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A QUADRATIC TYPE FUNCTIONAL EQUATION

(DEDICATED IN OCCASION OF THE 70-YEARS OF
PROFESSOR HARI M. SRIVASTAVA)

GHADIR SADEGHI

ABSTRACT. In this paper, the solution and the Hyers—Ulam stability of the
following quadratic type functional equation

k k
So0>T flatem) =2(k—1)f(x1)+2> fl@)

i=2¢;€{—1,1} i=2

is investigated.

1. INTRODUCTION AND PRELIMINARIES

A classical question in the theory of functional equations is the following: “When
is it true that a function which approximately satisfies a functional equation £ must
be close to an exact solution of £7” If there exists an affirmative answer, we say that
the equation & is stable [9]. During the last decades several stability problems for
various functional equations have been investigated by numerous mathematicians.
We refer the reader to the survey articles [10, @, 2I] and monographs [I11, 12} [§] and
references therein.

Let X and Y be normed spaces. A function f : X — ) satisfying the functional
equation

fleaty)+ fla—y)=2f(2) +2f(y) (z,y€X) (1.1)
is called the quadratic functional equation. It is well known that a function f
between real vector spaces is quadratic if and only if there exists a unique symmetric
bi-additive function B such that f(z) = B(z,z) for all © € X; see [9]. The bi-
additive function B is given by

Bla,x) = § (f(z+v) ~ fx— ).

The Hyers-Ulam stability of the quadratic equation was proved by Skof [22].
Cholewa [6] noticed that the theorem of Skof is still true if the relevant domain
X is replaced by an abelian group. Furthermore, Czerwik [7] deal with stability
problem of the quadratic functional equation in the spirit of Hyers—Ulam—
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Rassias. Also, Jung [I3] proved the stability of (1.1)) on a restricted domain. For
more information on the stability of the quadratic equation, we refer the reader to
[2, 13, 16l (4, [14].

Theorem 1.1. (Czerwik) Let € > 0 be fixed. If a mapping f : X — Y satisfies the
inequality
If(@+y)+ flz—y) =2f(z) -2f(Wll <e (zed) (1.2)

then there exists a unique quadratic mapping Q : X — Y such that

IF@) - Q@) < 3¢ (e ),

Moreover, if f is measurable or if f(tx) is continuous in t for each fixred v € X,
then Q(tx) = t>Q(tx) for allz € X and t € R.

The Hyers—Ulam stability of equation (|1.1)) on a certain restricted domain was
investigated by Jung [I3] in the following theorem,

Theorem 1.2. (Jung) Let d > 0 and € > 0 be given. Assume that a mapping
f: X — Y satisfies the inequality for all z,y € X with ||z|| + ||y|| > d. Then
there exists a unique quadratic mapping @ : X — Y such that

IF@) - Q@) < 2 (zeX). (13)

If, moreover, f is measurable or f(tx) is continuous in t for each fized x € X then
Q(tx) = 2Q(tz) for allx € X and t € R.

The quadratic functional equation was used to characterize the inner product
spaces [I]. A square norm on an inner product space satisfies the important paral-
lelogram equality

Iz +3l? + llz = ylI* = 2(ll2]* + lly]1*).

It was shown by Moslehian and Rassias [19] that a normed space (X, ||.||) is an

inner product space if and only if for any finite set of vectors x1,xs, -,z € X,
k 2 & 2
Sl D Em| = > <||x1|| +Zgjxi||> : (1.4)
e;je{-1,1} 1=2 e;je{—1,1} =2

Motivated by (1.4), we introduce the following functional equation deriving from
the quadratic function

k

k
YooY flatem) =20k-1)f(x)+2) f(x), (1.5)
i=2¢;e{-1,1} i=2
where k > 2 is a fixed integer. It is easy to see that the function f(z) = 2% is a

solution of functional equation (1.5]).

2. SOLUTION OF THE EQUATION (|1.5])

Theorem 2.1. A mapping f : X — Y satisfies the equation forallzy, 20, -+ a1 €
X if and only if f is quadratic.
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Proof. If we replace x1,xo, -, 2k in (L.5) by 0, then we get f(0) = 0. Putting
(1.5

r3 =x4 = -+ = 2, = 0 in the equation (1.5 we see that
f(@1 —22) + f(21 + 22) + 2(k — 2) f(21) = 2(k — 1) f(z1) + 2f(22) .
Hence f(x1 — x2) + f(z1 4+ x2) = 2f(21) + 2f(22). The converse is trivial. O
Remark. We can prove the theorem above on the punching space X — {0}. If we
consider ro = x3 = - -+ = X}, then we observe that
k k

Z Z [z +ejme) =2(k—1)f(z1) + QZf(zz)a

i=2¢;€{-1,1} i=2
whence

(k=1) (f(z1 — 22) + fz1 +22)) = 2(k — 1) f(21) + 2(k — 1) f(22).

