ON THE GENERALIZED ABSOLUTE CESÀRO SUMMABILITY

(DEDICATED IN OCCASION OF THE 70-YEARS OF PROFESSOR HARI M. SRIVASTAVA)

HÜSEYIN BOR, DANSHENG YU

Abstract

In this paper, a known theorem dealing with $|C, \alpha|$ summability factors, has been generalized for $|C, \alpha, \beta|_{k}$ summability factors. Some new results have also been obtained.

1. Introduction

Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. We denote by $u_{n}^{\alpha, \beta}$ and $t_{n}^{\alpha, \beta}$ the n-th Cesàro means of order (α, β), with $\alpha+\beta>-1$, of the sequence $\left(s_{n}\right)$ and $\left(n a_{n}\right)$, respectively, i.e., (see [2])

$$
\begin{align*}
u_{n}^{\alpha, \beta} & =\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} s_{v} \tag{1.1}\\
t_{n}^{\alpha, \beta} & =\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \tag{1.2}
\end{align*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha+\beta}=O\left(n^{\alpha+\beta}\right), \quad A_{0}^{\alpha+\beta}=1 \quad \text { and } \quad A_{-n}^{\alpha+\beta}=0 \quad \text { for } \quad n>0 \tag{1.3}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $|C, \alpha, \beta|_{k}, k \geq 1$ and $\alpha+\beta>-1$, if (see [4])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}^{\alpha, \beta}-u_{n-1}^{\alpha, \beta}\right|<\infty \tag{1.4}
\end{equation*}
$$

Since $t_{n}^{\alpha, \beta}=n\left(u_{n}^{\alpha, \beta}-u_{n-1}^{\alpha, \beta}\right)$ (see [4]), condition (4) can also be written as

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}^{\alpha, \beta}\right|^{k}<\infty \tag{1.5}
\end{equation*}
$$

If we take $\beta=0$, then $|C, \alpha, \beta|_{k}$ summability reduces to $|C, \alpha|_{k}$ summability (see [5]). It should be noted that obviously ($C, \alpha, 0$) mean is the same as (C, α)

[^0]mean. A sequence $\left(\lambda_{n}\right)$ is said to be convex if $\Delta^{2} \lambda_{n} \geq 0$, where $\Delta^{2} \lambda_{n}=\Delta \lambda_{n}-$ $\Delta \lambda_{n+1}$.

Pati [6] has proved the following theorem dealing with $|C, \alpha|$ summability factors.

Theorem 1.1. If $\left(\lambda_{n}\right)$ is a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent and the sequence $\left(\theta_{n}^{\alpha}\right)$ defined by

$$
\begin{gather*}
\theta_{n}^{\alpha}=\left|t_{n}^{\alpha}\right|, \alpha=1 \tag{1.6}\\
\theta_{n}^{\alpha}=\max _{1 \leq v \leq n}\left|t_{v}^{\alpha}\right|, 0<\alpha<1 \tag{1.7}
\end{gather*}
$$

satisfies the condition

$$
\begin{equation*}
\theta_{n}^{\alpha}=O(1)(C, 1) \tag{1.8}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $|C, \alpha|$ for $0<\alpha \leq 1$.

2. The Main Result

The aim of this paper is to generalize Theorem 1.1 for $|C, \alpha, \beta|_{k}$ summability. We shall prove the following theorem.

