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MEROMORPHIC FUNCTIONS THAT SHARE FIXED POINTS

WITH FINITE WEIGHTS

(DEDICATED IN OCCASION OF THE 70-YEARS OF

PROFESSOR HARI M. SRIVASTAVA)

PULAK SAHOO

Abstract. With the aid of weighted sharing method we study the uniqueness

of meromorphic (entire) functions concerning some general nonlinear differen-

tial polynomials sharing fixed points. The results of the paper improve and
generalize some results due to Zhang [24] and the present author [16].

1. Introduction, Definitions and Results

In this paper, by meromorphic functions we will always mean meromorphic func-
tions in the complex plane. We adopt the standard notations in the Nevanlinna
theory of meromorphic functions as explained in [10], [20] and [22]. For a noncon-
stant meromorphic function ℎ, we denote by T (r, ℎ) the Nevanlinna characteristic
of ℎ and by S(r, ℎ) any quantity satisfying S(r, ℎ) = o{T (r, ℎ)} as r →∞ possibly
outside a set of finite linear measure. A meromorphic function a(z)( ∕≡ ∞) is called
a small function with respect to f , provided that T (r, a) = S(r, f).

Let f and g be two nonconstant meromorphic functions, and let a be a finite
value. We say that f and g share the value a CM, provided that f−a and g−a have
the same zeros with the same multiplicities. Similarly, we say that f and g share a
IM, provided that f − a and g − a have the same zeros ignoring multiplicities. In
addition, we say that f and g share ∞ CM, if 1

f and 1
g share 0 CM, and we say

that f and g share ∞ IM, if 1
f and 1

g share 0 IM (see[22]). A finite value z0 is a

fixed point of f(z) if f(z0) = z0 and we define

Ef = {z ∈ ℂ : f(z) = z, counting multiplicities}.

In 1959, Hayman (see [9], Corollary of Theorem 9) proved the following theorem.

Theorem A. Let f be a transcendental meromorphic function and n(≥ 3) is an
integer. Then fnf ′ = 1 has infinitely many solutions.
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Corresponding to which, the following result was obtained by Yang and Hua [19]
and by Fang and Hua [7] respectively.

Theorem B. Let f and g be two nonconstant meromorphic (entire) functions,
n ≥ 11 (n ≥ 6) be a positive integer. If fnf ′ and gng′ share 1 CM, then either
f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(c1c2)n+1c2 = −1 or f ≡ tg for a constant t such that tn+1 = 1.

In 2000, Fang [5] proved the following result.

Theorem C. Let f be a transcendental meromorphic function, and let n be a
positive integer. Then fnf ′ − z has infinitely many solutions.

Corresponding to Theorem C, Fang and Qiu [8] proved the following result.

Theorem D. Let f and g be two nonconstant meromorphic functions, and let
n ≥ 11 be a positive integer. If fnf ′ − z and gng′ − z share 0 CM, then either

f(z) = c1e
cz2 , g(z) = c2e

−cz2 , where c1, c2 and c are three nonzero complex numbers
satisfying 4(c1c2)n+1c2 = −1 or f = tg for a complex number t such that tn+1 = 1.

Considering k th derivative instead of first derivative, Hennekemper-Hennekemper
[11], Chen [4] and Wang [17] proved the following theorem.

Theorem E. Let f be a transcendental entire function and n, k be two positive
integers with n ≥ k + 1. Then (fn)(k) = 1 has infinitely many solutions.

Corresponding to Theorem E Fang [6] proved the following theorem.

Theorem F. Let f and g be two nonconstant entire functions, and let n, k be two
positive integers with n ≥ 2k + 8. If [fn(f − 1)](k) and [gn(g − 1)](k) share 1 CM,
then f ≡ g.

In 2008, Zhang [24] extended Theorem F by using the idea of sharing fixed points
and obtained the following theorems.

Theorem G. Let f and g be two nonconstant entire functions, and n, k be two
positive integers with n ≥ 2k + 6. If E(fn(f−1))(k) = E(gn(g−1))(k) , then f ≡ g.

Naturally one may ask the following question.
Question 1. Is it really possible in any way to relax the nature of sharing the
fixed point in Theorem G without increasing the lower bound of n ?

To state the next result we need the following definition known as weighted
sharing of values introduced by I. Lahiri [12, 13] which measure how close a shared
value is to being shared CM or to being shared IM.