Hence f is quadratic.

3. STABILITY RESULTS

Throughout this section, let X and ) be normed and Banach spaces also, we
prove the Hyers—Ulam stability of equation (1.5). From now on, we use the following
abbreviation

k

k
Df(w1, 22, ,CUk):Z Z f (@1 +5jxi)_2(k_1)f($1)_2Zf(xi)' (3.1)

i=2¢;€{-1,1} i=2
Theorem 3.1. Let € > 0 be fized. If a mapping f: X — Y with f(0) = 0 satisfies
1Df(z1, 22, - xp)|| < € (3.2)

for all x1,xso,---x € X, then there exists a unique quadratic mapping @ : X — Y
such that

1
IF(2) = Q)] < Fe.

Moreover, if f is measurable or if f(tx) is continuous in t for each fixzed v € X,
then Q(tx) = >Q(tx) for allz € X and t € R.

Proof. Tt is enough to put 3 = x4 = -+ 2, = 0 in (3.2) and use Theorem 1.1 O

By using an idea from the paper [I3], we will prove the Hyers—Ulam stability of
equation (1.5 on a restricted domain.

Theorem 3.2. Let d > 0 and € > 0 be given. Suppose that a mapping f: X — Y
satisfies the inequality forallzy,xa, - xp € X with ||x1||+||z2||+- - -+ |z >
d. Then there exists a unique quadratic mapping @Q : X — Y such that
342k
7@ - @)l < 22

for all x € X. Moreover, if f is measurable or if f(tx) is continuous in t for each
fized x € X, then Q(tx) = t>Q(tz) for allz € X and t € R.

€ (3.3)
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Proof. Assume ||z1|| + |lzo|| + - + |lzk]] < d Iz = 20 = -+ = 23 = 0,
then we chose a ¢t € X with ||t|| = d. Otherwise, let t = ( )a:zo7 where

lzi, || = max{||z;|| : 1 < j < k}. Clearly, we see that

o1 =t + lze + ¢ + - + [lzx +t]| > d (3.4)
lz1 + ¢ + llze + 2+ -+ Jlzw + 2] > d
lzi|l + l|lz2 + 2t + -+ + ||lze + 2t > d
w2+t + llzs + ¢+ + lze + |+ It > d
21l + [1t] > d,

since ||z; +t|| > d and ||z; +2¢|| > d, for 1 < j < k.

From (3.2)) and (3.4) and the relations

flxr +m2) + fx1 — 1) — 2f (1) — 2f (22)

flxr +22) + f(r1 — w9 — 2t) — 2f (21 — t) — 2f (w2 + 1)
+  flrr+ 2 +2t) + f(or —22) = 2f (21 + 1) — 2f (22 + 1)
— 2f(zo+2t) — 2f(m2) + 4f (w2 + 1) + 41 (¢)

— flr1+z2+2t) — flwr — 22 — 2t) + 2f (x1) + 2f (w2 + 2t)

+ 2f(x1 +t) +2f (21 —t) — 4f(z1) — 4f(2)
we get

k k

1Df (1,22, an)]| < Z Z f(al+€j0!i)*2(k*1)f(041)*22f(0¢i)

i=2 ¢;€{~1,1} i=2

+ 1 ST F B e -2k —1)1(B) - £(5)

i=2 g;€{—1,1}

k

k
+ 20D > fn+em) —2k—Df(n)—2> f(w)

i=2 ¢;e{—1,1} i=2

k
+ D0 D0 FO+e0) =20k —1)f(61) =2 f(6:)

i=2 g;€{~1,1} i=2

+ 2(k-1) Z D flm+em) —20k=Dfm)—2> fm)]|

1=2¢;€{-1,1}
where
ap=x1—t a=z,+t, 2<i<k
Br=x1+t , Bi=xi+t, 2<i<k
’-Yl:t ) ’Yi:zi+t7 2SZ§]€
0L =21 , 0;=x;+2t, 2<i<k

n=rr , Niv1 =1, 2<i<k.

1=2
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Hence we have

||©f($171'2, e ?xk‘)” ||©f(0[1, g, 7C¥k)|| + ||©f(/81a/827 o aﬁk)”
2||©f(’yla727 e a’yk)ll + ||©f(91792a o aek)H
2(k = DD f (s mz, -+ el

(3 + 2k)e. (3.5)
Obviously, inequality (3.2 holds for all z,y € X. According to (3.5) and Theo-
rem there exists a unique quadratic mapping @ : X — ) which satisfies the
inequality (3.3) for all z1, 29, ,z € X. O

IN 4+ + IA

Now we study asymptotic behavior of function equation (|1.5)).

