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CERTAIN NEW CLASSES OF ANALYTIC FUNCTIONS

DEFINED BY USING THE SALAGEAN OPERATOR

(DEDICATED IN OCCASION OF THE 70-YEARS OF

PROFESSOR HARI M. SRIVASTAVA)

SHU-HAI LI, HUO TANG

Abstract. New classes of analytic functions defined by using the Salagean

operator are introduced and studied. We provide coefficient inequalities, dis-

tortion theorems, extreme points and radius of close-to-convexity, starlikeness
and convexity of these classes.

1. INTRODUCTION AND DEFINITIONS

Let A denote the class of functions of the form

f(z) = z +
∑∞
j=2 ajz

j , (1.1)

which are analytic in the open unit disc U = {z : ∣z∣ < 1}.

Let A+ denote the class of functions of the form

f(z) = z +
∑∞
j=2 ajz

j (aj ≥ 0), (1.2)

which are analytic in U.

We denote by S∗(A,B) and K(A,B) (−1 ≤ B < A ≤ 1) the subclasses of
starlike functions and the subclasses of convex functions, respectively, that is (see,
for details, [1] and [2])

S∗(A,B) =
{
f(z) ∈ A : zf

′(z)
f(z) ≺

1+Az
1+Bz (z ∈ U;−1 ≤ B < A ≤ 1)

}
and

K(A,B) =
{
f(z) ∈ A : 1 + zf ′′(z)

f ′(z) ≺
1+Az
1+Bz (z ∈ U;−1 ≤ B < A ≤ 1)

}
.
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Clearly, we have

f(z) ∈ K(A,B)⇐⇒ zf ′(z) ∈ S∗(A,B).

A function f(z) ∈ A is said to be in the class of uniformly convex functions,
denoted by UK (see [3-5]) if

Re
(

1 + zf ′′(z)
f ′(z)

)
>
∣∣∣ zf ′′(z)f ′(z)

∣∣∣ (1.3)

and is said to be in a corresponding class denoted by US if

Re
(
zf ′(z)
f(z)

)
>
∣∣∣ zf ′(z)f(z) − 1

∣∣∣ . (1.4)

A function f(z) ∈ A is said to be in the class of �-uniformly convex functions of
order �, denoted by UK(�, �) (see [6]) if

Re
(

1 + zf ′′(z)
f ′(z)

)
> �

∣∣∣ zf ′′(z)f ′(z)

∣∣∣+ � (� ≥ 0; 0 ≤ � < 1) (1.5)

and is said to be in a corresponding class denoted by US(�, �) if

Re
(
zf ′(z)
f(z)

)
> �

∣∣∣ zf ′(z)f(z) − 1
∣∣∣+ � (� ≥ 0; 0 ≤ � < 1). (1.6)

It is obvious that f(z) ∈ UK(�, �) if and only if zf ′(z) ∈ US(�, �) (see [6]). The
properties of various subclasses of functions UK(�, �) and US(�, �) were studied
in [7].

For f(z) ∈ A, Salagean [8] introduced the following operator which is called the
Salagean operator:

D0f(z) = f(z), D1f(z) = zf ′(z), ⋅ ⋅ ⋅ , Dnf(z) = D(Dn−1f(z)) (n ∈ N = {1, 2, ⋅ ⋅ ⋅ }).
We note that

Dnf(z) = z +
∑∞
j=2 j

najz
j (n ∈ N0 = N ∪ {0}). (1.7)

Let Um,n(�,A,B) denote the subclass of A consisting of functions f(z) which
satisfy the following inequality:

Dmf(z)
Dnf(z) − �

∣∣∣Dmf(z)
Dnf(z) − 1

∣∣∣ ≺ 1+Az
1+Bz (� ≥ 0,−1 ≤ B < A ≤ 1,m ∈ N,n ∈ N0).

(1.8)
Also let Vsm,n(�,A,B) (s ∈ N0) be the subclass of A consisting of functions f(z)

which satisfy the following condition:

f(z) ∈ Vsm,n(�,A,B)⇐⇒ Dsf(z) ∈ Um,n(�,A,B). (1.9)

For s = 0, it is easy to see that

V0
m,n(�,A,B) = Um,n(�,A,B).

