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POLYNOMIAL APPROXIMATION AND INTERPOLATION OF

ENTIRE FUNCTIONS OF SLOW GROWTH IN SEVERAL

COMPLEX VARIABLES

(DEDICATED IN OCCASION OF THE 70-YEARS OF

PROFESSOR HARI M. SRIVASTAVA)

D. KUMAR AND DEEPTI GUPTA

Abstract. In the present paper a characterization of the generalized order
and type of entire functions of several complex variables by means of polyno-

mial approximation and interpolation have been obtained. Our results improve

and generalize various results of S.M. Shah [5], M.N. Seremeta [4], Kapoor and
Nautiyal [2], Vakarchuk [9], Vakarchuk and Zhir [10], Winiarski ([11],[12]). In

this way we summarize and unify the work which has been done on this subject

to-date.

1. Introduction

Let C be the complex plane and let CN be the N -dimensional complex Euclidean
space.We have

D = {z ∈ C : ∣z∣ < 1}
to denote the open unit disc in C,and use

DN = {D × ...×D} =
{
z = z1, ..., zN ∈ CN : ∣zk∣ < 1, 1 ≤ k ≤ N

}
to denote the polydisc in CN .Let g be an entire transcendental function in CN , N ≥
1 and

S(r, g) = sup
{
∣g(z)∣ : ∣z1∣2 + ⋅ ⋅ ⋅+ ∣zN ∣2 = r2

}
, r > 0.

be its maximum modulus. The growth of g is measured in terms of its order � and
type T defined as under

lim sup
r→+∞

log logS(r, g)

log r
= �, (1.1)

lim sup
r→+∞

logS(r, g)

r�
= T, (1.2)
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for 0 < � < ∞. Various authors have given different characterizations for entire
functions of fast growth (� = ∞). M.N.Seremeta[4] and S.M.Shah[5] defined the
generalized order and generalized type with the help of general functions as follows.

Let L0 denote the class of functions ℎ satisfying the following conditions

(i) ℎ(x) is defined on [d,+∞) strictly increasing, differentiable and tends to∞
as x→∞,

(ii) limx→+∞
ℎ{(1+1/'(x))x}

ℎ(x) = 1

for every function '(x) such that '(x) such that '(x) → +∞ as x →
+∞.

Let Δ denote the class of functions ℎ satisfying condition (i) and

lim
x→+∞

ℎ(cx)

ℎ(x)
= 1 provided c > 0.

For entire transcendental function f(z) =
∑∞
n=0 an z

n and functions
�(x) ∈ Δ, �(x) ∈ L0, Seremeta [4,Th.1] and Shah[5 ] proved in a single
complex variable that

�(�, �, f) = lim sup
r→+∞

�[logS(r, f)]

�(log r)
= lim sup

n→+∞

�(n)

�
(
− 1
n log ∣an∣

) (1.3)

Further, for �(x) ∈ L0, �−1(x) ∈ L0, 
(x) ∈ L0,

T (�, �, f) = lim sup
r→+∞

�[logS(r, f)]

�[(
(r))�]

= lim sup
n→+∞

�(n/�)

�
{

[
(e1/�)∣an∣−1/n]�
} . (1.4)

where 0 < � < ∞ is a fixed number. If �(x) = log x, �(x) = x, we get
classical definitions of order and type of an entire function.

Above relations were obtained under the condition

d(�−1(c�(x)))

d(log x)
≤ b, x ≥ a, (1.5)

where a and b are positive constants. Surprisingly the condition (1.5) does
not hold for � = �. To remove this problem, G.P. Kapoor and A. Nautiyal
[2] defined generalized order �(�, �, f) of slow growth with the help of gen-
eral functions as follows.

Let Ω be the class of functions ℎ(x) satisfying (i) and
(iii) there exists a �(x) ∈ Ω and x0,K1 and K2 such that

0 < K1 ≤
d(ℎ(x))

d(�(logx))
≤ K2 <∞ for all x > x0.