Theorem 3.3. Suppose that f : X — Y is a mapping. Then f is quadratic if and
only if for k e N (k > 2)

[Df (1,29, ,21)| =0 (3.6)
as [lz1 || + [[z2]| + - 2k — oo.

Proof. If f is quadratic then evidently holds. Conversely, by using the limits
we can find for every n € N a sequence &, such that | D f(z1, 2, ,ap)|| < £
for all x1, o, -+ ,x € X with ||| + |x2f| + - - ||zk]] > €n.

By Theorem for every n € N there exists a unique quadratic mapping @,
such that

3+ 2k
I£@) = Quia)] < *5-

for all z € X. Since | f(z) — Q1(z)|| < 252 and || f(z) — Qn(z)|| < 32k < 382k

by the uniqueness of Q1 we conclude that @, = Q; for all n € . Now, by tending
n to the infinity in (3.7)) we deduce that f = Q1. Therefore f is quadratic. ([

(3.7)

4. STABILITY ON BOUNDED DOMAINS

Throughout this section, we denote by B,.(0) the closed ball of radius r around
the origin and B, = B,(0) — {0}. In this section we used some ideas from the
paper’s Moslehian et al [I8].

Theorem 4.1. Let X and Y be normed and Banach spacesp > 2,7 > 0,0 : X* —

[0,00)(k > 2) be a function such that p(5, 22, Z) < Lo(xy, a0, - ,ap) for
all
X1,Ta,- -+, T € By. Suppose that f : X — Y is a mapping satisfying f(0) =0 and
H:Df(xlax%"' ?mk)|| S(P(l‘l,l'Q,“' ?mk) (41)
for all 1,22, - ,xx € B, with x; £x; € B, for 1 <1i,j <k. Then there exists a
unique quadratic mapping Q : X — Y such that
1
— < 4.2
1f(z) — Q)] < o= 1)90(93796, ,T), (4.2)

where x € B,.

Proof. Let x1,22, - ,xx € B,. If we consider o = 3 = -+ = 1 in (4.1)), then
we see that

1

1f (@14 @) + flar —@2) = 2f (1) = 2f (22)| < =7 p(@r, 22, 22). (4.3)
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Replacing z1, z2 in (4.3)) by 3, we get

T x
< — = 4.4
1@ - arl < e (5.2,00) (4.4)
Replacing z by 5 € B, and multlplylng with 4" in (4.4), we obtain
T nal 4n T T T
||4nf(2n> 4L f(2n+1)||_ k— (2n+172n+17"'72n+1)- (45)
It follows from (4.5)) that
n T n+m 1 m n+i1—1 z xz z
H4 f(zn) 4 f(Qn-‘rm)” < HZZI ('0<2n+i’2n+z’"”’2n+i)
i=1
22(n71) m 1
< m@(x,ﬂfv“ al‘)Zm- (4.6)

i=1
It follows that {4" f(5%)} is Cauchy and so is convergent. Therefore we see that a
mapping

n— oo

Qla) = lim 4"f(5;) (v € B,),
satisfies

I£@) = Q@) < =g e@ e o)

and Q(0) = 0, when taking the limit m — oo in (4.6) with n = 0.
Next fix » € B,.. Because of § € B,., we have

4Q(3) = lim 4™ (o) = lim 4°f(3) = Q(a).

n—oo

Therefore 4"“"@(%) = @( ) and so the mapping @ : X — Y given by Q(z) :=
4”62(2n) where 7 is least non-negative integer such that 57 € B, is well-defined.
It is easy to see that Q(z) = lim, 0 4" f(5) (2 € X) and Q|p, () = Q.

Now let z,y € X. There is a large enough n such that £, &, Zt¥ Z-¥ ¢ B (0).

Put z1 = 55 and 22 = ﬁ in and multiplying both sides with 4™ to obtain
Tty - z Yy 4" z oy Yy
4n 4TL _4n2 o _47L2 s < (777’”. 77)
i Y { S IEP L YIE ) IR ry (N AN
< (x )
S JwgopP@ ey

whence, by taking the limit as n — oo, we get Q(z+y)+Q(z—y) = 2q(z) +2Q(y).
Hence @ is quadratic. Uniqueness of () can be proved by using the strategy used
in the proof of Theorem [3.2] O

Corollary 4.2. Let X and Y be normed and Banach spaces p > 2,7 > 0,6 > 0.
Suppose that f : X — Y is a mapping satisfying f(0) =0 and

1D f (@1, @, @) < Ol | F oo ® - [l * (4.7)
for all x1,z2, -,z € B, with x; £x; € B, for 2 <14,j < k. Then there exists a
unique quadratic mapping Q : X — Y such that
OrP
— < - 4.8
I1£@) - Q@ < Gr—pr=Ty (18)

where x € B,.
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Proof. Apply Theorem [4.1] with (21, 2o, -, 24) = O]la1 || % 2| % - Jzx|F. O
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