When m = 1, n = 0 and m = 2, n = 1 of inequality (1.8), respectively, we get
two classes of functions

US(�,A,B) =
{
f(z) ∈ A : zf

′(z)
f(z) − �

∣∣∣ zf ′(z)f(z) − 1
∣∣∣ ≺ 1+Az

1+Bz , � ≥ 0,−1 ≤ B < A ≤ 1
}

and
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UK(�,A,B) =
{
f(z) ∈ A : 1 + zf ′′(z)

f ′(z) − �
∣∣∣ zf ′′(z)f ′(z)

∣∣∣ ≺ 1+Az
1+Bz , � ≥ 0,−1 ≤ B < A ≤ 1

}
.

It is clear from two of the above definitions that

f(z) ∈ UK(�,A,B)⇐⇒ zf ′(z) ∈ US(�,A,B),

US(1, 1,−1) = US, UK(1, 1,−1) = UK.
By specializing the parameters �,A,B,m and n involved in the class Um,n(�,A,B),

we also obtain the following subclasses which were studied in many earlier works:

(1) U1,0(�, 1− 2�,−1) = US(�, �) and U2,1(�, 1− 2�,−1) = UK(�, �) ( see[6] ).

(2) Un+1,n(�, 1− 2�,−1) = USn(�, �) ( see[9], [10] ).

(3) Um,n(�, 1− 2�,−1) = Um,n(�, �) and Vsm,n(�, 1− 2�,−1) = Vsm,n(�, �)

(0 ≤ �, 0 ≤ � < 1)( see[11], [12] ).

Let

ŨS(�,A,B) = A+ ∩ US(�,A,B); ŨK(�,A,B) = A+ ∩ UK(�,A,B);

Ũm,n(�,A,B) = A+ ∩ Um,n(�,A,B); Ṽsm,n(�,A,B) = A+ ∩ Vs,+m,n(�,A,B).

Then we obtain contain relations and the close properties of integral operators.
This paper mainly studies the classes Um,n(�,A,B) and Vsm,n(�,A,B). We provide
coefficient inequalities, distortion inequalities, extreme points and radius of close-
to-convexity, starlikeness and convexity for the above classes.

2. COEFFICIENT INEQUALITIES FOR CLASSES Um,n(�,A,B) AND
Vsm,n(�,A,B)

Theorem 1. If f(z) ∈ A satisfies∑∞
j=2 �(m,n, j, �,A,B)∣aj ∣ ≤ A−B (2.1)

where

�(m,n, j, �,A,B) = (1 + 2�)∣jm − jn∣+ ∣Bjm −Ajn∣ (2.2)

for some � ≥ 0,−1 ≤ B < A ≤ 1,m ∈ N,n ∈ N0 = N ∪ {0}, then f(z) ∈
Um,n(�,A,B).

Proof. Suppose that (2.1) is true for � ≥ 0,−1 ≤ B < A ≤ 1,m ∈ N,n ∈ N0.
For f(z) ∈ A, let us define the function p(z) by

p(z) =
Dmf(z)

Dnf(z)
− �

∣∣∣∣Dmf(z)

Dnf(z)
− 1

∣∣∣∣ .
It suffices to show that ∣∣∣∣ p(z)− 1

A−Bp(z)

∣∣∣∣ < 1 (z ∈ U).

We note that∣∣∣∣ p(z)− 1

A−Bp(z)

∣∣∣∣ =

∣∣∣∣ Dmf(z)− �ei�∣Dmf(z)−Dnf(z)∣ −Dnf(z)

ADnf(z)−B(Dmf(z)− �ei�∣Dmf(z)−Dnf(z)∣)

∣∣∣∣
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=

∣∣∣∣ (Dmf(z)−Dnf(z))− �ei�∣Dmf(z)−Dnf(z)∣
(A−B)Dnf(z)−B((Dmf(z)−Dnf(z))− �ei�∣Dmf(z)−Dnf(z)∣)

