BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 2 Issue 4(2010), Pages 119-121.

SOME REMARKS ON A FIXED POINT THEOREM

(DEDICATED IN OCCASION OF THE 70-YEARS OF PROFESSOR HARI M. SRIVASTAVA)

S.K. NTOUYAS, D. O'REGAN

ABSTRACT. In this note we discuss a special case of the Leray-Schauder alternative for condensing multifunctions.

1. INTRODUCTION

A basic metric fixed point theorem, the Banach contraction principle, and a basic topological fixed point theorem, the Schauder fixed point theorem have been used extensively in the literature of the theory of nonlinear differential and integral equations.

A nice combination of the above two fixed point theorems of Banach and Schauder yields the famous *Krasnoselskii's fixed point theorem* for the sum of two operators in Banach spaces. It is known that this result has a number of interesting applications.

In the last century a Leray-Schauder alternative for multivalued condensing maps was developed; see [6] and the references therein. In particular a discussion of a contraction and a compact map in the multivalued situation is discussed in [6]. Recently a modification of this result was presented by Burton and Kirk [1] in the single valued situation and by Dhage [3] in the multivalued situation. However we would like to point out that the second main result (Theorem 3.3) in [3] is not correct.

In particular [3, Theorem 3.3] is based on a result in [5] which is not correct; see [4, pp 113] for the correct formulation. The correction of Theorem 3.3 in [3] is the main motivation of this paper since recently [2] some authors have used this fixed point theorem in applications so unfortunately mistakes are being made.

²⁰⁰⁰ Mathematics Subject Classification. 47H10.

Key words and phrases. Fixed point theorems, measure of noncompactness, condensing map, ϕ -contraction.

^{©2010} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted September 1, 2010. Published October 28, 2010.

S.K. NTOUYAS, D. O'REGAN

2. A FIXED POINT THEOREM

Let X be a metric space and $\mathcal{P}_b(X)$ be the bounded subsets of X. The Kuratowskii measure of noncompactenes is the map $\alpha : \mathcal{P}_b(X) \to [0, \infty)$ defined by

 $\alpha(A) = \inf \left\{ \epsilon > 0 : A \subseteq \bigcup_{i=1}^{n} A_i \text{ and } \operatorname{diam}(A_i) \le \epsilon \text{ for } i = 1, \dots, n \right\}, \ A \in \mathcal{P}_b(X),$

and the ball measure of noncompactenes is the map $\chi : \mathcal{P}_b(X) \to [0,\infty)$ defined by

 $\chi(A) = \inf \left\{ \epsilon > 0 : A \subseteq \bigcup_{i=1}^{n} B(x_i, \epsilon) \text{ and } \left\{ x_1, \dots, x_n \right\} \subseteq E \right\}, \ A \in \mathcal{P}_b(X);$

here $B(x_i, \epsilon)$ is the ball with center x_1 and radius ϵ . Let S be a nonempty subset of X, and for each $x \in X$ let $d(x, S) = \inf_{y \in S} d(x, y)$ and $B(S, r) = \{x \in X; d(x, S) < r\}, r > 0$.

Let $F: S \to \mathcal{P}(X)$. Then:

- (i) F is called k-set contractive $(k \ge 0)$ w.r.t. α (respectively w.r.t. χ) is F(S) is bounded and $\alpha(F(Y)) \le k\alpha(Y)$ (respectively $\chi(F(Y)) \le k\chi(Y)$) for all bounded sets Y of S.
- (ii) condensing w.r.t. α (respectively w.r.t. χ) if $\alpha(F(Y)) < \alpha(Y)$ (respectively $\chi(F(Y)) < \chi(Y)$) for all bounded sets Y of S with $\alpha(Y) \neq 0$ (respectively $\chi(Y) \neq 0$).

Theorem 2.1. [Nonlinear alternative for multivalued condensing maps] Let C be a closed convex subset of a Banach space X and U a relatively open subset of C with $0 \in U$. In addition, assume $F : \overline{U} \to \mathcal{P}_{cv,cp}(C)$ (here $\mathcal{P}_{cv,cp}(C)$ denotes the family of all nonempty, convex compact subsets of C) is upper semicontinuous (u.s.c.) condensing (w.r.t. α or χ) multivalued map with $F(\overline{U})$ bounded. Then, either

- (A1) F has a fixed point in \overline{U} , or
- (A2) there exists $y \in \partial U$ and $\lambda \in (0,1)$ such that $y \in \lambda F(y)$.

Example 2.2. Let X = (X, d) be a Fréchet space, $T : X \to \mathcal{P}_{cv,cp}(X)$ and assume there is a continuous nondecreasing function $\phi : [0, \infty) \to [0, \infty)$ with $\phi(z) < z$ for z > 0 and

$$H(Tx, Ty) \le \phi(d(x, y))$$
 for all $x, y \in X$;

here H denotes the Hausdorff distance. Then T is condensing w.r.t. χ on bounded subsets of X.