Let Ω be the class of functions ℎ(x) satisfying (i) and

(iv) limx→+∞
d(ℎ(x))
d(log x) = K, 0 < K <∞.
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Kapoor and Nautiyal [2] showed that classes Ω and Ω are contained in
Δ. Further, Ω

∩
Ω = � and they defined the generalized order �(�, �, f)

for entire functions f(z) of slow growth as

�(�, �, f) = lim sup
r→+∞

�(logS(r, f))

�(log r)
,

where �(x) either belongs to Ω or to Ω.

The characterization for the generalized order and type by means of polynomial
approximation and interpolation to g on a compact subsets of CN , N > 1 for slow
growth have been studied by Srivastava and Susheel Kumar [8 ].It has been noticed
that the characterization for approximating entire function g in certain Banach
spaces by generalized order and type of slow growth on a compact subsets of CN

have not been studied so far.

The paper is organized as follows. First we define the generalized order and
type by means of polynomial approximation and interpolation to g on a compact
subsets of CN for slow growth. Next we obtain necessary and sufficient conditions
of generalized order and type of slow growth in certain Banach spaces (B(p, q,m)
space, Hardy space and Bergman spaces) introduced by Vakarchuk and Zhir [10]and
W.Rudin [3 ].

We shall assume throughout that function � ∈ Ω.

Let K be a compact set in CN and let ∥∥K denote the supremum norm on K.
The function

�K(z) = sup{∣p(z)∣1/n; p− polynomial, deg p ≤ n, ∥p∥K ≤ 1, n ∈ N},

z ∈ CN , is called the Siciak extremal function of the compact K([6], [7]).

Given a function f , defined and bounded on K, we set for n ∈ N

E(1)
n (f,K) = inf {∥f − tn∥K} ;

E(2)
n (f,K) = inf {∥f − ln∥K} ;

E
(3)
n+1(f,K) = inf {∥ln+1 − ln∥K} ,

where tn denotes the n − tℎ Chebyshev polynomial of the best approximation to
f on K and ln denotes the n − tℎ Lagrange interpolation polynomial for f with
nodes at extremal points of K (see[6],[7]).

Recently Vakarchuk and Zhir [10] studied the approximation of entire functions
in Banach spaces in a single complex variable z.Let H(DN ) denote the space of
all holomorphic functions in DN .For any 0 < q < ∞ the Hardy space Hq(D

N )
contains of all g ∈ H(DN ) such that

Sq(r, g) =

{∫
TN

∣g(r�)∣q d�(�) : 0 < r < 1

}1/q

, q > 0.

where

TN =
{
� = �1, ..., �N ∈ CN : ∣�k∣ = 1, 1 ≤ k ≤ N

}
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is the distinguished boundary of DN and

d�(�) =

{
∣d�1∣...∣d�N ∣

(2�)N

}
is the normalized Haar measure on TN .It is well known that for every function
g ∈ Hq(D

N ),the radial limit

g(�) =

{
lim
r→1−

g(r�)

}
exist for allmost every � ∈ TN .Furthermore,

∥g∥Hq =

{∫
TN

∣g(�)∣q d�(�)

}1/q

.

See [3 ] for more information about Hardy spaces of the polydisc.For 0 < q < ∞
the Bergman space H

′

q(D
N ) consists of all functions g ∈ H(DN ) such that

∥g∥H′q =

{∫
TN

∣g(z)∣qdA(z1)...dA(zN )

}1/q

<∞.

where

dA(z) =

{
dxdy

�

}
being normalized area measure on D.

For q = ∞, let ∥g∥H′∞ = ∥g∥H∞ = sup{∣g(z)∣, z ∈ (DN )}. Then Hq and H
′

q

are Banach spaces for q ≥ 1. Following [3,chapter-III], we say that a function
g ∈ H(DN ) belongs to the space B(p, q,m) if

∥g∥p,q,m = sup

{∫
TN

(1− r�)m(1/p−1/q)−1Smq (r, g)d�(�) : 0 < r < 1

}1/m

<∞,

0 < p < q ≤ ∞, 0 < m <∞ and

∥g∥p,q,∞ = sup
{

(1− r�)1/p−1/qSq(r, g)d�(�) : 0 < r < 1
}
<∞.