∣∣∣∣
=

∣∣∣∣∣
∑∞
j=2(jm − jn)ajz

j−1 − �ei�∣
∑∞
j=2(jm − jn)ajz

j−1∣
(A−B)−

∑∞
j=2(Bjm −Ajn)ajzj−1 − �ei�∣

∑∞
j=2(jm − jn)ajzj−1∣)

∣∣∣∣∣
≤

∑∞
j=2 ∣jm − jn∣∣aj ∣∣z∣j−1 + �∣e∣i�

∑∞
j=2 ∣jm − jn∣∣aj ∣∣z∣j−1

(A−B)−
∑∞
j=2 ∣Bjm −Ajn∣∣aj ∣∣z∣j−1 − �∣e∣i�

∑∞
j=2 ∣jm − jn∣∣aj ∣∣z∣j−1

≤
∑∞
j=2 ∣jm − jn∣∣aj ∣+ �

∑∞
j=2 ∣jm − jn∣∣aj ∣

(A−B)−
∑∞
j=2 ∣Bjm −Ajn∣∣aj ∣ − �

∑∞
j=2 ∣jm − jn∣∣aj ∣

.

The last expression is bounded above by 1, if

∞∑
j=2

∣jm−jn∣∣aj ∣+�
∞∑
j=2

∣jm−jn∣∣aj ∣ ≤ (A−B)−
∞∑
j=2

∣Bjm−Ajn∣∣aj ∣−�
∞∑
j=2

∣jm−jn∣∣aj ∣

which is equivalent to the condition (2.1). This completes the proof of Theorem 1.

Corollary 1. If f(z) ∈ A satisfies∑∞
j=2 �(1, 0, j, �,A,B)∣aj ∣ ≤ A−B

where

�(1, 0, j, �,A,B) = (1 + 2�)(j − 1) + ∣Bj −A∣
for some � ≥ 0,−1 ≤ B < A ≤ 1, then f(z) ∈ US(�,A,B).

Corollary 2. If f(z) ∈ A satisfies∑∞
j=2 �(2, 1, j, �,A,B)∣aj ∣ ≤ A−B

where

�(2, 1, j, �,A,B) = (1 + 2�)j(j − 1) + j∣Bj −A∣
for some � ≥ 0,−1 ≤ B < A ≤ 1, then f(z) ∈ UK(�,A,B).

By using Theorem 1, we have
Theorem 2. If f(z) ∈ A satisfies∑∞

j=2 j
s�(m,n, j, �,A,B)∣aj ∣ ≤ A−B

where �(m,n, j, �,A,B) is defined by (2.2) for some � ≥ 0,−1 ≤ B < A ≤ 1,m ∈
N,n ∈ N0, then f(z) ∈ Vsm,n(�,A,B).

Proof. From (1.7), Replacing aj by jsaj in Theorem 1, we have Theorem 2.

Example 1. The function f(z) given by

f(z) = z +

∞∑
j=2

(A−B)(2 + �)"j
(j + �)(j + 1 + �)�(m,n, j, �,A,B)

zj = z +

∞∑
j=2

Ajz
j



66 SHU-HAI LI, HUO TANG

with

Aj =
(A−B)(2 + �)"j

(j + �)(j + 1 + �)�(m,n, j, �,A,B)

belongs to the class Um,n(�,A,B) for � > −2, � ≥ 0,−1 ≤ B < A ≤ 1, "j ∈ ℂ and
∣"j ∣ = 1. Because, we know that

∞∑
j=2

�(m,n, j, �,A,B)∣Aj ∣ ≤
∞∑
j=2

(A−B)(2 + �)

(j + �)(j + 1 + �)

=

∞∑
j=2

(A−B)(2 + �)

∞∑
j=2

(
1

j + �
− 1

j + 1 + �
) = A−B.