The result follows once we show $\chi(T(\Omega)) \leq \phi(\chi(\Omega))$ for any bounded subset Ω of X. The argument we give is a modification of the one in [6, pp 19]. Let $\Omega \subseteq X$ be bounded with $\chi(\Omega) = r > 0$. Let $\epsilon > 0$ be given. Choose $\{x_1, \ldots, x_n\} \subseteq X$ with $\Omega \subseteq \bigcup_{i=1}^n B(x_i, r+\epsilon)$. For each $i \in \{1, \ldots, n\}$ choose $\{y_j^i\}_{j=1}^{n(i)}$ with $T(x_i) \subseteq \bigcup_{i=1}^{n(i)} B(y_i^i, \epsilon)$. We claim

$$T(\Omega) \subseteq \bigcup_{i=1}^{n} \bigcup_{j=1}^{n(i)} B(y_j^i, \phi(r+\epsilon) + \epsilon).$$

$$(2.1)$$

To prove (2.1) let $z \in T(\Omega)$. Then $z \in Tx$ for some $x \in \bigcup_{i=1}^{n} B(x_i, r + \epsilon)$. Choose $i \in \{1, \ldots, n\}$ with $d(x, x_i) < r + \epsilon$. Now there exists $w \in Tx_i$ with

$$d(z,w) = d(z,Tx_i) \le H(Tx,Tx_i) \le \phi(d(x,x_i)) \le \phi(r+\epsilon).$$

Select $j \in \{1, \ldots, n(i)\}$ with $d(w, y_i^i) < \epsilon$. Then

$$d(z, y_i^i) \le d(z, w) + d(w, y_i^i) \le \phi(r + \epsilon) + \epsilon,$$

120

so $z \in \bigcup_{i=1}^{n} \bigcup_{j=1}^{n(i)} B(y_j^i, \phi(r+\epsilon) + \epsilon)$. As a result (2.1) is true so

$$\chi(T(\Omega)) \le \phi(r+\epsilon) + \epsilon \le \phi(\chi(\Omega) + \epsilon) + \epsilon.$$

Since ϵ arbitrary, $\chi(T(\Omega)) \leq \phi(\chi(\Omega))$.

Corollary 2.3. Let C be a closed convex subset of a Banach space X and U a relatively open subset of C with $0 \in U$. Let $F_1 : X \to \mathcal{P}_{cv,cp}(C)$ and $F_2 : \overline{U} \to \mathcal{P}_{cv,cp}(C)$. In addition assume:

(i) there is a continuous nondecreasing function $\phi : [0, \infty) \to [0, \infty)$ with $\phi(z) < z$ for z > 0 and

$$H(F_1x, F_1y) \le \phi(d(x, y))$$
 for all $x, y \in X$,

(ii) F_2 is u.s.c. and compact.

Then if $F = F_1 + F_2$, either

- (A1) F has a fixed point in \overline{U} , or
- (A2) there exists $y \in \partial U$ and $\lambda \in (0, 1)$ such that $y \in \lambda F(y)$.

Proof. The result follows immediately from Theorem 2.1 and Example 2.2 (also recall a multivalued map $T : X \to \mathcal{P}_{cp}(Y)$ (here $\mathcal{P}_{cp}(Y)$ denotes the family of nonempty compact subsets of Y) is continuous if and only if it is continuous in the Hausdorff metric).

Corollary 2.3 corrects (and extends) Theorem 3.3 in [3]. Note in Theorem 3.3 in [3] the crucial condition on the contraction is $F_1 : X \to \mathcal{P}_{cv,cl}(C)$ (here $\mathcal{P}_{cv,cl}(C)$) denotes the family of nonempty closed convex subsets of C). However to use the theory in the literature [4, pp 113] we need $F_1 : X \to \mathcal{P}_{cv,cp}(X)$.

References

- T.A.Burton and C.Kirk, A fixed point theorem of Krasnoselskii-Schaefer type, Math. Nachr. 189 (1998), 23-31.
- [2] Y-K. Chang, W-T. Li and J. Nieto, Controllability of evolution differential inclusion in Banach spaces, Nonlinear Analysis (2006) doi:10.1016/j.na.2006.06.018
- [3] B. C. Dhage, Multi-valued mappings and fixed points I, Nonlinear Func. Anal. & Appl. 10 (2005), 359-378.
- [4] K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin-New York, 1992.
- [5] A. Petruşel, Multivalued operators and fixed points, Pure Math. Appl. 11 (2000), 361-368.
- [6] W.V. Petryshyn and P.M. Fitzpatrick, A degree theory, fixed point theorems, and mapping theorems for multivalued noncompact maps, *Trans. Amer. Math. Soc.* 194 (1974), 1-25.

S.K. Ntouyas

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOANNINA, 451 10 IOANNINA, GREECE E-mail address: sntouyas@uoi.gr

D. O'Regan

DEPARTMENT OF MATHEMATICS, NATIONAL UNIVERSITY OF IRELAND, GALWAY, IRELAND *E-mail address:* donal.oregan@unigalway.ie