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EXISTENCE RESULTS FOR NONLINEAR FRACTIONAL

DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY

CONDITIONS

(DEDICATED IN OCCASION OF THE 70-YEARS OF

PROFESSOR HARI M. SRIVASTAVA)

MOUFFAK BENCHOHRA, FATIMA OUAAR

Abstract. The Banach contraction principle and Schauder’s the fixed point
theorem are used to investigate the existence of solutions for fractional order

differential equations with integral conditions.

1. Introduction

This paper is concerned with the existence of solutions, for boundary value prob-
lems (BVP for short), for fractional differential equations with mixed boundary
conditions. In Section 3, we will consider the BVP of the form

cD�y(t) = f(t, y(t)), for each t ∈ J := [0, T ], � ∈ (0, 1], (1.1)

y(0) + �

∫ T

0

y(s)ds = y(T ), (1.2)

where cD� is the Caputo fractional derivative, and f : J × ℝ → ℝ, is a given
function satisfying some assumptions that will be specified later and � ∈ ℝ∗.

Differential equations of fractional order have recently proved to be valuable tools
in the modeling of many phenomena in various fields of science and engineering.
Indeed, we can find numerous applications in viscoelasticity, electrochemistry, con-
trol, porous media, electromagnetic, etc. (see [9, 10, 11, 19, 20, 22]). There has been
a significant development in fractional differential equations in recent years; see the
monographs of Kilbas et al. [13], Lakshmikantham et al. [14], Miller and Ross [21],
Podlubny [22], Samko et al. [24] and the papers of Agarwal et al. [1], Benchohra
et al. [2, 3, 4], Delbosco and Rodino [5], Diethelm et al. [6, 7], Kilbas and Marzan
[12], Mainardi [19], Podlubny et al. [23], Yu and Gao [26] and the references therein.
Very recently, some basic theory for initial value problems for fractional differential
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equations involving the Riemann-Liouville differential operator of order � ∈ (0, 1]
was discussed by Lakshmikantham and Vatsala [15, 16, 17].

The Green functions for linear boundary-value problems for ordinary differen-
tial equations with sufficiently smooth coefficients have been investigated in detail
in several studies [18, 25]. In this work, analogously with boundary-value prob-
lems for differential equations of integer order, we first derive the corresponding
Green’s function-named by fractional Green’s function. Later, we give existence
and uniqueness results for BVP (1.1)- (1.2) using appropriate fixed point theorems.
Finally, some examples are given to illustrate the applicability of our assumptions.

2. Preliminaries

In this section, we present some definitions, lemmas and notation which will be
used in our theorems.

By C(J,ℝ) we denote the Banach space of all continuous functions from J into
ℝ with the norm

∥y∥∞ := sup{∣y(t)∣ : t ∈ J},
where ∣ ⋅ ∣ denotes a suitable complete norm on ℝ.

Definition 2.1. The fractional primitive of order � > 0 of a Lebesgue measurable
function ℎ : ℝ+ → ℝ is given by

I�ℎ(t) =
1

Γ(�)

∫ t

0

(t− s)�−1ℎ(s)ds,

provided that the integral exists, where Γ is the gamma function.

Definition 2.2. [13]. For a function ℎ given on the interval [0,∞), the Caputo
fractional-order derivative of ℎ of order � is defined by

cD�ℎ(t) =
1

Γ(n− �)

∫ t

0

(t− s)n−�−1ℎ(n)(s)ds.

Here n = [�] + 1 where [�] denotes the integer part of �.

For the existence of solutions for the problem (1.1)–(1.2), we need the following
auxiliary lemmas:

Lemma 2.3. [27] Let � > 0; then the differential equation

cD�ℎ(t) = 0

has solutions ℎ(t) = c0 + c1t+ c2t
2 + . . .+ cn−1t

n−1, ci ∈ ℝ, i = 0, 1, 2, . . . , n− 1,
n = [�] + 1.

Lemma 2.4. [27] Let � > 0; then

I� cD�ℎ(t) = c0 + c1t+ c2t
2 + . . .+ cn−1t

n−1

for some ci ∈ ℝ, i = 0, 1, 2, . . . , n− 1, n = [�] + 1.
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3. Main Results

In this section, we are concerned with the existence of solutions for the BVP
(1.1)-(1.2).

Definition 3.1. A function y ∈ C(J,ℝ) is said to be a solution of (1.1)–(1.2) if y
satisfies the equation cD�y(t) = f(t, y(t)) on J , and the condition (1.2).

For the existence results for the problem (1.1)-(1.2) we need the following aux-
iliary lemma.