Theorem 2.1. If $\left(\lambda_{n}\right)$ is a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent and the sequence $\left(\theta_{n}^{\alpha, \beta}\right)$ defined by

$$
\begin{gather*}
\theta_{n}^{\alpha, \beta}=\left|t_{n}^{\alpha, \beta}\right|, \alpha=1, \beta>-1 \tag{2.1}\\
\theta_{n}^{\alpha, \beta}=\max _{1 \leq v \leq n}\left|t_{v}^{\alpha, \beta}\right|, 0<\alpha<1, \beta>-1 \tag{2.2}
\end{gather*}
$$

satisfies the condition

$$
\begin{equation*}
\left(\theta_{n}^{\alpha, \beta}\right)^{k}=O(1)(C, 1) \tag{2.3}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $|C, \alpha, \beta|_{k}$ for $0<\alpha \leq 1, \beta>-1$ and $k \geq 1$.
It should be noted that if we take $k=1$ and $\beta=0$, then we get Theorem 1.1.
We need the following lemmas for the proof of our theorem.
Lemma 2.2. ([3]) If $\left(\lambda_{n}\right)$ is a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent, then

$$
\begin{gathered}
n \Delta \lambda_{n} \rightarrow 0 \\
\sum_{n=1}^{\infty}(n+1) \Delta^{2} \lambda_{n}
\end{gathered}
$$

is convergent.
Lemma 2.3. ([1]). If $0<\alpha \leq 1, \beta>-1$ and $1 \leq v \leq n$, then

$$
\begin{equation*}
\left|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right| \leq \max _{1 \leq m \leq v}\left|\sum_{p=0}^{m} A_{m-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right| \tag{2.4}
\end{equation*}
$$

Proof of the theorem. Let $\left(T_{n}^{\alpha, \beta}\right)$ be the n-th (C, α, β) mean of the sequence $\left(n a_{n} \lambda_{n}\right)$. Then, by (1.2), we have

$$
T_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \lambda_{v}
$$

First, applying Abel's transformation and then using Lemma 2.3, we have that

$$
T_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} \Delta \lambda_{v} \sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}+\frac{\lambda_{n}}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v}
$$

thus,

$$
\begin{aligned}
\left|T_{n}^{\alpha, \beta}\right| & \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|\left|\sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}\right|+\frac{\left|\lambda_{n}\right|}{A_{n}^{\alpha+\beta}}\left|\sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v}\right| \\
& \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{\alpha} A_{v}^{\beta} \theta_{v}^{\alpha, \beta}\left|\Delta \lambda_{v}\right|+\left|\lambda_{n}\right| \theta_{n}^{\alpha, \beta} \\
& =T_{n, 1}^{\alpha, \beta}+T_{n, 2}^{\alpha, \beta}, \quad \text { say. }
\end{aligned}
$$

Since

$$
\left|T_{n, 1}^{\alpha, \beta}+T_{n, 2}^{\alpha, \beta}\right|^{k} \leq 2^{k}\left(\left|T_{n, 1}^{\alpha, \beta}\right|^{k}+\left|T_{n, 2}^{\alpha, \beta}\right|^{k}\right)
$$

in order to complete the proof of the theorem, by (5), it is sufficient to show that

$$
\sum_{n=1}^{\infty} \frac{1}{n}\left|T_{n, r}^{\alpha, \beta}\right|^{k}<\infty \quad \text { for } \quad r=1,2
$$

Whenever $k>1$, we can apply Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we get that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \frac{1}{n}\left|T_{n, 1}^{\alpha, \beta}\right|^{k} \leq & \sum_{n=2}^{m+1} \frac{1}{n}\left|\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{\alpha} A_{v}^{\beta} \theta_{v}^{\alpha, \beta} \Delta \lambda_{v}\right|^{k} \\
= & O(1) \sum_{n=2}^{m+1} \frac{1}{n^{1+(\alpha+\beta) k}}\left\{\sum_{v=1}^{n-1} v^{\alpha k} v^{\beta k} \Delta \lambda_{v}\left(\theta_{v}^{\alpha, \beta}\right)^{k}\right\} \\
& \times\left\{\sum_{v=1}^{n-1} \Delta \lambda_{v}\right\}^{k-1} \\
= & O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k} \Delta \lambda_{v}\left(\theta_{v}^{\alpha, \beta}\right)^{k} \sum_{n=v+1}^{m+1} \frac{1}{n^{1+(\alpha+\beta) k}} \\
= & O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k} \Delta \lambda_{v}\left(\theta_{v}^{\alpha, \beta}\right)^{k} \int_{v}^{\infty} \frac{d x}{x^{1+(\alpha+\beta) k}} \\
= & O(1) \sum_{v=1}^{m} \Delta \lambda_{v}\left(\theta_{v}^{\alpha, \beta}\right)^{k} \\
= & O(1) \sum_{v=1}^{m-1} \Delta\left(\Delta \lambda_{v}\right) \sum_{p=1}^{v}\left(\theta_{p}^{\alpha, \beta}\right)^{k}+O(1) \Delta \lambda_{m} \sum_{v=1}^{m}\left(\theta_{v}^{\alpha, \beta}\right)^{k} \\
= & O(1) \sum_{v=1}^{m} v \Delta^{2} \lambda_{v}+O(1) m \Delta \lambda_{m} \\
= & O(1) a s \quad m \rightarrow \infty
\end{aligned}
$$

