BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 2 Issue 4(2010), Pages 122-129.

ON CERTAIN SUBCLASS OF MEROMORPHIC HARMONIC FUNCTIONS WITH FIXED RESIDUE α

(DEDICATED IN OCCASION OF THE 70-YEARS OF PROFESSOR HARI M. SRIVASTAVA)

¹F. GHANIM, ²M. DARUS AND ³G.S. SALAGEAN

ABSTRACT. In this paper, we consider some properties such as growth and distortion theorem, coefficient problems, linear combinations for certain subclass of meromorphic harmonic functions with positive coefficients.

1. INTRODUCTION

Let A(p) denote the set of function analytic in $D \setminus \{p\}$, Where $D = \{z : |z| < 1\}$. In the annulus $\{z : p < |z| < 1\}$ every function h in S_p has an expansion of the form

$$h(z) = \frac{\alpha}{z-p} + \sum_{n=1}^{\infty} a_n z^n, \qquad (1.1)$$

where $\alpha = \operatorname{Res}(f, p)$, with $0 < \alpha \le 1, z \in D \setminus \{p\}$.

The function h given in (1.1) was studied by Jinxi Ma [8] and Ghanim and Darus [1].

A continuous function f = u + iv is a complex valued harmonic function in a complex domain D if both u and v are real harmonic in D. In any simply connected domain $D \subset \mathbb{C}$ we can write $f = h + \overline{g}$, where h and g are analytic in D. A necessary and sufficient condition for f to be locally univalent and sense preserving in D is that |h'(z)| > |g'(z)| in D (see [5]). In [7], there is a more comprehensive study on harmonic univalent functions.

Denote by SH_p the class of the functions $f = h + \overline{g}$ that are harmonic univalent and sense preserving in the punctured unit disk $D \setminus \{p\}$.

²⁰⁰⁰ Mathematics Subject Classification. 30C45.

 $Key\ words\ and\ phrases.$ Harmonic function, Meromorphic function, meromorphically convex and starlike functions.

 $[\]textcircled{C}2010$ Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted September 26, 2010. Published November 1, 2010.

M.Darus supported by the grant MOHE:UKM-ST-06-FRGS0107-2009.

Then for $f = h + \overline{g}$ we may express the analytic function h as the form (1.1) and g as

$$g(z) = \sum_{n=1}^{\infty} b_n z^n$$

then, we have

$$f(z) = h(z) + \overline{g}(z) = \frac{\alpha}{z - p} + \sum_{n=1}^{\infty} a_n z^n + \sum_{n=1}^{\infty} b_n z^n,$$
(1.2)

where $\alpha = \operatorname{Res}(f, p)$, with $0 < \alpha \le 1, z \in D \setminus \{p\}$.

Let \mathbb{SH}_p be subclass of SH_p consisting of function of the form

$$f(z) = h(z) + \overline{g}(z) = \frac{\alpha}{z - p} + \sum_{n=1}^{\infty} a_n z^n + \overline{\sum_{n=1}^{\infty} b_n z^n}, \quad (a_n, b_n \ge 0)$$
(1.3)

where $\alpha = Res(f, p)$, with $0 < \alpha \leq 1$, $z \in D \setminus \{p\}$, which are univalent harmonic in the punctured unit disc $D \setminus \{p\}$. h(z) and g(z) are analytic in $D \setminus \{p\}$ and D, respectively and h(z) has a simple pole at the point p with residue α .

For $\alpha = 1$ and p = 0 the function f studied by Bostanci, Yalçin and Öztürk [4].

A function $f \in SH_p$ is said to be in the subclass SH_p^* of meromorphically harmonic starlike in $D \setminus \{p\}$ if it satisfies the condition

$$\Re\left\{-\frac{zh'(z)+\overline{zg'(z)}}{h(z)+\overline{g(z)}}\right\} > 0, \quad (z:p<|z|<1).$$

$$(1.4)$$

Also, a function $f \in SH_p$ is said to be in the subclass CH_p of meromorphically harmonic convex in $D \setminus \{p\}$ if it satisfies the condition

$$\Re\left\{-\frac{z^{2}h''(z)+zh'(z)+\overline{z^{2}g''(z)+zg'(z)}}{zh'(z)+\overline{zg'(z)}}\right\} > 0, \quad (z:p<|z|<1).$$
(1.5)

This classification (1.4) for univalent functions was studied by Ghanim and Daus [[1], [2]], and the classification (1.5) with $\alpha = 1$ and p = 0 was first used by Jahangiri [6].