Lemma 3.2. Let 0 < � ≤ 1 and let ℎ ∈ C(J,ℝ) be a given function. Then the
boundary-value problem

cD�y(t) = ℎ(t), t ∈ J, (3.1)

y(0) + �

∫ T

0

y(s)ds = y(T ), � ∈ ℝ∗, (3.2)

has a unique solution given by

y(t) =

∫ T

0

G(t, s)ℎ(s)ds, (3.3)

where G(t, s) is the Green’s function defined by

G(t, s) =

⎧⎨⎩
−(T − s)� + �T (t− s)�−1

TΓ(�+ 1)
+

(T − s)�−1

T�Γ(�)
, if 0 ≤ s < t,

−(T − s)�

TΓ(�+ 1)
+

(T − s)�−1

T�Γ(�)
, if t ≤ s < T.

(3.4)

Proof. By Lemma 2.4, we can reduce the problem (3.1)-(3.2) to an equivalent
integral equation

y(t) = I�ℎ(t)− c0 =

∫ t

0

(t− s)�−1

Γ(�)
ℎ(s)ds− c0,

for some constant c0 ∈ ℝ. We have by integration (using Fubini’s integral theorem)∫ T

0

y(s)ds =

∫ T

0

(∫ t

0

(t− �)�−1

Γ(�)
ℎ(�)d� − c0

)
ds

=

∫ T

0

(∫ T

�

(s− �)�−1

Γ(�)
ds

)
ℎ(�)d� − c0T

=

∫ T

0

(T − �)�

�Γ(�)
ℎ(�)d� − c0T.

Applying the boundary condition (3.2), we have

y(0) = −c0

y(T ) =

∫ T

0

(T − s)�−1

Γ(�)
ℎ(s)ds− c0

that is

c0 =
1

T

∫ T

0

(
− (T − s)�−1

�Γ(�)
+

(T − s)�

Γ(�+ 1)

)
ℎ(s)ds.
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Therefore, the unique solution of (3.1)-(3.2) is

y(t) =

∫ t

0

(t− s)�−1

Γ(�)
ℎ(s)ds+

1

T

∫ T

0

(
−(T − s)�

Γ(�+ 1)
+

(T − s)�−1

�Γ(�)

)
ℎ(s)ds,

=

∫ t

0

(
−(T − s)� + �T (t− s)�−1

TΓ(�+ 1)
+

(T − s)�−1

T�Γ(�)

)
ℎ(s)ds

+

∫ T

t

(
−(T − s)�

TΓ(�+ 1)
+

(T − s)�−1

T�Γ(�)

)
ℎ(s)ds

=

∫ T

0

G(t, s)ℎ(s)ds

which completes the proof. □

Remark. The function t ∈ J 7→
∫ T
0
∣G(t, s)∣ds is continuous on J , and hence is

bounded. Let

Ĝ = sup

{∫ T

0

∣G(t, s)∣ds, t ∈ J

}
.

Our first result is based on Banach’s fixed point theorem [8].

Theorem 3.3. Assume that

(H1) there exists k > 0 such that

∣f(t, u)− f(t, v)∣ ≤ k∣u− v∣, for t ∈ J and every u, v ∈ ℝ.
If

kĜ < 1, (3.5)

then there exists a unique solution for the BVP (1.1)–(1.2).

Proof. Consider the operator N : C(J,ℝ) −→ C(J,ℝ) defined by

N(y)(t) =

∫ T

0

G(t, s)f(s, y(s))ds,

where G(t, s) is the Green’s function given by (3.4). Clearly, from Lemma 3.2, the
fixed points of N are solutions to (1.1)–(1.2). We shall show that N is a contraction.
Consider x, y ∈ C(J,ℝ). Then, for each t ∈ J we have

∣N(x)(t)−N(y)(t)∣ ≤
∫ T

0

∣G(t, s)∣∣f(s, x(s))− f(s, y(s))∣ds

≤ k∥x− y∥∞
∫ T

0

∣G(t, s)∣ds

≤ kĜ∥x− y∥∞.

Thus, we obtain that

∥N(x)−N(y)∥∞ ≤ L ∥x− y∥∞,
where

L := k Ĝ < 1.

Our theorem is proved. □

Now we give an existence result based on the Schauder’s fixed point theorem [8].
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Theorem 3.4. The BVP (1.1)-(1.2) has at least one solution if the following con-
ditions hold.

(C1 ) The function f : J × ℝ→ ℝ is continuous.
(C2 ) There exist p ∈ C(J,ℝ+) and  : [0,∞) −→ (0,∞) continuous and nonde-

creasing such that

∣f(t, u)∣ ≤ p(t) (∣u∣), for t ∈ J and each u ∈ ℝ.

(C3 ) There exists a constant M > 0 such that

M

p∗ (M)Ĝ
> 1, (3.6)

where

p∗ = sup{p(s), s ∈ J}.

Proof. Let

C = {y ∈ C(J,ℝ), ∥y∥∞ ≤M},

where M is the constant from (C3 ). It is clear that C is a closed, convex subset of
C(J,ℝ). We shall show that the operator N satisfies conditions of Schauder’s fixed
point theorem.

Step 1: N is continuous.