Example 2. The function f(z) given by

f(z) = z +

∞∑
j=2

(A−B)(2 + �)"j
js(j + �)(j + 1 + �)�(m,n, j, �,A,B)

zj = z +

∞∑
j=2

Bjz
j

with

Bj =
(A−B)(2 + �)"j

js(j + �)(j + 1 + �)�(m,n, j, �,A,B)

belongs to the class Vsm,n(�,A,B) for � > −2, � ≥ 0,−1 ≤ B < A ≤ 1, "j ∈ ℂ and
∣"j ∣ = 1. Because, we know that

∞∑
j=2

js�(m,n, j, �,A,B)∣Bj ∣ ≤
∞∑
j=2

(A−B)(2 + �)

(j + �)(j + 1 + �)
= A−B.

Theorem 3. If f(z) ∈ Um,n(�,A,B), then for ∣z∣ = r < 1

1− (A−B)r −ABr2

1−B2r2
≤ Re

{
Dmf(z)

Dnf(z)
− �

∣∣∣∣Dmf(z)

Dnf(z)
− 1

∣∣∣∣}
≤ 1 + (A−B)r −ABr2

1−B2r2
, B ∕= 0, (2.4)

1−Ar ≤ Re

{
Dmf(z)

Dnf(z)
− �

∣∣∣∣Dmf(z)

Dnf(z)
− 1

∣∣∣∣} ≤ 1 +Ar, B = 0. (2.5)

Proof. Janowski [13] proved that if

p(z) ≺ 1 +Az

1 +Bz
, ∣z∣ = r < 1,

then ∣∣∣∣p(z)− 1−ABr2

1−B2r2

∣∣∣∣ < (A−B)r

1−B2r2
, B ∕= 0, (2.6)

∣p(z)− 1∣ < Ar, B = 0. (2.7)
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Using the definition of the class Um,n(�,A,B), the inequality (2.6) and (2.7) can
be rewritten in the form∣∣∣∣Dmf(z)

Dnf(z)
− �

∣∣∣∣Dmf(z)

Dnf(z)
− 1

∣∣∣∣− 1−ABr2

1−B2r2

∣∣∣∣ < (A−B)r

1−B2r2
, B ∕= 0, (2.8)∣∣∣∣Dmf(z)

Dnf(z)
− �

∣∣∣∣Dmf(z)

Dnf(z)
− 1

∣∣∣∣− 1

∣∣∣∣ < Ar, B = 0. (2.9)

From (2.8) and (2.9), we get (2.4) and (2.5) of Theorem 3.

Theorem 4 below follows easily from Theorem 3.
Theorem 4. If f(z) ∈ Vsm,n(�,A,B), then for ∣z∣ = r < 1

1− (A−B)r −ABr2

1−B2r2
≤ Re

{
DmDsf(z)

DnDsf(z)
− �

∣∣∣∣DmDsf(z)

DnDsf(z)
− 1

∣∣∣∣}
≤ 1 + (A−B)r −ABr2

1−B2r2
, B ∕= 0, (2.10)

1−Ar ≤ Re

{
DmDsf(z)

DnDsf(z)
− �

∣∣∣∣DmDsf(z)

DnDsf(z)
− 1

∣∣∣∣} ≤ 1 +Ar, B = 0. (2.11)

Corollary 3. If f(z) ∈ US(�,A,B), then for ∣z∣ = r < 1

1− (A−B)r −ABr2

1−B2r2
≤ Re

{
zf ′(z)

f(z)
− �

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣} ≤ 1 + (A−B)r −ABr2

1−B2r2
, B ∕= 0,

1−Ar ≤ Re

{
zf ′(z)

f(z)
− �

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣} ≤ 1 +Ar, B = 0.

Corollary 4. If f(z) ∈ UK(�,A,B), then for ∣z∣ = r < 1

1− (A−B)r −ABr2

1−B2r2
≤ Re

{
1 +

zf ′′(z)

f ′(z)
− �

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣} ≤ 1 + (A−B)r −ABr2

1−B2r2
, B ∕= 0,

1−Ar ≤ Re

{
1 +

zf ′′(z)

f ′(z)
− �

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣} ≤ 1 +Ar, B = 0.