It can be seen [1] that B(p, q,m) is a Banach space for p > 0 and q,m > 1,
otherwise it is a Frechet space. Further [9],

Hq ≤ H
′

q = B(q/2, q, q), 1 ≤ q <∞.

Let � denote one of the Banach spaces defined above and let for n ∈ N

E(1)
n (g, �) = inf {∥g − tn∥�}

E(2)
n (g, �) = inf {∥g − ln∥�}

E(3)
n (g, �) = inf {∥ln+1 − ln∥�} .

One form of the generalized order in terms of the errors E
(1)
n (f, �) was studied in

the work Vakarchuk and Zhir [10] ,when N = 1 and � = �(� ∈ Δ). These results
do not hold good for � = � = 
. So our results improve and generalize the results
of [10] for several complex variables.
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Now we define the generalized order �(�, �, g) and generalized type T (�, �, g) of
an trancedental entire function g(z), z ∈ CN as

�(�, �, g) = lim sup
r→+∞

�(logS(r, g))

�(log r)
;T (�, �, g) = lim sup

r→+∞

�(logS(r, g))

[�(log r)]�

where �(x) either belongs to Ω or Ω.

2. Main Results

Theorem 2.1. Let �(x) ∈ Ω, and f(z) ∈ B(p, q,m) then f(z)is an entire function
of generalized order �(�, �, f) if, and only if

�(�, �, f) ≡ � = lim sup
n→+∞

�(n)

�
(

log
(
∣E(s)
n (B(p, q,m) : f)

∣∣∣)−1/n) , s = 1, 2, 3. (2.1)

Proof. First we prove the result for q = 2, 0 < p < 2,m ≥ 1 and s = 1. Let
f ∈ B(p, q,m) be of generalized order �. Then in the consequence of[8 ,Th. 2.1] we
can easily get

lim sup
n→+∞

�(n)

�
(
log[∥pn∥K ]−1/n

) = �. (2.2)

Then for given " > 0, and all n > m = m("), we have

∥pn∥K ≤ exp

{
−n
(
�−1

(
1

�+ "
�(n)

))}
. (2.3)

Let gn(f) =
∑n
j=0 pj be the ntℎ partial sum of sequence of polynomials. Follow-

ing [10,p.1396] with ∣pn(z)∣ ≤ ∥pn∥K�nK(z)z ∈ CN , we obtain

E(1)
n (B(p, 2,m); f) ≤ B1/m[(n+ 1)m+ 1;m(1/p− 1/2)]

⎧⎨⎩
∞∑

j=n+1

[∥pj∥K ]1/2

⎫⎬⎭ (2.4)

where B(a, b)(a, b > 0) denotes the beta function. By using (2.3), we have

E(1)
n (B(p, 2,m); f) ≤ B1/m[(n+ 1)m+ 1;m(1/p− 1/2)]

exp
{

(n+ 1)
(
�−1

(
�(n+1)

�

))}
⎧⎨⎩

∞∑
j=n+1

'2
j (�)

⎫⎬⎭
1/2

,

(2.5)
where

'j(�) ∼=
exp

{
(n+ 1)

(
�−1

(
�(n+1)
�+"

))}
exp

{
j
(
�−1

(
�(j)
�+"

))} .

Set

'(�) ∼= exp

{
−�−1

(
�(1)

�+ "

)}
.