Next, we define the operator I^k on the class SH_p as follows:

$$I^{0}f\left(z\right) = f\left(z\right),$$

$$I^{k}f\left(z\right) = I^{k}h\left(z\right) + \overline{I^{k}g\left(z\right)}, \qquad \qquad k = 1, 2, 3, \dots \quad , \qquad (1.6)$$

where

$$I^{k}h(z) = z \left(I^{k-1}h(z) \right)' + \frac{\alpha \left(2z - p \right)}{\left(z - p \right)^{2}} = \frac{\alpha}{z - p} + \sum_{n=1}^{\infty} n^{k} a_{n} z^{n}.$$

and

$$I^{k}g(z) = z(I^{k-1}g(z))' = \sum_{n=1}^{\infty} n^{k}b_{n}z^{n}.$$

With the help of the differential operator I^k , we define the class SH_p^* (k, α, β)

Definition 1.1. The function $f \in SH_p$ is said to be a member of the class SH_p^* (k, α, β) if it satisfies

$$\left|\frac{z\left(I^{k}h\left(z\right)\right)' + \overline{z\left(I^{k}g\left(z\right)\right)'}}{I^{k}f\left(z\right)} + 1\right| \leq \left|\frac{z\left(I^{k}h\left(z\right)\right)' + \overline{z\left(I^{k}g\left(z\right)\right)'}}{I^{k}f\left(z\right)} + 2\beta - 1\right|, \quad (1.7)$$

 $(k \in N_0 = N \cup 0)$ for some $\beta(0 \le \beta < 1)$ and for all z in $D \setminus \{p\}$.

It is easy to check that $SH_p^*(0, 1, \beta)$ is the class of meromorphically starlike functions of order β and $SH_p^*(0, 1, 0)$ gives the meromorphically starlike functions for all $z \in D \setminus \{p\}$.

Let us write

$$SH_p^*[k,\alpha,\beta] = SH_p^*(k,\alpha,\beta) \cap \mathbb{SH}_p$$
(1.8)

where \mathbb{SH}_p is the class of functions of the form (1.3) that are analytic and harmonic in $D \setminus \{p\}$.

Next, our first results will concern on the coefficient estimates for the classes $SH_p^*(k, \alpha, \beta)$ and $SH_p^*[k, \alpha, \beta]$.

2. Main Results

Here we provide a sufficient condition for a function, analytic in $D \setminus \{p\}$ to be in SH_p^* (k, α, β) .

Theorem 2.1. If $f(z) = h(z) + \overline{g(z)}$ is of the form (1.2) and satisfies the condition

$$\sum_{n=1}^{\infty} n^k (n+\beta) (1-p) (|a_n|+|b_n|) \le \alpha (1-\beta) \qquad (k \in N_0), \qquad (2.1)$$

where $(0 \leq \beta < 1)$, then f is harmonic univalent sense preserving in $D \setminus \{p\}$ and $f \in SH_p^*(k, \alpha, \beta)$.

Proof: Suppose that (2.1) holds true for $0 \le \beta < 1$. Consider the expression

$$M(z) = \left| z \left(I^k h(z) \right)' + \overline{z \left(I^k g(z) \right)'} + I^k f(z) \right|$$
$$- \left| z \left(I^k h(z) \right)' + \overline{z \left(I^k g(z) \right)'} + (2\beta - 1) I^k f(z) \right|$$

then for |z| = r, and since $|z - p| \ge |z| - p = r - p$, we have

$$M(z) = \left| -\frac{\alpha z}{(z-p)^2} + \frac{\alpha}{z-p} + \sum_{n=1}^{\infty} n^k (n+1) \left(a_n z^n + \overline{b_n z^n} \right) \right|$$
$$- \left| \frac{-\alpha z + \alpha (z-p)(2\beta - 1)}{(z-p)^2} + \sum_{n=1}^{\infty} n^k (n+2\beta - 1) \left(a_n z^n + \overline{b_n z^n} \right) \right|$$
$$= \left| -\frac{\alpha p}{(z-p)^2} + \sum_{n=1}^{\infty} n^k (n+1) \left(a_n z^n + \overline{b_n z^n} \right) \right|$$