3. DISTORTION INEQUALITIES

Lemma 1. If f(z) ∈ Ũm,n(�,A,B), then we have

∞∑
j=p+1

aj ≤
(A−B)−

∑p
j=2 �(m,n, j, �,A,B)aj

�(m,n, p+ 1, �,A,B)
, (3.1)

where �(m,n, j, �,A,B) is defined by (2.2).

Proof. In view of Theorem 1, we can write
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∞∑
j=p+1

�(m,n, j, �,A,B)aj ≤ (A−B)−
p∑
j=2

�(m,n, j, �,A,B)aj . (3.2)

Clearly, �(m,n, j, �,A,B) is an increasing function for j. Then from (2.2) and
(3.2), we have

�(m,n, p+ 1, �,A,B)

∞∑
j=p+1

aj ≤ (A−B)−
p∑
j=2

�(m,n, j, �,A,B)aj .

Thus, we obtain

∞∑
j=p+1

aj ≤
(A−B)−

∑p
j=2 �(m,n, j, �,A,B)aj

�(m,n, p+ 1, �,A,B)
= Aj .

Lemma 2. If f(z) ∈ Ũm,n(�,A,B), then

∞∑
j=p+1

jaj ≤
(A−B)−

∑p
j=2 �(m,n, j, �,A,B)aj

�(m− 1, n− 1, p+ 1, �,A,B)
= Bj , (3.3)

where �(m,n, j, �,A,B) is defined by (2.2).

Corollary 5. If f(z) ∈ Ṽsm,n(�,A,B), then

∞∑
j=p+1

aj ≤
(A−B)−

∑p
j=2 j

s�(m,n, j, �,A,B)aj

(p+ 1)s�(m,n, p+ 1, �,A,B)
= Cj (3.4)

and
∞∑

j=p+1

jaj ≤
(A−B)−

∑p
j=2 j

s�(m,n, j, �,A,B)aj

(p+ 1)s�(m− 1, n− 1, p+ 1, �,A,B)
= Dj . (3.5)

Theorem 5. Let f(z) ∈ Ũm,n(�,A,B). Then for ∣z∣ = r < 1

r −
p∑
j=2

aj ∣z∣j −Ajrp+1 ≤ ∣f(z)∣ ≤ r +

p∑
j=2

aj ∣z∣j +Ajr
p+1 (3.6)

and

1−
p∑
j=2

jaj ∣z∣j−1 −Bjrp ≤ ∣f ′(z)∣ ≤ 1 +

p∑
j=2

jaj ∣z∣j−1 +Bjr
p (3.7)

where Aj and Bj are given by Lemma 1 and Lemma 2.
Proof. Let f(z) given by (1.2). For ∣z∣ = r < 1, using Lemma 1, we have

∣f(z)∣ ≤ ∣z∣+
p∑
j=2

aj ∣z∣j +

∞∑
j=p+1

aj ∣z∣j ≤ ∣z∣+
p∑
j=2

aj ∣z∣j + ∣z∣p+1
∞∑

j=p+1

aj
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≤ r +

p∑
j=2

aj ∣z∣j +Ajr
p+1

and

∣f(z)∣ ≥ ∣z∣ −
p∑
j=2

aj ∣z∣j −
∞∑

j=p+1

aj ∣z∣j ≥ ∣z∣ −
p∑
j=2

aj ∣z∣j − ∣z∣p+1
∞∑

j=p+1

aj

≥ r −
p∑
j=2

aj ∣z∣j −Ajrp+1.

Furthermore, for ∣z∣ = r < 1, using Lemma 2, we also obtain

∣f ′(z)∣ ≤ 1 +

p∑
j=2

jaj ∣z∣j−1 +

∞∑
j=p+1

jaj ∣z∣j−1 ≤ 1 +

p∑
j=2

jaj ∣z∣j−1 + ∣z∣p
∞∑

j=p+1

jaj

≤ 1 +

p∑
j=2

jaj ∣z∣j−1 +Bjr
p

and

∣f ′(z)∣ ≥ 1−
p∑
j=2

jaj ∣z∣j−1 −
∞∑

j=p+1

jaj ∣z∣j−1 ≥ 1−
p∑
j=2

jaj ∣z∣j−1 − ∣z∣p
∞∑

j=p+1

jaj

≥ 1−
p∑
j=2

jaj ∣z∣j−1 −Bjrp.