Since �(x) is increasing and j ≥ n+ 1, we get

'j(�) ≤ exp

{
((n+ 1)− j)

[
�−1

(
�(n+ 1)

�+ "

)]}
≤ 'j−(n+1)(�). (2.6)

Since '(�) < 1, we get from (2.5) and (2.6),
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E(1)
n (B(p, 2,m); f) ≤ B1/m[(n+ 1)m+ 1;m(1/p− 1/2)]

(1− '2(�))
1/2
[
exp

{
n�−1

(
�(n+1)
�+"

)}] (2.7)

For n ≥ n0, (2.7) gives

�+ " ≥ �(n+ 1)

�

(
(1 + 1/n)−1

{
log
(
∣E(1)
n (B; f)

∣∣∣)−1/n + log
(
B1/m[(n+1)m+1;m(1/p−1/2)]

(1−'2(�))1/2

)1/n}) .
Now

B[(n+ 1)m+ 1;m(1/p− 1/2)] =
Γ((n+ 1)m+ 1)Γ(m(1/p− 1/2))

Γ((n+ 1/2 + 1/p)m+ 1)
.

Hence

B[(n+ 1)m+ 1;m(1/p− 1/2)] ≃ e−[(n+1)m+1][(n+ 1)m+ 1](n+1)m+3Γ(1/p− 1/2)

e[(n+1/2+1/p)m+1][(n+ 1/2 + 1/p)m+ 1](n+1/2+1/p)k+3/2
.

Thus

B[(n+ 1)m+ 1;m(1/p− 1/2)]1/n+1 ∼= 1. (2.8)

Proceeding to limits we get

� ≥ lim sup
n→+∞

�(n)

�
(
− 1
n logE

(1)
n (B(p, 2,m); f)

) . (2.9)

For reverse inequality we may use

∥pn+1∥KB1/m[(n+ 1)m+ 1;m(1/p− 1/2)] ≤ E(1)
n (B(p, 2,m); f).

Then for sufficiently large n, we have

�(n)

�
(

log
(
∣E(1)
n (B; f)

∣∣∣)−1/n) ≥ �(n)

�
{

log[∥pn+1∥K ]−1/n + log(B−1/nm[(n+ 1)m+ 1;m(1/p− 1/2)])
}

≥ �(n)

�
{

log[∥pn∥K ]1/n + log
(
B−1/nm[(n+ 1)m+ 1;m(1/p− 1/2)]

)} .
Applying limits with (2.2) we get

lim sup
n→+∞

�(n)

�
(

log
(
∣E(1)
n (B(p, 2,m); f)

∣∣∣)−1/n) ≥ �. (2.10)

Inequalities (2.9) and (2.10) together yields

� = lim sup
n→+∞

�(n)

�
(

log
(
∣E(1)
n (B(p, 2,m); f)

∣∣∣)−1/n) . (2.11)

Now we consider the spaces B(p, q,m) for 0 < p < q, q ∕= 2, and q,m ≥ 1.
Gvaradze [1] showed that, for p ≥ p1, q ≤ q1, and m ≤ m1, if at least one of
the inequalities is strict, them inclusion B(p, q,m) ⊂ B(p1, q1,m1) holds and the
following relation is true;

∥f∥p1,q1,m1
≤ 21/q−1/q1 [m(1/p− 1/q)]1/m−1/m1∥f∥p,q,m.
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For any function f defined and bounded on K and in B(p, q,m) the last inequal-
ities gives

E(1)
n (B(p, q,m); f) ≤ 21/q−1/q1 [m(1/p− 1/q)]1/m−1/m1E(1)

n (B(p, q,m); f). (2.12)

For general case B(p, q,m), q ∕= 2, we prove the necessity of the condition (2.3).

Let f(z) be defined and bounded on K (compact set in CN ), z ∈ CN and
f(z) ∈ B(p, q,m) be an entire transcendental function having finite generalized
order defined by (2.2). Using the relation (2.3), for n > n0 we estimate the
value of the best polynomial approximation by using the fact that if K ⊂ DN ={
z ∈ CN : ∣z1∣2 + ⋅ ⋅ ⋅+ ∣zN ∣2 ≤ 1

}
then E

(1)
n ≤ E(1)

n (g,DN ). Hence

E(1)
n (B(p, q,m); f) = ∥f − gn(f)∥p,q,m ≤ sup

(∫
TN

(1− r�)(m(1/p−1/q)−1)Smq d�(�)

)1/m

.