Definition 1. Let k be a nonnegative integer or infinity. For a ∈ ℂ ∪ {∞} we
denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity m is
counted m times if m ≤ k and k+1 times if m > k. If Ek(a; f) = Ek(a; g), we say
that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k, then z0 is
an a-point of f with multiplicity m(≤ k) if and only if it is an a-point of g with
multiplicity m(≤ k) and z0 is an a-point of f with multiplicity m(> k) if and only
if it is an a-point of g with multiplicity n(> k), where m is not necessarily equal to
n.
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We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) and
(a,∞) respectively.

Using the idea of weighted sharing of values, recently the present author [16]
proved the following uniqueness theorem for some nonlinear differential polynomials
sharing 1-points.

Theorem H. Let f(z) and g(z) be two transcendental meromorphic functions, and
let n(≥ 1), k(≥ 1), m(≥ 1) and l(≥ 0) be four integers. Let P (z) = amz

m + ... +
a1z + a0, where a0(∕= 0), a1, ... , am(∕= 0) are complex constants. Let [fnP (f)](k)

and [gnP (g)](k) share (1, l) and one of the following conditions holds:
(a) l ≥ 2 and n > 3k +m+ 8;
(b) l = 1 and n > 4k + 3m/2 + 9;
(c) l = 0 and n > 9k + 4m+ 14.
Then either [fnP (f)](k)[gnP (g)](k) ≡ 1 or f(z) ≡ tg(z) for a constant t such
that td = 1, where d = gcd{n + m, ..., n + m − i, ..., n + 1, n}, am−i ∕= 0 for
some i = 0, 1, ...,m or f and g satisfy the algebraic equation R(f, g) = 0, where
R(x, y) = xm(amx

m + ...+ a1x+ a0)− ym(amy
m + ...+ a1y + a0).

The possibility [fnP (f)](k)[gnP (g)](k) ≡ 1 does not occur for k = 1.

Natural question arises:
Question 2. Can one replace the shared value by shared fixed points in Theorem
H ?

In the paper, we will prove two theorems second of which will not only improve
Theorem G by relaxing the nature of sharing the fixed point and at the same time
provide a supplementary and generalized result of Theorem H. Moreover, Theorem
2 deal with question 1 and question 2. We now state the main results of the paper.

Theorem 1.1. Let f be a transcendental meromorphic function and n, k, m be
three positive integers such that n ≥ k + 3. Let P (z) be defined as in Theorem H.
Then (fnP (f))(k) has infinitely many fixed points.

Theorem 1.2. Let f and g be two transcendental meromorphic functions, and let
n, k and m be three positive integers. Let P (z) be defined as in Theorem H. Let
[fnP (f)](k) and [gnP (g)](k) share (z, l) where l(≥ 0) is an integer; f , g share (∞, 0)
and one of the following conditions holds:
(i) l ≥ 2 and n > 3k +m+ 7;
(ii) l = 1 and n > 4k + 3m/2 + 8;
(iii) l = 0 and n > 9k + 4m+ 13.
Then either f(z) = tg(z) for a constant t such that td = 1, where d = (n+m, ..., n+
m − i, ..., n), am−i ∕= 0 for some i = 0, 1, 2, ...,m or f and g satisfy the algebraic
equation R(f, g) ≡ 0, where

R(x, y) = xn(amx
m + am−1x

m−1 + ...+ a0)− yn(amy
m + am−1y

m−1 + ...+ a0).

Corollary 1.3. Let f and g be two transcendental entire functions, and let n, k and
m be three positive integers. Let P (z) be defined as in Theorem H. Let [fnP (f)](k)

and [gnP (g)](k) share (z, l) where l(≥ 0) is an integer and one of the following
conditions holds:
(i) l ≥ 2 and n > 2k +m+ 4;
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(ii) l = 1 and n > 5k+3m+9
2 ;

(iii) l = 0 and n > 5k + 4m+ 7.
Then the conclusions of Theorem 1.2 holds.

Remark. Corollary 1.3 is an improvement of Theorem G.

Remark. If [fnP (f)](k) and [gnP (g)](k) share (1, l) where l(≥ 0) is an integer and
f , g share (∞, 0), then the conclusions of Theorem 1.2 holds in each of the cases
(i) - (iii) of Theorem 1.2.

We now explain some definitions and notations which are used in the paper.

Definition 2. [14] For a ∈ ℂ∪{∞} we denote by N(r, a; f ∣= 1) the counting func-
tions of simple a-points of f . For a positive integer p we denote by N(r, a; f ∣≤ p)
the counting function of those a-points of f (counted with proper multiplicities)
whose multiplicities are not greater than p. By N(r, a; f ∣≤ p) we denote the corre-
sponding reduced counting function.