This completes the assertion of Theorem 5.
Theorem 6. Let f(z) ∈ Ṽsm,n(�,A,B). Then for ∣z∣ = r < 1

r −
p∑
j=2

aj ∣z∣j − Cjrp+1 ≤ ∣f(z)∣ ≤ r +

p∑
j=2

aj ∣z∣j + Cjr
p+1 (3.8)

and

1−
p∑
j=2

jaj ∣z∣j−1 −Djr
p ≤ ∣f ′(z)∣ ≤ 1 +

p∑
j=2

jaj ∣z∣j−1 +Djr
p (3.9)

where Cj and Dj are given by Corollary 5.

Proof. Using a similar method to that in the proof of Theorem 5 and making
use Corollary 5, we get our result.

Taking p = 1 in Theorem 5 and Theorem6, we have
Corollary 6. Let f(z) ∈ Ũm,n(�,A,B). Then for ∣z∣ = r < 1

r − A−B
�(m,n, 2, �,A,B)

r2 ≤ ∣f(z)∣ ≤ r +
A−B

�(m,n, 2, �,A,B)
r2
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and

1− 2(A−B)

�(m,n, 2, �,A,B)
r ≤ ∣f ′(z)∣ ≤ 1 +

2(A−B)

�(m,n, 2, �,A,B)
r.

Corollary 7. Let f(z) ∈ Ṽsm,n(�,A,B). Then for ∣z∣ = r < 1

r − A−B
2s�(m,n, 2, �,A,B)

r2 ≤ ∣f(z)∣ ≤ r +
A−B

2s�(m,n, 2, �,A,B)
r2

and

1− A−B
2s−1�(m,n, 2, �,A,B)

r ≤ ∣f ′(z)∣ ≤ 1 +
A−B

2s−1�(m,n, 2, �,A,B)
r.

Taking p = 1,m = 1 and n = 0 in Theorem 5 and Theorem 6, we also have
Corollary 8. Let f(z) ∈ ŨS(�,A,B). Then for ∣z∣ = r < 1

r − A−B
�(1, 0, 2, �,A,B)

r2 ≤ ∣f(z)∣ ≤ r +
A−B

�(1, 0, 2, �,A,B)
r2

and

1− 2(A−B)

�(1, 0, 2, �,A,B)
r ≤ ∣f ′(z)∣ ≤ 1 +

2(A−B)

�(1, 0, 2, �,A,B)
r.

Corollary 9. Let f(z) ∈ ŨK(�,A,B). Then for ∣z∣ = r < 1

r − A−B
�(2, 1, 2, �,A,B)

r2 ≤ ∣f(z)∣ ≤ r +
A−B

�(2, 1, 2, �,A,B)
r2

and

1− 2(A−B)

�(2, 1, 2, �,A,B)
r ≤ ∣f ′(z)∣ ≤ 1 +

2(A−B)

�(2, 1, 2, �,A,B)
r.

4. EXTREME POINTS

The determination of the extreme points of a family f(z) of univalent functions
enables us to solve many extreme problems for f(z). Now, let us determine extreme

points of the classes Ũm,n(�,A,B) and Ṽsm,n(�,A,B).

Theorem 7. Let f1(z) = z and

fj(z) = z +
A−B

�(m,n, j, �,A,B)
zj (j = 2, 3, ⋅ ⋅ ⋅ ),

where �(m,n, j, �,A,B) is defined by (2.2). Then f(z) ∈ Ũm,n(�,A,B) if and only
if it can be expressed in the form
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f(z) =

∞∑
j=1

�jfj(z), (4.1)

where �j > 0 and
∑∞
j=1 �j = 1.

Proof. Suppose that

f(z) =

∞∑
j=1

�jfj(z) = z +

∞∑
j=1

�j
A−B

�(m,n, j, �,A,B)
zj .