124

ON CERTAIN SUBCLASS OF MEROMORPHIC HARMONIC FUNCTIONS WITH FIXED RESIDUE25

$$-\left|\frac{-2\alpha z+2\alpha\beta z-2\alpha\beta p+\alpha p}{(z-p)^2}+\sum_{n=1}^{\infty}n^k\left(n+2\beta-1\right)\left(a_nz^n+\overline{b_nz^n}\right)\right|$$

and

$$M(r) \leq \frac{\alpha p}{(r-p)^2} + \sum_{n=1}^{\infty} n^k (n+1) (|a_n| + |b_n|) r^n$$
$$-\frac{2\alpha \left[(1-\beta)r + \beta p \right] - \alpha p}{(r-p)^2} + \sum_{n=1}^{\infty} n^k (n+2\beta - 1) (|a_n| + |b_n|) r^n$$
$$= \sum_{n=1}^{\infty} 2n^k (n+\beta) (|a_n| + |b_n|) r^n - \frac{2\alpha (1-\beta)}{(r-p)}.$$

That is

$$(r-p) M(r) \le \sum_{n=1}^{\infty} 2n^k (n+\beta) (|a_n|+|b_n|) (r-p) r^n - 2\alpha (1-\beta)$$
(2.2)

The inequality in (2.2) holds true for all $r \ (0 \le r < 1)$. Therefore, letting $r \to 1$ in (2.2), we obtain

$$(1-p) M(r) \le \sum_{n=1}^{\infty} 2n^k (n+\beta) (|a_n|+|b_n|) (1-p) - 2\alpha (1-\beta).$$

By the hypothesis (2.1) it follows that (1.7) holds, so that $f \in SH_p^*(k, \alpha, \beta)$. Note that f is sense-preserving in $U \setminus \{p\}$. This is because

$$\begin{aligned} |f'(z)| &\geq \frac{1}{|z-p|^2} - \sum_{n=1}^{\infty} n |a_n| |z|^{n-1} \\ &\geq \frac{1}{|z|^2} - \sum_{n=1}^{\infty} n |a_n| |z|^{n-1} \qquad (|z-p| \leq |z|) \\ &\geq \frac{1}{r^2} - \sum_{n=1}^{\infty} n |a_n| r^{n-1} \geq 1 - \sum_{n=1}^{\infty} n |a_n| \\ &\geq 1 - \sum_{n=1}^{\infty} n (n+\beta) (1-p) |a_n| \\ &\geq \sum_{n=1}^{\infty} n (n+\beta) (1-p) |b_n| \\ &\geq \sum_{n=1}^{\infty} n |b_n| \geq \sum_{n=1}^{\infty} n |b_n| |z|^{n-1} \geq |g'(z)| \end{aligned}$$

Hence the theorem.

Corollary 2.2. Let $k = \beta = 0$ and $p \to 0$ in the Theorem 2.1, then we have

$$\sum_{n=1}^{\infty} n\left(|a_n| + |b_n|\right) \le \alpha.$$

Corollary 2.3. Let $k = \beta = 0$, $\alpha = 1$ and $p \to 0$ in the Theorem 2.1, then we have

$$\sum_{n=1}^{\infty} n\left(|a_n| + |b_n|\right) \le 1,$$

the result was achieved by Bostanci, Yalçin and Öztürk [4].

Corollary 2.4. Let k = 1, $\beta = 0$ and $p \to 0$ in the Theorem 2.1, then we have

$$\sum_{n=1}^{\infty} n^2 \left(|a_n| + |b_n| \right) \le \alpha$$

Corollary 2.5. Let $k = 1, \beta = 0, \alpha = 1$ and $p \to 0$ in Theorem 2.1, then we have

$$\sum_{n=1}^{\infty} n^2 \left(|a_n| + |b_n| \right) \le 1$$

the result was achieved by Bostanci, Yalçin and Öztürk [4].

Next we give a necessary and sufficient condition for a function $f \in \mathbb{SH}_p$ to be in the class $SH_p^*[k, \alpha, \beta]$.

Theorem 2.6. Let $f \in \mathbb{SH}_p$ be a function defined by (1.3). Then $f \in SH_p^*[k, \alpha, \beta]$ if and only if the inequality

$$\sum_{n=1}^{\infty} n^k \left(n + \beta \right) \left(1 - p \right) \left(a_n + b_n \right) \le \alpha \left(1 - \beta \right) \qquad (k \in N_0)$$
(2.3)

is satisfied. The result is sharp.

