ON SOME ACCURATE ESTIMATES OF π

(DEDICATED IN OCCASION OF THE 70-YEARS OF PROFESSOR HARI M. SRIVASTAVA)

CRISTINEL MORTICI

Abstract

The aim of this paper is to establish some inequalities related to an accurate approximation formula of π. Being practically difficult, the computations arising in this problem were made using computer softwares such as Maple.

1. Introduction

Maybe the best known example of infinite product for estimating the constant π is the Wallis product 4

$$
\begin{equation*}
\frac{\pi}{2}=\frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdots=\prod_{n=1}^{\infty} \frac{4 n^{2}}{4 n^{2}-1} \tag{1.1}
\end{equation*}
$$

which is related to Euler's gamma function Γ, since

$$
\begin{equation*}
\prod_{k=1}^{n} \frac{4 k^{2}}{4 k^{2}-1}=\frac{16^{n}(\Gamma(n+1))^{4}}{(2 n+1)(\Gamma(2 n+1))^{2}} \tag{1.2}
\end{equation*}
$$

Although it has a nice form, 1.1 is very slow, so it is not suitable for approximating the constant π.

A possible starting point for accelerating (1.1) is the work of Fields [1] who shown that

$$
\begin{align*}
\frac{\Gamma(z+a)}{\Gamma(z+b)} \sim & (z+a-\rho)^{a-b} \sum_{k=0}^{N-1} \frac{B_{2 k}^{(2 \rho)}(\rho)(b-a)_{2 k}(z+a-\rho)^{-2 k}}{(2 k)!} \tag{1.3}\\
& +(z+a-\rho)^{a-b} O\left((z+a-\rho)^{-2 N}\right) \\
2 \rho= & 1+a-b, \quad|\arg (z+a)| \leq \pi-\varepsilon, \quad \varepsilon>0
\end{align*}
$$

where the symbols $B_{2 k}^{(2 \rho)}$ stand for the generalized Bernoulli polynomials [2, 5].

[^0]With $z=n, a=-x, b=1$, and $\rho=-x / 2$ in (1.3), we get

$$
\begin{gather*}
\binom{x}{n} \sim \frac{(-1)^{n}(n-x / 2)^{-(x+1)}}{\Gamma(-x)} \sum_{k=0}^{\infty} \frac{B_{2 k}^{(2 \rho)}(\rho)(x+1)_{2 k}}{(2 k)!(n-x / 2)^{2 k}}, \quad \rho=-\frac{x}{2} \\
\binom{x}{n} \sim \frac{(-1)^{n}(n-x / 2)^{-(x+1)}}{\Gamma(-x)}\left[1+\frac{(x)_{3}}{24(n-x / 2)^{2}}+\frac{(x)_{5}(5 x-2)}{5760(n-x / 2)^{4}}\right. \tag{1.4}\\
\left.+\frac{(x)_{7}\left(35 x^{2}-42 x+16\right)}{2903040(n-x / 2)^{6}}+\cdots\right] .
\end{gather*}
$$

See also [3, p. 142], where the following identity is stated

$$
\binom{x}{n}=\frac{(-1)^{n}}{\Gamma(-x)} \frac{\Gamma(n-x)}{\Gamma(n+1)}
$$

Further, with $x=-1 / 2$ in (1.4), we obtain the following formula

$$
\begin{align*}
\pi= & \frac{4(\Gamma(n+1))^{4} 16^{n}}{(4 n+1)(\Gamma(2 n+1))^{2}}\left[1-\frac{1}{4(4 n+1)^{2}}+\frac{21}{32(4 n+1)^{4}}\right. \tag{1.5}\\
& -\frac{671}{128(4 n+1)^{6}}+\frac{180323}{2048(4 n+1)^{8}}-\frac{20898423}{8192(4 n+1)^{10}} \\
& \left.+\frac{7426362705}{65536(4 n+1)^{12}}-\frac{1874409465055}{262144(4 n+1)^{14}}+O\left(\frac{1}{n^{16}}\right)\right]^{2}
\end{align*}
$$

The idea of expressing π using the asymptotic expansion of the ratio $\frac{\Gamma(n+1 / 2)}{\Gamma(n+1)}$ was introduced by Tricomi and Erdélyi in [3, p. 142, Rel. 23]. Here we make use of the asymptotic expansion for $\frac{\Gamma(n+1 / 2)}{\Gamma(n+1)}$ given in [1] to improve the results of Tricomi and Erdélyi 3].