Let {yn} be a sequence such that yn → y in C(J,ℝ). Then for each t ∈ J

∣Nyn(t)−Ny(t)∣ ≤
∫ T

0

∣G(t, s)∣∣f(s, yn(s))− f(s, y(s))∣ds.

Since f is continuous, the Lebesgue dominated convergence theorem implies that

∥N(yn)−N(y)∥∞ → 0 as n→∞.

Step 2: N maps C into a bounded set of C(J,ℝ).

Let y ∈ C; then for each t ∈ J, (C2 ) implies

∣Ny(t)∣ ≤
∫ T

0

∣G(t, s)∣∣f(s, y(s))∣ds

≤ p∗ (∥y∥∞)

∫ T

0

∣G(t, s)∣ds.

Thus,

∥Ny∥∞ ≤ p∗  (M) Ĝ := ℓ.

Step 3: N maps C into a equicontinuous set of C(J,ℝ).
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Let y ∈ C, t1, t2 ∈ J, t1 < t2; then

∣Ny(t2)−Ny(t1)∣ =

∣∣∣∣∣
∫ T

0

G(t2, s)f(s, y(s))ds−
∫ T

0

G(t1, s)f(s, y(s))ds

∣∣∣∣∣
≤

∫ T

0

∣G(t2, s)−G(t1, s)∣∣f(s, y(s))∣ds

≤ p∗  (M)

[ ∫ T

0

∣G(t2, s)−G(t1, s)∣ds
]
.

As t1 → t2, the right hand side of the above inequality tends to zero. By the
Arzela-Ascoli theorem, N is completely continuous.

Step 4: N(C) ⊂ C.

Let y ∈ C. We will show that Ny ∈ C. For each t ∈ J , we have

∣Ny(t)∣ ≤
∫ T

0

∣G(t, s)∣∣f(s, y(s))∣ds

≤ p∗ (∥y∥∞)

∫ T

0

∣G(t, s)∣ds.

Thus,

∥Ny∥∞ ≤ p∗ (M)Ĝ.

By (3.6), we have

∥Ny∥∞ ≤M.

Therefore, we deduce that N has a fixed point y which is a solution of BVP
(1.1)-(1.2). □

4. Examples

Exemple 4.1. Consider the fractional boundary value problem

cD�y(t) =
e−t

10(1 + et)
∣y(t)∣, t ∈ J := [0, 1], � ∈ (0, 1], (4.1)

y(0) +

∫ 1

0

y(s)ds = y(1). (4.2)

Set

f(t, x) =
e−t

10(1 + et)
x, (t, x) ∈ J × [0,∞).

Let x, y ∈ [0,∞) and t ∈ J. Then we have

∣f(t, x)− f(t, y)∣ =
e−t

10(1 + et)
∣x− y∣

≤ 1

20
∣x− y∣.
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Hence the condition (H1) holds with k =
1

20
. From (3.4), G is given by

G(t, s) =

⎧⎨⎩
−(1− s)�

Γ(�+ 1)
+

(t− s)�−1

Γ(�)
+

(1− s)�−1

Γ(�)
, 0 ≤ s < t,

−(1− s)�

Γ(�+ 1)
+

(1− s)�−1

Γ(�)
, t ≤ s < 1.

(4.3)

From (4.3) we have

∫ 1

0

G(t, s)ds =

∫ t

0

G(t, s)ds+

∫ 1

t

G(t, s)ds

=
(1− t)�+1

Γ(�+ 2)
− (1− t)�

Γ(�+ 1)
− 1

Γ(�+ 2)
+

t�

Γ(�+ 1)

+
1

Γ(�+ 1)
− (1− t)�+1

Γ(�+ 2)
+

(1− t)�

Γ(�+ 1)
.

It is easy to see that

Ĝ <
4

Γ(�+ 1)
+

3

Γ(�+ 2)
.

Then condition (3.5) is satisfied for appropriate values of � ∈ (0, 1] with � =
T = 1. Theorem 3.3 implies that BVP (4.1)-(4.2) has a unique solution.

Exemple 4.2. Consider now the fractional differential equation

cD�y(t) =
et

7 + et
∣y(t)∣
 , t ∈ J := [0, 1], � ∈ (0, 1], (4.4)

y(0) +

∫ 1

0

y(s)ds = y(1), (4.5)

where 
 ∈ (0, 1). Set

f(t, x) =
et

7 + et
x
 , (t, x) ∈ J × [0,∞),

p(t) =
et

7 + et
, for each t ∈ J,

and

 (x) = x
 , for each x ∈ [0,∞).

Conditions (C1) and (C2) are satisfied with � = T = 1. A simple calculation shows
that condition (3.6) is satisfied for some constant M > 1. Since all the conditions
of Theorem 3.4 are satisfied, BVP (4.4)–(4.5) has at least one solution y on J .

Acknowledgement: The authors are grateful to the referee for the careful
reading of the paper.
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