Now

∣f ∣q =

∣∣∣∣∣
∞∑
n=0

pn

∣∣∣∣∣
q

≤

( ∞∑
n=0

∣pn∣

)q
≤

( ∞∑
k=n+1

∥pk∥rk+1

)q
.

Thus

E(1)
n (B(p, q,m); f) ≤ B1/m[(n+ 1)m+ 1;m(1/p− 1/q)]

∞∑
k=n+1

∥pk∥

≤ B1/m[(n+ 1)m+ 1;m(1/p− 1/q)]

(1− '(�))
[
exp

{
n�−1

(
�(n+1)
�+"

)}] . (2.13)

For n > n0, (2.13) yields

�+ " ≥ �(n+ 1)

�

(
(1 + 1/m)−1

{
log
(
∣E(1)
n (B; f)

∣∣∣)−1/n + log
(
B1/m[(n+1)m+1;m(1/p−1/2)]

1−'(�)

)1/n}) .
Since '(�) < 1, and � ∈ Ω, proceeding to limits and using (2.8) we get

� ≥ lim sup
n→+∞

�(n)

�
(

log
(
∣E(1)
n (B(p, q,m); f)

∣∣∣)−1/n) . (2.14)

To prove the reverse inequality, let us suppose that 0 < p < q < 2 and m, q ≥ 1.
By (2.11), where p1 = p, q1 = 2, and m1 = m, and the condition (2.3) is already
proved for the space B(p, 2,m), we get

lim sup
n→+∞

�(n)

�
(

log
(
∣E(n)
n (B(p, 2,m); f)

∣∣∣)−1/n) ≥ lim sup
n→∞

�(n)

�
(

log
(
∣E(1)
n (B(p, 2,m); f)

∣∣∣)−1/n) = �.

Now for 0 < p ≤ 2 < q we have

S2(r, f) ≤ Sq(r, f), 0 < r < 1,

therefore

E(1)
n (B(p, q,m); f) ≥ ∥pn+1∥B1/m[(n+ 1)m+ 1;m(1/p− 1/q)]. (2.15)
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Then for sufficiently large n, we have

�(n)

�
(

log
∣∣∣E(1)

n (B(p, q,m); f)
)∣∣∣−1/n ≥

�(n)

�
(

log
(
∥pn+1∥−1/n + log

(
B−1/mn

[
(n+ 1)m+ 1;m

(
1
p −

1
q

)])))
By applying limits and from (2.2), we get

lim sup
n→+∞

�(n)

�
(

log
(
∣E(1)
n (B(p, q,m); f)

∣∣∣))−1/n
≥ lim sup

n→+∞

�(n)

�
(

log [∥pn∥]−1/n
) = �.

Now we assume that 2 ≤ p < q. Set q1 = q,m1 = m, and 0 < p1 < 2 in the
inequality (2.11), where p1 is an arbitrary fixed number. Substituting p1 for p n
(2.14), we get

E(1)
n (B(p, q,m); f) ≥ ∥pn+1∥B1/m[(n+ 1)m+ 1;m(1/p1 − 1/q)]. (2.16)

Using (2.16) and applying the same method as in the previous case 0 < p ≤ 2 < q,
for sufficiently large n, we obtain

�(n)

�
(

log
(
∣E(1)
n (B(p, q,m); f)

∣∣∣)−1/n)
≥ �(n)

�
(
log[∥pn+1∥]−1/n + log

(
B−1/nm [(n+ 1)m+ 1;m(1/p1 − 1/q)]

))
≥ �(n)

�
(
log[∥pn∥]−1/n + log

(
B−1/nm [(n+ 1)m+ 1;m(1/p1 − 1/q)]

)) .
By taking limits and using (2.2), we get

lim sup
n→+∞

�(n)

�
(

log
(
∣E(1)
n (B(p, q,m); f)

∣∣∣)−1/n) ≥ �.
From inequalities (2.9),(2.10) with above inequality, the required relation (2.11)

can be obtained. Hence the proof is completed for s = 1. For s = 2, 3 the theorem
can be easily proved using the same technique as[8 ,Th. 2.1].