Then
∞∑
j=2

�(m,n, j, �,A,B)
A−B

�(m,n, j, �,A,B)
�j =

∞∑
j=2

(A−B)�j = (A−B)(1−�1) < A−B.

Thus, f(z) ∈ Ũm,n(�,A,B) from the definition of the class of f(z) ∈ Ũm,n(�,A,B).

Conversely, suppose that f(z) ∈ Ũm,n(�,A,B). Since

aj ≤
A−B

�(m,n, j, �,A,B)
(j = 2, 3, ⋅ ⋅ ⋅ ),

we may set

�j =
�(m,n, j, �,A,B)

A−B
aj (j = 2, 3, ⋅ ⋅ ⋅ )

and

�1 = 1−
∞∑
j=2

�j .

Then

f(z) =

∞∑
j=1

�jfj(z).

This completes the proof of Theorem 7.

Corollary 10. Let g1(z) = z and

gj(z) = z +
A−B

js�(m,n, j, �,A,B)
zj (j = 2, 3, ⋅ ⋅ ⋅ ).

Then g(z) ∈ Ṽsm,n(�,A,B) if and only if it can be expressed in the form

g(z) =

∞∑
j=1

�jgj(z),

where �j > 0 and
∑∞
j=1 �j = 1.

Corollary 11. The extreme points of Ũm,n(�,A,B) are the functions f1(z) = z
and

fj(z) = z +
A−B

�(m,n, j, �,A,B)
zj (j = 2, 3, ⋅ ⋅ ⋅ ).
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Corollary 12. The extreme points of Ṽsm,n(�,A,B) are the functions g1(z) = z
and

gj(z) = z +
A−B

js�(m,n, j, �,A,B)
zj (j = 2, 3, ⋅ ⋅ ⋅ ).

Corollary 13. The extreme points of ŨS(�,A,B) are the functions f1(z) = z
and

fj(z) = z +
A−B

�(1, 0, j, �,A,B)
zj (j = 2, 3, ⋅ ⋅ ⋅ ).

Corollary 14. The extreme points of ŨK(�,A,B) are the functions f1(z) = z
and

fj(z) = z +
A−B

�(2, 1, j, �,A,B)
zj (j = 2, 3, ⋅ ⋅ ⋅ ).

5. RADIUS OF CLOSE-TO-CONVEXITY, STARLIKENESS AND
CONVEXITY

We concentrate upon getting the radius of close-to-convexity, starlikeness and
convexity.

Theorem 8. Let the function f(z) defined by (1.1) be in the class Um,n(�,A,B).
Then f(z) is close-to-convex of �(0 ≤ � < 1) in ∣z∣ < r�(m,n, j, �,A,B) where

r�(m,n, j, �,A,B) = inf
j
{ (1− �)�(m,n, j, �,A,B)

j(A−B)
}

1
j−1 (j ≥ 2) (5.1)

and �(m,n, j, �,A,B) is defined by (2.2).
Proof. We must show that ∣f ′(z)− 1∣ < 1− � for ∣z∣ < r�(m,n, j, �,A,B). We

have

∣f ′(z)− 1∣ ≤
∞∑
j=2

j∣aj ∣∣z∣j−1.

Thus ∣f ′(z)− 1∣ < 1− � if

∞∑
j=2

(
j

1− �
)∣aj ∣∣z∣j−1 ≤ 1. (5.2)

By Theorem 1, we have

∞∑
j=2

(1− �)�(m,n, j, �,A,B)

A−B
∣aj ∣ ≤ 1. (5.3)

Hence (5.2) will be true if
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j∣z∣j−1

1− �
≤ (1− �)�(m,n, j, �,A,B)

j(A−B)

Equivalently if

∣z∣ ≤ { (1− �)�(m,n, j, �,A,B)

j(A−B)
}

1
j−1 (j ≥ 2). (5.4)

The theorem follows from (5.4).

Theorem 9. Let the function f(z) defined by (1.1) be in the class Um,n(�,A,B).
Then f(z) is starlike of �(0 ≤ � < 1) in ∣z∣ < r�(m,n, j, �,A,B) where

r�(m,n, j, �,A,B) = inf
j
{ (1− �)�(m,n, j, �,A,B)

(j − �)(A−B)
}

1
j−1 (j ≥ 2) (5.5)

and �(m,n, j, �,A,B) is defined by (2.2).