In an analogous manner we define N(r, a; f ∣≥ p) and N(r, a; f ∣≥ p).

Definition 3. [13] Let k be a positive integer or infinity. We denote by Nk(r, a; f)
the counting function of a-points of f , where an a-point of multiplicity m is counted
m times if m ≤ k and k times if m > k. Then

Nk(r, a; f) = N(r, a; f) +N(r, a; f ∣≥ 2) + ...+N(r, a; f ∣≥ k).

Clearly N1(r, a; f) = N(r, a; f).

Definition 4. [1, 2] Let f and g be two nonconstant meromorphic functions such
that f and g share the value 1 IM. Let z0 be a 1-point of f with multiplicity p and also
a 1-point of g with multiplicity q. We denote by NL(r, 1; f) the counting function

of those 1-points of f and g, where p > q, by N
1)
E (r, 1; f) the counting function of

those 1-points of f and g, where p = q = 1, by N
(k
E (r, 1; f) (k ≥ 2 is an integer)

the counting function of those 1-points of f and g, where p = q ≥ k, where each
point in these counting functions is counted only once. In the same manner we can

define NL(r, 1; g), N
1)
E (r, 1; g) and N

(k
E (r, 1; g).

Definition 5. [1, 2] Let f and g be two nonconstant meromorphic functions such
that f and g share the value 1 IM. Let z0 be a 1-point of f with multiplicity p and
also a 1-point of g with multiplicity q. For a positive integer k, Nf>k(r, 1; g) denotes
the reduced counting function of those 1-points of f and g such that p > q = k. In
an analogous way we can define Ng>k(r, 1; f).

Definition 6. [12, 13] Let f and g be two nonconstant meromorphic functions
such that f and g share the value a IM. We denote by N∗(r, a; f, g) the reduced
counting function of those a-points of f whose multiplicities differ from the mul-
tiplicities of the corresponding a-points of g. Clearly N∗(r, a; f, g) = N∗(r, a; g, f)
and N∗(r, a; f, g) = NL(r, a; f) +NL(r, a; g).

2. lemmas

In this section we present some lemmas which will be needed in the sequel. Let
F and G be two nonconstant meromorphic functions defined in ℂ. We shall denote
by H the following function:

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−

(
G′′

G′
− 2G′

G− 1

)
.



110 P. SAHOO

Lemma 2.1. [21, 23] If F , G share (1, 0) and H ∕≡ 0 then

N
1)
E (r, 1;F ) ≤ N(r,∞;H) + S(r, F ) + S(r,G).

Lemma 2.2. [15] If F , G share (1, 0), (∞, 0) and H ∕≡ 0 then

N(r,∞;H) ≤ N(r, 0;F ∣≥ 2) +N(r, 0;G ∣≥ 2) +N∗(r,∞;F,G) +N∗(r, 1;F,G)

+N0(r, 0;F ′) +N0(r, 0;G′),

where N0(r, 0;F ′) is the reduced counting function of those zeros of F ′ which are
not the zeros of F (F − 1), and N0(r, 0;G′) is similarly defined.

Lemma 2.3. [18] Let f be a nonconstant meromorphic function and let an(z)(∕≡ 0),
an−1(z), ... , a0(z) be meromorphic functions such that T (r, ai(z)) = S(r, f) for
i = 0, 1, 2, ..., n. Then

T (r, anf
n + an−1f

n−1 + ...+ a1f + a0) = nT (r, f) + S(r, f).

Lemma 2.4. [25] Let f be a nonconstant meromorphic function, and p, k be pos-
itive integers. Then

Np

(
r, 0; f (k)

)
≤ T

(
r, f (k)

)
− T (r, f) +Np+k(r, 0; f) + S(r, f), (2.1)

Np

(
r, 0; f (k)

)
≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f). (2.2)

Lemma 2.5. [1] Let f and g be two nonconstant meromorphic functions that share
(1, 1). Then

2NL(r, 1; f) + 2NL(r, 1; g) +N
(2
E (r, 1; f)−Nf>2(r, 1; g) ≤ N(r, 1; g)−N(r, 1; g).

Lemma 2.6. [2] Let f and g be two nonconstant meromorphic functions that share
(1, 1). Then

Nf>2(r, 1; g) ≤ 1

2
N(r, 0; f) +

1

2
N(r,∞; f)− 1

2
N⊕(r, 0; f ′) + S(r, f),

where N⊕(r, 0; f ′) denotes the counting function of those zeros of f ′ which are not
zeros of f(f − 1).