Proof: In view of Theorem 2.1, it sufficies to show that the 'only if ' part is true. Assume that $f \in SH_p^*[k, \alpha, \beta]$. Then

$$\left| \frac{\frac{z\left(I^{k}h\left(z\right)\right)' + \overline{z\left(I^{k}g\left(z\right)\right)'}}{I^{k}f\left(z\right)} + 1}{\frac{z\left(I^{k}h\left(z\right)\right)' + \overline{z\left(I^{k}g\left(z\right)\right)'}}{I^{k}f\left(z\right)} + 2\beta - 1} \right| \right| \\ = \left| \frac{\frac{-\alpha p}{(z-p)^{2}} + \sum_{n=1}^{\infty} n^{k}\left(n+1\right)\left(a_{n}z^{n} + \overline{b_{n}z^{n}}\right)z^{n}}{\frac{-2\alpha z + 2\alpha\beta z - 2\alpha\beta p + \alpha p}{(z-p)^{2}} + \sum_{n=1}^{\infty} n^{k}\left(n+2\beta-1\right)\left(a_{n}z^{n} + \overline{b_{n}z^{n}}\right)} \right| \le 1, \quad (2.4)$$

 $z \in D \setminus \{p\}.$

Since $\Re(z) \leq |z|$ for all z, it follows from (2.4) that

$$\Re\left\{\frac{\frac{-\alpha p}{(z-p)^2} + \sum_{n=1}^{\infty} n^k \left(n+1\right) \left(a_n z^n + \overline{b_n z^n}\right) z^n}{\frac{-2\alpha \left[\left(1-\beta\right)z + \beta p\right] + \alpha p}{\left(z-p\right)^2} + \sum_{n=1}^{\infty} n^k \left(n+2\beta-1\right) \left(a_n z^n + \overline{b_n z^n}\right)}\right\} \le 1, \quad (2.5)$$

 $z\in D\backslash\left\{p\right\}$. We now choose the values z on the real axis. Upon clearing the denominator in (2.5) and letting $z\to1$ through real values, we obtain

$$\sum_{n=1}^{\infty} n^k \left(n+1\right) \left(1-p\right) \left(a_n+b_n\right) \le$$

$$2\alpha (1 - \beta) - \sum_{n=1}^{\infty} n^k (n + 2\beta - 1) (1 - p) (a_n + b_n),$$

which immediately yields the required condition (2.3).

A distortion property for functions in the class $SH_p^*[k, \alpha, \beta]$ is contained in the following theorem:

Theorem 2.7. If the function f defined by (1.3) is in the class $SH_p^*[k, \alpha, \beta]$, then, for |z| = r, we have

$$|f(z)| \le \frac{\alpha}{r-p} + \frac{\alpha(1-\beta)}{(1+\beta)(1-p)}r$$

Proof: Let $f \in SH_p^*[k, \alpha, \beta]$. Taking the absolute value of f we obtain

$$|f(z)| \leq \frac{\alpha}{r-p} + \sum_{n=1}^{\infty} (a_n + b_n) r^n$$
$$\leq \frac{\alpha}{r-p} + \frac{\alpha(1-\beta)}{(1+\beta)(1-p)} \sum_{n=1}^{\infty} \frac{n^k (n+\beta)(1-p)}{\alpha(1-\beta)} (a_n + b_n) r$$
$$\leq \frac{\alpha}{r-p} + \frac{\alpha(1-\beta)}{(1+\beta)(1-p)} r.$$

The functions

$$f(z) = \frac{\alpha}{z-p} + \frac{\alpha(1-\beta)}{(1+\beta)(1-p)}z \text{ and } f(z) = \frac{\alpha}{z-p} + \frac{\alpha(1-\beta)}{(1+\beta)(1-p)}\overline{z}$$

for $0<\alpha\leq 1$ and $0\leq\beta<1$ show that the bound given in Theorem 2.7 are sharp in $D\backslash\left\{p\right\}.$

 α

Theorem 2.8. Set

$$h_0(z) = \frac{\alpha}{z - p}, \quad g_0(z) = 0,$$

$$h_n(z) = \frac{\alpha}{z - p} + \frac{\alpha (1 - \beta)}{n^k (n + \beta) (1 - p)} z^n$$
(2.6)

for n = 1, 2, 3, ..., and

$$g_n(z) = \frac{\alpha \left(1 - \beta\right)}{n^k \left(n + \beta\right) \left(1 - p\right)} \overline{z}^n \tag{2.7}$$

for n = 1, 2, 3, ..., .

Then $f \in SH_p^*[k, \alpha, \beta]$ if and only if it can be expressed in the form

$$f(z) = \sum_{n=0}^{\infty} (\lambda_n h_n + \gamma_n g_n), \qquad (2.8)$$

where $\lambda_n \geq 0, \ \gamma_n \geq 0$ and $\sum_{n=0}^{\infty} (\lambda_n + \gamma_n) = 1$. In particular, the extreme points of $SH_p^*[k, \alpha, \beta]$ are $\{h_n\}$ and $\{g_n\}$.