Theorem 2.2. Let �(x) ∈ Ω, then a necessary and sufficient condition for an
entire function f(z) ∈ B(p, q,m). Then f(z) is an entire function of generalized
type T having finite generalized order �, 1 < � <∞ if,and only if

T = lim sup
n→+∞

�(n/�)[
�
{

�
�−1 log

(
∣
(
E

(s)
n (B(p, q,m); f)

)∣∣∣)−1/n}](�−1) . (2.17)

Proof. The proof can be easily obtained following the lines of Theorem 2.1 after
some mechanical work.

Now we prove

Theorem 2.3. Assuming that the conditions of Theorem 2.1 are satisfied and �(�)
is a positive number.Then f(z) ∈ Hq,is an entire function of generalized order �
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if,and only if

lim sup
n→+∞

�(n)

�
(

log
(
∣E(s)
n (Hq, f)

∣∣∣)−1/n) = �(�, �, g). (2.18)

Proof. Let f(z) =
∑∞
n=0 pn be an entire function having finite generalized or-

der. f(z) ∈ B(p, q,m), where 0 < p < q ≤ ∞ and q,m ≥ 1. From [9] we get
En((q/2, q, q); f) ≤ �qEn(ℎq; f), 1 ≤ q < ∞, where �q is a constant independent of
n and f . In the case of Hardy space H∞

E(s)
n (B(p,∞,∞); f) ≤ E(s)

n (H∞; f), 1 < p <∞. (2.19)

Since

�(�, �, g) = lim sup
n→+∞

�(n)

�
(

log(∣E(s)
n (Hq; f)∣)−1/n

)
≥ lim sup

n→+∞

�(n)

�
(

log(∣E(s)
n (B(q/2, q, q); f)∣)−1/n

)
≥ �, 1 ≤ q <∞. (2.20)

The inequality (2.20) can be proved for q = ∞ by (2.19). For the reverse
inequality

�(�, �, g) ≤ �, (2.21)

we use the relation (2.3), which is valid for n > n0, and we can estimate from above,
the generalized order � as follows.

E(1)
n (Hq; f) ≤ ∥f − gn∥Hq

≤
∞∑

j=n+1

∣pj ∣

≤ exp

(
−(n+ 1)�−1

(
�(n+ 1)

�+ "

)) ∞∑
j=n+1

'j(�).

Using (2.6),

E(1)
n (Hq; f) ≤ ∥f − gn∥Hq

≤ 1

(1− '(alpℎa))
[
exp

(
(n+ 1)�−1

(
�(n+1)
∣�+"

))]
or

1

E
(1)
n (Hq; f)

≥ (1− '(�)) exp

{
(n+ 1)�−1

(
�(n+ 1)

�+ "

)}
.

This yields

�+ " ≥ �(n+ 1)

�
(

log(∣E(1)
n (Hq; f)∣)−1/n+1 + log

(
(1− '(alpℎa))−1/n+1

)) .
Using the fact that '(�) < 1 and passing to the limits as n → +∞ with the

properties of �, we get the inequality (2.21). Thus we have

�(�, �, g) = �
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for s = 1. The theorem can be proved easily for s = 2, 3. So we omit the proof.

Theorem 2.4. Let �(x) ∈ Ω, and f ∈ Hq.Then f(z) is an entire function of
generalized type T ∗ if,and only if

lim sup
n→+∞

�(n/�)[
�
{

�
�−1 log

(
∣
(
E

(s)
n (Hq; f)

)∣∣∣)−1/n}]�−1 = T ∗(�, �, f).

Proof. This theorem also can be proved by using some inequalities of Theorem 2.2
after a simple calculation.

Remark 1: An analog of Theorem 2.4 for the Bergmann spaces for N = 1 follows
from [5] 1 ≤ q <∞ and from Theorem 2.1 for q =∞.
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