Lemma 2.7. [2] Let f and g be two nonconstant meromorphic functions that share
(1, 0). Then

NL(r, 1; f) + 2NL(r, 1; g) +N
(2
E (r, 1; f)−Nf>1(r, 1; g)−Ng>1(r, 1; f)

≤ N(r, 1; g)−N(r, 1; g).

Lemma 2.8. [21] Let f and g be two nonconstant meromorphic functions sharing
(1, 0). Then

NL(r, 1; f) ≤ N(r, 0; f) +N(r,∞; f) + S(r, f).

Lemma 2.9. [2] Let f and g be two nonconstant meromorphic functions that share
(1, 0). Then
(i) Nf>1(r, 1; g) ≤ N(r, 0; f) +N(r,∞; f)−N⊕(r, 0; f ′) + S(r, f);

(ii) Ng>1(r, 1; f) ≤ N(r, 0; g) +N(r,∞; g)−N⊕(r, 0; g′) + S(r, g),
where N⊕(r, 0; f ′) and N⊕(r, 0; g′) are defined as in Lemma 2.6.
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Lemma 2.10. [3] Let F , G be two nonconstant meromorphic functions sharing
(1, 2), (∞, 0) and H ∕≡ 0. Then
(i) T (r, F ) ≤ N2(r, 0;F )+N2(r, 0;G)+N(r,∞;F )+N(r,∞;G)+N∗(r,∞;F,G)−
m(r, 1;G)−N (3

E (r, 1;F )−NL(r, 1;G) + S(r, F ) + S(r,G);

(ii) T (r,G) ≤ N2(r, 0;F )+N2(r, 0;G)+N(r,∞;F )+N(r,∞;G)+N∗(r,∞;F,G)−
m(r, 1;F )−N (3

E (r, 1;G)−NL(r, 1;F ) + S(r, F ) + S(r,G).

Lemma 2.11. Let F , G be two nonconstant meromorphic functions sharing (1, 1),
(∞, 0) and H ∕≡ 0. Then
(i) T (r, F ) ≤ N2(r, 0;F )+N2(r, 0;G)+ 3

2N(r,∞;F )+N(r,∞;G)+N∗(r,∞;F,G)+
1
2N(r, 0;F ) + S(r, F ) + S(r,G).

(ii) T (r,G) ≤ N2(r, 0;F )+N2(r, 0;G)+N(r,∞;F )+ 3
2N(r,∞;G)+N∗(r,∞;F,G)+

1
2N(r, 0;G) + S(r, F ) + S(r,G);

Proof. We prove (i) only since the proof of (ii) is similar. Since F , G share (1, 1),

N
1)
E (r, 1;F ) = N(r, 1;F ∣= 1). By the second fundamental theorem of Nevanlinna

we have

T (r, F ) ≤ N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F )−N0(r, 0;F ′) + S(r, F ) (2.3)

and

T (r,G) ≤ N(r, 0;G) +N(r,∞;G) +N(r, 1;G)−N0(r, 0;G′) + S(r,G), (2.4)

where N0(r, 0;F ′) and N0(r, 0;G′) are defined as in Lemma 2.2. Since

N(r, 1;F ) +N(r, 1;G) ≤ N(r, 1;F ∣= 1) +N
(2
E (r, 1;F ) +NL(r, 1;F )

+NL(r, 1;G) +N(r, 1;G),

using Lemmas 2.1, 2.2, 2.5 and 2.6 we obtain

N(r, 1;F ) +N(r, 1;G) ≤ N(r, 0;F ∣≥ 2) +N(r, 0;G ∣≥ 2) +N∗(r,∞;F,G)

+ 2N∗(r, 1;F,G) +N
(2
E (r, 1;F ) +N(r, 1;G)

+N0(r, 0;F ′) +N0(r, 0;G′)

≤ N(r, 0;F ∣≥ 2) +N(r, 0;G ∣≥ 2) +N∗(r,∞;F,G)

+NF>2(r, 1;G) + T (r,G) +N0(r, 0;F ′) +N0(r, 0;G′)

≤ N(r, 0;F ∣≥ 2) +N(r, 0;G ∣≥ 2) +N∗(r,∞;F,G)

+
1

2
N(r, 0;F ) +

1

2
N(r,∞;F ) + T (r,G)

+N0(r, 0;F ′) +N0(r, 0;G′).

