (n, ℓ;�, �), by Theorem 2, we have Lc,p(f)(z) ∈ Hm

p (n, ℓ;�, �).

For harmonic functions of the form:

fm(z) = zp −
∞∑

k=n+p

akz
k + (−1)m

∞∑
k=n+p−1

bkz
k(ak ≥ 0, b ≥ 0) (3.2)
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and

Fm(z) = zp−
∞∑

k=n+p

Akz
k + (−1)m

∞∑
k=n+p−1

Bkz
k(Ak ≥ 0, B ≥ 0), (3.3)

we define the convolution of two harmonic functions fm and Fm as

(fm ∗ Fm)(z) = fm(z) ∗ Fm(z)

= zp −
∞∑

k=n+p

akAkz
k + (−1)m

∞∑
k=n+p−1

bkBkz
k

Using this definition, we show that the class H
m

p (n, ℓ;�, �) is closed under convo-
lution.

Theorem 7. For 0 ≤ � ≤ � < p,m ∈ N0, p ∈ N, ℓ ≥ 0 and � ≥ 0, let
fm ∈ H

m

p (n, ℓ;�, �) and Fm ∈ H
m

p (n, ℓ;�, �). Then fm ∗ Fm ∈ H
m

p (n, ℓ;�, �) ⊂
H
m

p (n, ℓ;�, �).

Proof. Let the functions fm(z) defined by (1.2) be in the class H
m

p (n, ℓ;�, �) and

let the functions Fm(z) defined by (3.3) be in the class H
m

p (n, ℓ;�, �). Then the
convolution fm ∗ Fm is given by (3.4). We wish to show that the coefficients of

fm ∗Fm satisfy the required condition given in Theorem 2. For Fm ∈ H
m

p (n, ℓ;�, �)
we note that 0 ≤ Ak ≤ 1 and 0 ≤ Bk ≤ 1. Now, for the convolution fm ∗ Fm we
obtain

∞∑
k=n+p

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�k + (1− �)p

p+ ℓ

∣∣∣∣
pm+1 − �

akAk+

∞∑
k=n+p−1

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�(k + ℓ)− (1− �)(p+ ℓ)

p+ ℓ

∣∣∣∣
pm+1 − �

bkBk

≤
∞∑

k=n+p

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�k + (1− �)p

p+ ℓ

∣∣∣∣
pm+1 − �

ak+

∞∑
k=n+p−1

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�(k + ℓ)− (1− �)(p+ ℓ)

p+ ℓ

∣∣∣∣
pm+1 − �

bk

≤
∞∑

k=n+p

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�k + (1− �)p

p+ ℓ

∣∣∣∣
pm+1 − �

ak

+

∞∑
k=n+p−1

pm+1(
k + ℓ

p+ ℓ
)m
∣∣∣∣�(k + ℓ)− (1− �)(p+ ℓ)

p+ ℓ

∣∣∣∣
pm+1 − �

bk ≤ 1,

since 0 ≤ � < � < p and fm ∈ H
m

p (n, ℓ;�, �). Therefore fm∗Fm ∈ H
m

p (n, ℓ;�, �) ⊂
H
m

p (n, ℓ;�, �).
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