Proof. It suffices to show that ∣ zf
′(z)

f(z) − 1∣ < 1− � for ∣z∣ < r�(m,n, j, �,A,B).

We have

∣zf
′(z)

f(z)
− 1∣ ≤

∑∞
j=2(j − 1)∣aj ∣∣z∣j−1

1−
∑∞
j=2 ∣aj ∣∣z∣j−1

.

Thus ∣ zf
′(z)

f(z) − 1∣ < 1− � if

∞∑
j=2

(j − 1)∣aj ∣∣z∣j−1

(1− �)
≤ 1 (5.6)

By using (5.3), (5.6), we have

(j − �)∣z∣j−1

(1− �)
≤ �(m,n, j, �,A,B)

(A−B)

or Equivalently

∣z∣ ≤ { (1− �)�(m,n, j, �,A,B)

(j − �)(A−B)
}

1
j−1 (j ≥ 2). (5.7)

Theorem 10. Let the function f(z) defined by (1.1) be in the class Um,n(�,A,B).
Then f(z) is convex of �(0 ≤ � < 1) in ∣z∣ < r�(m,n, j, �,A,B) where

r�(m,n, j, �,A,B) = inf
j
{ (1− �)�(m,n, j, �,A,B)

j(j − �)(A−B)
}

1
j−1 (j ≥ 2) (5.8)

and �(m,n, j, �,A,B) is defined by (2.2).
Proof. It suffices to show that

∣zf
′′(z)

f ′(z)
∣ < 1− � for ∣z∣ < r�(m,n, j, �,A,B). (5.9)

We have
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∣zf
′(z)

f(z)
− 1∣ = ∣

∑∞
j=2 j(j − 1)ajz

j−1

1 +
∑∞
j=2 jajz

j−1 ∣ ≤
∑∞
j=2 j(j − 1)∣aj ∣∣z∣j−1

1−
∑∞
j=2 j∣aj ∣∣z∣j−1

.

The last expression above is bounded by (1− �) if

∞∑
j=2

j(j − �)∣aj ∣∣z∣j−1

(1− �)
≤ 1. (5.10)

In view of (5.9), it follows that (5.10) is true if

j(j − �)∣z∣j−1

(1− �)
≤ �(m,n, j, �,A,B)

(A−B)

or Equivalently

∣z∣ ≤ { (1− �)�(m,n, j, �,A,B)

j(j − �)(A−B)
}

1
j−1 (j ≥ 2).

And this completes the proof.

Corollary 15. Let the function f(z) defined by (1.1) be in the class Vsm,n(�,A,B).
Then f(z) is close-to-convex of �(0 ≤ � < 1) in ∣z∣ < r�,s(m,n, j, �,A,B) where

r�,s(m,n, j, �,A,B) = inf
j
{ (1− �)js�(m,n, j, �,A,B)

j(A−B)
}

1
j−1 (j ≥ 2).

Corollary 16. Let the function f(z) defined by (1.1) be in the class Vsm,n(�,A,B).
Then f(z) is starlike of �(0 ≤ � < 1) in ∣z∣ < r�,s(m,n, j, �,A,B) where

r�,s(m,n, j, �,A,B) = inf
j
{ (1− �)js�(m,n, j, �,A,B)

(j − �)(A−B)
}

1
j−1 (j ≥ 2).

Corollary 17. Let the function f(z) defined by (1.1) be in the class Vsm,n(�,A,B).
Then f(z) is convex of �(0 ≤ � < 1) in ∣z∣ < r�,s(m,n, j, �,A,B) where

r�,s(m,n, j, �,A,B) = inf
j
{ (1− �)js�(m,n, j, �,A,B)

j(j − �)(A−B)
}

1
j−1 (j ≥ 2).

We remark in conclusion that, by suitably specializing the parameters involved
in the results presented in this paper, we can deduce numerous further corollaries
and consequences of each of these results.
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