Using (2.3) and (2.4) we obtain from above

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +
3

2
N(r,∞;F ) +N(r,∞;G)

+N∗(r,∞;F,G) +
1

2
N(r, 0;F ) + S(r, F ) + S(r,G).

This completes the proof of the lemma. □

Lemma 2.12. Let F , G be two nonconstant meromorphic functions sharing (1, 0),
(∞, 0) and H ∕≡ 0. Then
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(i) T (r, F ) ≤ N2(r, 0;F )+N2(r, 0;G)+3N(r,∞;F )+2N(r,∞;G)+N∗(r,∞;F,G)+
2N(r, 0;F ) +N(r, 0;G) + S(r, F ) + S(r,G).
(ii) T (r,G) ≤ N2(r, 0;F )+N2(r, 0;G)+2N(r,∞;F )+3N(r,∞;G)+N∗(r,∞;F,G)+
N(r, 0;F ) + 2N(r, 0;G) + S(r, F ) + S(r,G);

Proof. We prove (i) only since the proof of (ii) is similar. Since

N(r, 1;F ) +N(r, 1;G) ≤ N1)
E (r, 1;F ) +N

(2
E (r, 1;F ) +NL(r, 1;F )

+NL(r, 1;G) +N(r, 1;G),

using Lemmas 2.1, 2.2, 2.7, 2.8 and 2.9 we obtain

N(r, 1;F ) +N(r, 1;G) ≤ N(r, 0;F ∣≥ 2) +N(r, 0;G ∣≥ 2) +N∗(r,∞;F,G)

+ 2N∗(r, 1;F,G) +N
(2
E (r, 1;F ) +N(r, 1;G)

+N0(r, 0;F ′) +N0(r, 0;G′)

≤ N(r, 0;F ∣≥ 2) +N(r, 0;G ∣≥ 2) +N∗(r,∞;F,G)

+NF>1(r, 1;G) +NG>1(r, 1;F ) +NL(r, 1;F ) + T (r,G)

+N0(r, 0;F ′) +N0(r, 0;G′)

≤ N(r, 0;F ∣≥ 2) +N(r, 0;G ∣≥ 2) +N∗(r,∞;F,G)

+ 2N(r, 0;F ) +N(r, 0;G) + 2N(r,∞;F ) +N(r,∞;G)

+ T (r,G) +N0(r, 0;F ′) +N0(r, 0;G′).

Using (2.3) and (2.4) we obtain from above

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) + 3N(r,∞;F ) + 2N(r,∞;G) +N∗(r,∞;F,G)

+ 2N(r, 0;F ) +N(r, 0;G) + S(r, F ) + S(r,G).

This completes the proof of the lemma. □

Lemma 2.13. [10, 20] Let f be a transcendental meromorphic function, and let
a1(z), a2(z) be two distinct meromorphic functions such that T (r, ai(z)) = S(r, f),
i=1,2. Then

T (r, f) ≤ N(r,∞; f) +N(r, a1; f) +N(r, a2; f) + S(r, f).

Lemma 2.14. Let f and g be two transcendental meromorphic (entire) functions

and let n, k be two positive integers. Suppose that F1 = (fnP (f))(k)

z and G1 =
(gnP (g))(k)

z where P (z) be defined as in Theorem H. If there exist two nonzero con-

stants c1 and c2 such that N(r, c1;F1) = N(r, 0;G1) and N(r, c2;G1) = N(r, 0;F1),
then n ≤ 3k +m+ 3 (n ≤ 2k +m+ 2).

Proof. We prove the case when f and g are two nonconstant meromorphic functions.
The case when f and g are two nonconstant entire functions can be proved similarly.
By the second fundamental theorem of Nevanlinna we have

T (r, F1) ≤ N(r, 0;F1) +N(r,∞;F1) +N(r, c1;F1) + S(r, F1)

≤ N(r, 0;F1) +N(r, 0;G1) +N(r,∞;F1) + S(r, F1).
(2.5)
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By (2.1), (2.2), (2.5) and Lemma 2.3 we obtain

(n+m)T (r, f) ≤ T (r, F1)−N(r, 0;F1) +Nk+1(r, 0; fnP (f)) +O{log r}+ S(r, f)

≤ N(r, 0;G1) +Nk+1(r, 0; fnP (f)) +N(r,∞; f) +O{log r}+ S(r, f)

≤ Nk+1(r, 0; fnP (f)) +Nk+1(r, 0; gnP (g)) +N(r,∞; f)

+ kN(r,∞; g) +O{log r}+ S(r, f) + S(r, g)

≤ (k +m+ 2)T (r, f) + (2k +m+ 1)T (r, g)

+O{log r}+ S(r, f) + S(r, g).