in view of hypotheses of the theorem and Lemma 2.2.

Similarly, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} \frac{1}{n}\left|\lambda_{n} \theta_{n}^{\alpha, \beta}\right|^{k} & =O(1) \sum_{n=1}^{m} \frac{\lambda_{n}}{n}\left(\theta_{n}^{\alpha, \beta}\right)^{k} \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left(n^{-1} \lambda_{n}\right) \sum_{v=1}^{n}\left(\theta_{v}^{\alpha, \beta}\right)^{k} \\
& +O(1) \frac{\lambda_{m}}{m} \sum_{v=1}^{m}\left(\theta_{v}^{\alpha, \beta}\right)^{k} \\
& =O(1) \sum_{n=1}^{m-1} \Delta \lambda_{n}+O(1) \sum_{n=1}^{m-1} \frac{\lambda_{n+1}}{n+1}+O(1) \lambda_{m} \\
& =O(1)\left(\lambda_{1}-\lambda_{m}\right)+O(1) \sum_{n=1}^{m-1} \frac{\lambda_{n+1}}{n+1}+O(1) \lambda_{m} \\
& =O(1) \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

Therefore, by (1.5), we get that

$$
\sum_{n=1}^{\infty} \frac{1}{n}\left|T_{n, r}^{\alpha, \beta}\right|^{k}<\infty \quad \text { for } \quad r=1,2
$$

This completes the proof of the theorem. If we take $\beta=0$, then we get a new result for $|C, \alpha|_{k}$ summability factors. Also, if we take $\beta=0$ and $\alpha=1$, then we get another new result for $|C, 1|_{k}$ summability factors.

References

[1] H. Bor, On a new application of quasi power increasing sequences, Proc. Estonian Acad. Sci. Phys. Math. 57, (2008), 205-209.
[2] D. Borwein, Theorems on some methods of summability, Quart. J. Math., Oxford, Ser.9, (1958), 310-316.
[3] H. C. Chow, On the summability factors of Fourier Series, J. London Math. Soc. 16, (1941), 215-220.
[4] G. Das, A Tauberian theorem for absolute summability, Proc. Camb. Phil. Soc. 67, (1970), 321-326.
[5] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7, (1957), 113-141.
[6] T. Pati, The summability factors of infinite series, Duke Math. J. 21, (1954), 271-284.
Hüseyin Bor
Department of Mathematics, Bahçelievler, P.O.Box 121, 06502,
Ankara, Turkey
E-mail address: hbor33@gmail.com
Dansheng Yu
Department of Mathematics, Hangzhou Normal University,
Hangzhou Zhejiang 310036 , China
E-mail address: anshengyu@yahoo.com.cn

[^0]: 2000 Mathematics Subject Classification. 40D15, 40F05, 40G05, 40G99.
 Key words and phrases. Absolute Cesàro summability, infinite series, summability factors.
 (C)2010 Universiteti i Prishtinës, Prishtinë, Kosovë.

 Submitted September 2, 2010. Published October 23, 2010.