Proof: From (2.6), (2.7) and (2.8), we have

$$f(z) = \sum_{n=0}^{\infty} \left(\lambda_n h_n + \gamma_n g_n\right)$$

$$=\sum_{n=0}^{\infty} (\lambda_n + \gamma_n) \frac{\alpha}{z-p} + \sum_{n=1}^{\infty} \frac{\alpha (1-\beta)}{n^k (n+\beta) (1-p)} \lambda_n z^n + \sum_{n=0}^{\infty} \frac{\alpha (1-\beta)}{n^k (n+\beta) (1-p)} \gamma_n \overline{z}^n.$$

Then

$$\sum_{n=1}^{\infty} \left(n^k \left(n+\beta \right) \left(1-p \right) \right) \frac{\lambda_n}{n^k \left(n+\beta \right) \left(1-p \right)} + \sum_{n=0}^{\infty} \left(n^k \left(n+\beta \right) \left(1-p \right) \right) \frac{\gamma_n}{n^k \left(n+\beta \right) \left(1-p \right)} = \sum_{n=1}^{\infty} \left(\lambda_n + \gamma_n \right) - \lambda_0 = 1 - \lambda_0 \le 1$$

So $f \in SH_p^*[k, \alpha, \beta]$.

Conversely, suppose that $f \in SH_p^*[k, \alpha, \beta]$. Set

$$\lambda_n = \frac{n^k (n+\beta) (1-p)}{\alpha (1-\beta)} a_n, \qquad n \ge 1,$$

and

$$\gamma_n = \frac{n^k \left(n + \beta\right) \left(1 - p\right)}{\alpha \left(1 - \beta\right)} b_n, \qquad n \ge 0.$$

Then by Theorem 2.6, $0 \le \lambda_n \le 1$ (n = 1, 2, 3, ...) and $0 \le \gamma_n \le 1$, (n = 0, 1, 2, ...). We define

$$\lambda_0 = 1 - \sum_{n=1}^{\infty} \lambda_n - \sum_{n=0}^{\infty} \gamma_n$$

and note that, by Theorem 2.6, $\lambda_0 \ge 0$. Consequently, we obtain

$$f(z) = \sum_{n=0}^{\infty} (\lambda_n h_n + \gamma_n g_n),$$

as required.

References

- F.Ghanim and M.Darus, On certain subclass of meromorphic univalent functions with fixed residue α, Far East J. Math. Sci. (FJMS), 26, No. 1 (2007), 195-207.
- [2] F.Ghanim and M.Darus, A new subclass of uniformly starlike and convex functions with negative coefficients II, International J. of Pure and Appl. Math., Vol. 45, No. 4, (2008), 559-572.
- [3] G. Schober, Univalent Functions Selected Topics, Lecture Notes in Math., Vol. 478, Berlin-Heidelberg-New. York: Springer, 1975.
- [4] Hakan Bostanci, Sibel Yalçin and Metin Öztürk, On meromorphically harmonic starlike functions with respect to symmetric conjugate points, J. Math. Anal. Appl., 328, No. 1 (2007), 370-379.
- [5] J. Clunie and T. Sheil-Small, Harmonic functions, Ann. Acad. Sci. Fenn. Ser. A. I Math., 9 (1984), 3-25.
- [6] J. M. Jahangiri, Coefficient bounds and univalence criteria for harmonic functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, 52, No.2 (1998), 57-66.
- [7] J. M. Jahangiri, Harmonic univalent functions with varying arguments, Int. J. Appl. Math., 8, No. 3 (2002), 267-275.

128

ON CERTAIN SUBCLASS OF MEROMORPHIC HARMONIC FUNCTIONS WITH FIXED RESIDUE 29

[8] Jinxi Ma, Extreme points and minimal outer area problem for meromorphic univalent functions, J. Math. Anal. Appl., 220, No.2 (1998), 769-773.

¹Faculty of Management

Multimedia University, Cyberjaya63100 Selangor D. Ehsan, Malaysia $E\text{-}mail\ address:\ ^1\ \texttt{firas.ghanim@mmu.edu.my}$

²School of Mathematical Sciences

Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor D. Ehsan, Malaysia

 $E\text{-}mail \ address: \ ^2 \texttt{maslina@ukm.my}$ (corresponding author)

³Babes-Bolyai University

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, DEPARTMENT OF MATHEMATICS, 400084 CLUJ-NAPOCA

E-mail address: ³salagean@math.ubbcluj.ro