(2.6)

Similarly we obtain

(n+m)T (r, g) ≤ (k +m+ 2)T (r, g) + (2k +m+ 1)T (r, f)

+O{log r}+ S(r, f) + S(r, g).
(2.7)

Since f and g are transcendental meromorphic functions, we have

T (r, z) = o{T (r, f)} and T (r, z) = o{T (r, g)}. (2.8)

Hence from (2.6) and (2.7) we get

(n− 3k −m− 3){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

which gives n ≤ 3k +m+ 3. This completes the proof of the lemma. □

Proceeding as in the proof of Lemma 2.14 we get

Lemma 2.15. Let f and g be two transcendental meromorphic (entire) functions
and let n, k be two positive integers. Suppose that F2 = (fnP (f))(k) and G2 =
(gnP (g))(k) where P (z) be defined as in Theorem H. If there exist two nonzero con-
stants d1 and d2 such that N(r, d1;F2) = N(r, 0;G2) and N(r, d2;G2) = N(r, 0;F2),
then n ≤ 3k +m+ 3 (n ≤ 2k +m+ 2).

3. Proof of the Theorem

Proof of Theorem 1.1. We consider F (z) = fnP (f) and G(z) = gnP (g). Then by
Lemma 2.13 we have

T
(
r, F (k)

)
≤ N

(
r, 0;F (k)

)
+N

(
r,∞;F (k)

)
+N

(
r, z;F (k)

)
+ S(r, F ).

Using (2.1) and the above inequality we obtain

(n+m)T (r, f) ≤ T
(
r, F (k)

)
−N

(
r, 0;F (k)

)
+Nk+1(r, 0;F ) + S(r, f)

≤ N
(
r,∞;F (k)

)
+N

(
r, z;F (k)

)
+Nk+1(r, 0;F ) + S(r, f)

≤ (k +m+ 2)T (r, f) +N
(
r, z;F (k)

)
+ S(r, f).

Since n ≥ k + 3, from this we can say that F (k) = (fnP (f))(k) has infinitely many
fixed points. □
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Proof of Theorem 1.2. We consider F (z) = (fnP (f))(k)

z and G(z) = (gnP (g))(k)

z .
Then F (z), G(z) are transcendental meromorphic functions that share (1, l) and f ,
g share (∞, 0). We assume that H ∕≡ 0. Then from Lemma 2.3 and (2.1) we obtain

N2(r, 0;F ) ≤ N2

(
r, 0; (fnP (f))(k)

)
+ S(r, f)

≤ T
(
r, (fnP (f))(k)

)
− (n+m)T (r, f) +Nk+2(r, 0; fnP (f)) + S(r, f)

≤ T (r, F )− (n+m)T (r, f) +Nk+2(r, 0; fnP (f)) +O{log r}+ S(r, f).

(3.1)

In a similar way we obtain

N2(r, 0;G) ≤ T (r,G)− (n+m)T (r, g) +Nk+2(r, 0; gnP (g)) +O{log r}+ S(r, g).

(3.2)
Again by (2.2) we have

N2(r, 0;F ) ≤ kN(r,∞; f) +Nk+2(r, 0; fnP (f)) + S(r, f). (3.3)

N2(r, 0;G) ≤ kN(r,∞; g) +Nk+2(r, 0; gnP (g)) + S(r, g). (3.4)

From (3.1) and (3.2) we get

(n+m){T (r, f) + T (r, g)} ≤ T (r, F ) + T (r,G) +Nk+2(r, 0; fnP (f))

+Nk+2(r, 0; gnP (g))−N2(r, 0;F )−N2(r, 0;G)

+O{log r}+ S(r, f) + S(r, g).

(3.5)

Now we consider the following three cases.

Case 1. Let l ≥ 2. Then using Lemma 2.10, (3.3) and (3.4) we obtain from (3.5)

(n+m){T (r, f) + T (r, g)} ≤ N2(r, 0;F ) +N2(r, 0;G) + 2N(r,∞;F ) + 2N(r,∞;G)

+ 2N∗(r,∞;F,G) +Nk+2(r, 0; fnP (f))

+Nk+2(r, 0; gnP (g)) +O{log r}+ S(r, f) + S(r, g)

≤ 2Nk+2(r, 0; fnP (f)) + 2Nk+2(r, 0; gnP (g))

+ (k + 2)N(r,∞; f) + (k + 2)N(r,∞; g) + 2NL(r,∞;F )

+ 2NL(r,∞;G) +O{log r}+ S(r, f) + S(r, g)

≤ 2(k +m+ 2){T (r, f) + T (r, g)}+ (k + 2)(N(r,∞; f)

+N(r,∞; g)) + 2(NL(r,∞; f) +NL(r,∞; g))

+O{log r}+ S(r, f) + S(r, g).