2. The Results

By truncation of series (1.5), increasingly accurate approximations for π can be derived. As example, if $n=10$, use of the first five terms in 1.5 gives π with an error of 1.1639×10^{-12}, while use of the first six terms in 1.5 gives π with an error of 3.0431×10^{-14}.

We prove the following
Theorem 2.1. For every integer $n \geq 1$, we have

$$
\frac{4(\Gamma(n+1))^{4} 16^{n}}{(4 n+1)(\Gamma(2 n+1))^{2}} a(n)<\pi<\frac{4(\Gamma(n+1))^{4} 16^{n}}{(4 n+1)(\Gamma(2 n+1))^{2}} b(n)
$$

where

$$
a(n)=\left(1-\frac{1}{4(4 n+1)^{2}}+\frac{21}{32(4 n+1)^{4}}-\frac{671}{128(4 n+1)^{6}}+\frac{180323}{2048(4 n+1)^{8}}\right)^{2}
$$

and
$b(n)=\left(1-\frac{1}{4(4 n+1)^{2}}+\frac{21}{32(4 n+1)^{4}}-\frac{671}{128(4 n+1)^{6}}+\frac{180323}{2048(4 n+1)^{8}}-\frac{20898423}{8192(4 n+1)^{10}}\right)^{2}$.

Proof. The sequences

$$
x_{n}=\frac{4(\Gamma(n+1))^{4} 16^{n}}{(4 n+1)(\Gamma(2 n+1))^{2}} a(n) \quad, \quad y_{n}=\frac{4(\Gamma(n+1))^{4} 16^{n}}{(4 n+1)(\Gamma(2 n+1))^{2}} b(n)
$$

converge to π and it suffices to show that x_{n} is strictly increasing and y_{n} is strictly decreasing. In this sense, we have

$$
\begin{aligned}
\frac{x_{n+1}}{x_{n}}-1 & =\frac{4(4 n+1)(n+1)^{2}}{(4 n+5)(2 n+1)^{2}} \frac{a(n+1)}{a(n)}-1 \\
& =-\frac{P(n)}{(4 n+5)^{17}(2 n+1)^{2}\left(134217728 n^{8}+\cdots+172467\right)^{2}}
\end{aligned}
$$

where the polynomial

$$
P(n)=60235603222675842001797120 n^{24}+\cdots+22691018044772336786409
$$

has all coefficients positive. In consequence, x_{n} is strictly increasing, convergent to π, so $x_{n}<\pi$.

Then

$$
\begin{aligned}
\frac{y_{n+1}}{y_{n}}-1 & =\frac{4(4 n+1)(n+1)^{2}}{(4 n+5)(2 n+1)^{2}} \frac{b(n+1)}{b(n)}-1 \\
& =\frac{Q(n)}{(2 n+1)^{2}(4 n+5)^{12}\left(8589934592 n^{10}+\cdots-20208555\right)^{2}}
\end{aligned}
$$

where the polynomial

$$
\begin{aligned}
Q(n+1)= & 210420037966350927549442377646080 n^{30} \\
& +\cdots+1909672653415578833630022434217112437351
\end{aligned}
$$

has all coefficients positive. In consequence, y_{n} is strictly decreasing, convergent to π, so $y_{n}>\pi$.
Remark. The computations in this paper were made using Maple software.
Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

[1] J. L. Fields, A note on the asymptotic expansion of a ratio of gamma functions, Proc. Edinburgh Math. Soc. 152 (1966) 43-45.
[2] N.E. Nørlund, Vorksungen über Differenzenrechnung, Springer (Berlin), 1924.
[3] F. G. Tricomi, A. Erdélyi, The asymptotic expansion of a ratio of gamma functions, Pacific J. Math., 11 (1951) 133-142.
[4] J. Wallis, Computation of π by successive interpolations, (1655) in: A Source Book in Mathematics, 1200-1800 (D. J. Struik, Ed.), Harvard University Press, Cambridge, MA, (1969), 244-253.
[5] N.M. Temme, Special Functions, Wiley (NewYork), 1996.
Cristinel Mortici, Valahia University of Târgoviģte, Department of Mathematics, Bd. Unirii 18, 130082 Târgovişte, Romania

E-mail address: cmortici@valahia.ro; cristinelmortici@yahoo.com
URL: http://www.cristinelmortici.ro

[^0]: 2000 Mathematics Subject Classification. 33B15, 26D15.
 Key words and phrases. Wallis formula inequalities; asymptotic series; approximations.
 (C) 2010 Universiteti i Prishtinës, Prishtinë, Kosovë.

 Submitted October 21, 2010. Published November 22, 2010.