Using (2.8) and noting that

NL(r,∞; f) +NL(r,∞; g) ≤ N(r,∞; f) = N(r,∞; g),

we obtain from above

(n−2k−m−4){T (r, f)+T (r, g)} ≤ (k+3)(N(r,∞; f)+N(r,∞; g))+S(r, f)+S(r, g),

which leads to a contradiction as n > 3k +m+ 7.
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Case 2. Let l = 1. Using Lemma 2.11, (3.3) and (3.4) we obtain from (3.5)

(n+m){T (r, f) + T (r, g)} ≤ N2(r, 0;F ) +N2(r, 0;G) +
5

2
N(r,∞;F )

+
5

2
N(r,∞;G) + 2N∗(r,∞;F,G) +

1

2
N(r, 0;F )

+
1

2
N(r, 0;G) +Nk+2(r, 0; fnP (f)) +Nk+2(r, 0; gnP (g))

+O{log r}+ S(r, f) + S(r, g)

≤ 2Nk+2(r, 0; fnP (f)) + 2Nk+2(r, 0; gnP (g))

+
1

2
Nk+1(r, 0; fnP (f)) +

1

2
Nk+1(r, 0; gnP (g))

+

(
3k

2
+

5

2

)
(N(r,∞; f) +N(r,∞; g)) + 2(NL(r,∞;F )

+NL(r,∞;G)) +O{log r}+ S(r, f) + S(r, g)

≤
(

5k + 5m+ 9

2

)
{T (r, f) + T (r, g)}+

(
3k

2
+

7

2

)
(N(r,∞; f) +N(r,∞; g)) +O{log r}+ S(r, f) + S(r, g).

Using (2.8) we obtain(
n− 5k + 3m+ 9

2

)
{T (r, f) + T (r, g)} ≤

(
3k

2
+

7

2

)
(N(r,∞; f) +N(r,∞; g))

+ S(r, f) + S(r, g),

which contradicts our assumption that n > 4k + 3m/2 + 8.

Case 3. Let l = 0. Using Lemma 2.12, (3.3) and (3.4) we obtain from (3.5)

(n+m){T (r, f) + T (r, g)} ≤ N2(r, 0;F ) +N2(r, 0;G) + 5N(r,∞;F ) + 5N(r,∞;G)

+ 2N∗(r,∞;F,G) + 3N(r, 0;F ) + 3N(r, 0;G)

+Nk+2(r, 0; fnP (f)) +Nk+2(r, 0; gnP (g)) +O{log r}
+ S(r, f) + S(r, g)

≤ 2Nk+2(r, 0; fnP (f)) + 2Nk+2(r, 0; gnP (g))

+ 3Nk+1(r, 0; fnP (f)) + 3Nk+1(r, 0; gnP (g)) + (4k + 5)

(N(r,∞; f) +N(r,∞; g)) + 2(NL(r,∞;F ) +NL(r,∞;G))

+O{log r}+ S(r, f) + S(r, g)

≤ (5k + 5m+ 7){T (r, f) + T (r, g)}+ (4k + 6)(N(r,∞; f)

+N(r,∞; g)) +O{log r}+ S(r, f) + S(r, g).

This gives by (2.8)

(n− 5k − 4m− 7){T (r, f) + T (r, g)} ≤ (4k + 6)(N(r,∞; f) +N(r,∞; g))

+ S(r, f) + S(r, g),

contradicting the fact that n > 9k + 4m+ 13.
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We now assume that H ≡ 0. That is(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
= 0.

Integrating both sides of the above equality twice we get

1

F − 1
=

A

G− 1
+B, (3.6)

where A(∕= 0) and B are constants.
Now we consider the following three subcases.

Subcase (i) Let B ∕= 0 and A = B. Then from (3.6) we get

1

F − 1
=

BG

G− 1
. (3.7)

If B = −1, then from (3.7) we obtain

FG = 1,

i.e.,

(fnP (f))(k)(gnP (g))(k) = z2.

From our assumption it is clear that f ∕= 0 and f ∕=∞. Let f(z) = e� , where � is
a nonconstant entire function. Then by induction we get

(amf
n+m)(k) = tm(�′, �′′, ..., �(k))e(n+m)� , (3.8)

(a0f
n)(k) = t0(�′, �′′, ..., �(k))en� , (3.9)

where ti(�
′, �′′, ..., �(k)) (i = 0, 1, ...,m) are differential polynomials in �′, �′′, . . .

, �(k). Obviously

ti(�
′, �′′, ..., �(k)) ∕≡ 0

for i = 0, 1, 2, ...,m, and

(fnP (f))(k) ∕= 0.

From (3.8) and (3.9) we obtain

N(r, 0; tm(�′, �′′, ..., �(k))em�(z) + ...+ t0(�′, �′′, ..., �(k))) ≤ N(r, 0; z2) = S(r, f).

(3.10)
Since � is an entire function, we obtain T (r, �(j)) = S(r, f) for j = 1, 2, ..., k.
Hence T (r, ti) = S(r, f) for i = 0, 1, 2, ...,m.

So from (3.10), Lemmas 2.3 and 2.13 we obtain

mT (r, f) = T (r, tme
m� + ...+ t1e

�) + S(r, f)

≤ N(r, 0; tme
m� + ...+ t1e

�) +N(r, 0; tme
m� + ...+ t1e

� + t0) + S(r, f)

≤ N(r, 0; tme
(m−1)� + ...+ t1) + S(r, f)

≤ (m− 1)T (r, f) + S(r, f),

which is a contradiction.

If B ∕= −1, from (3.7), we have 1
F = BG

(1+B)G−1 and so N(r, 1
1+B ;G) = N(r, 0;F ).

Now from the second fundamental theorem of Nevanlinna, we get

T (r,G) ≤ N(r, 0;G) +N

(
r,

1

1 +B
;G

)
+N(r,∞;G) + S(r,G)

≤ N(r, 0;F ) +N(r, 0;G) +N(r,∞;G) + S(r,G).
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Using (2.1 and (2.2) we obtain from above inequality

T (r,G) ≤ Nk+1(r, 0; fnP (f)) + kN(r,∞; f) + T (r,G) +Nk+1(r, 0; gnP (g))

− (n+m)T (r, g) +N(r,∞; g) +O{log r}+ S(r, g).

Using (2.8) we obtain

(n+m)T (r, g) ≤ (2k +m+ 1)T (r, f) + (k +m+ 2)T (r, g) + S(r, g).

Thus we obtain

(n− 3k −m− 3){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

a contradiction as n > 3k +m+ 7.

Subcase (ii) LetB ∕= 0 andA ∕= B. Then from (3.6) we get F = (B+1)G−(B−A+1)
BG+(A−B)

and so N(r, B−A+1
B+1 ;G) = N(r, 0;F ). Proceeding as in Subcase (i) we obtain a

contradiction.

Subcase (iii) Let B = 0 and A ∕= 0. Then from (3.6) F = G+A−1
A and

G = AF−(A−1). If A ∕= 1, we have N(r, A−1A ;F ) = N(r, 0;G) and N(r, 1−A;G) =

N(r, 0;F ). So by Lemma 2.14 we have n ≤ 3k+m+3, a contradiction. Thus A = 1
and hence F = G. That is

[fn(amf
m+am−1f

m−1+...+a1f+a0)](k) = [gn(amg
m+am−1g

m−1+...+a1g+a0)](k).

Integrating we get

[fn(amf
m + am−1f

m−1 + ...+ a1f + a0)](k−1) = [gn(amg
m + am−1g

m−1 + ...

+ a1g + a0)](k−1) + ck−1,

where ck−1 is a constant. If ck−1 ∕= 0, from Lemma 2.15 we obtain n ≤ 3k +m, a
contradiction. Hence ck−1 = 0. Repeating k-times, we obtain

fn(amf
m + am−1f

m−1 + ...+ a1f + a0) = gn(amg
m + am−1g

m−1 + ...+ a1g + a0).

(3.11)

Let ℎ = f
g . If ℎ is a constant, by putting f = gℎ in (3.11) we get

amg
n+m(ℎn+m − 1) + am−1g

n+m−1(ℎn+m−1 − 1) + ...+ a0g
n(ℎn − 1) = 0,

which implies ℎd = 1, where d = (n + m, ..., n + m − i, ..., n + 1, n), am−i ∕= 0
for some i = 0, 1, ...,m. Thus f(z) = tg(z) for a constant t such that td = 1,
d = (n+m, ..., n+m− i, ..., n+ 1, n), am−i ∕= 0 for some i = 0, 1, ...,m.

If ℎ is not a constant, then from (3.11) we can say that f and g satisfy the
algebraic equation R(f, g) = 0, where

R(x, y) = xn(amx
m + am−1x

m−1 + ...+ a0)− yn(amy
m + am−1y

m−1 + ...+ a0).

This completes the proof of Theorem 1.2.

Using the arguments similar to the proof of Theorem 1.2, we can prove Corollary
1.3. □
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