GROWTH OF A CLASS OF ITERATED ENTIRE FUNCTIONS

(COMMUNICATED BY VICENTIU RADULESCU)

DIBYENDU BANERJEE, RATAN KUMAR DUTTA

Abstract

In this paper we generalise a result of J. Sun to n-th iterations of $f(z)$ with respect to $g(z)$.

1. Introduction and Notation

We first consider two entire functions $f(z)$ and $g(z)$ and following Lahiri and Banerjee [5] form the iterations of $f(z)$ with respect to $g(z)$ as follows:

$$
\begin{array}{rlc}
f_{1}(z) & = & f(z) \\
f_{2}(z) & = & f(g(z))=f\left(g_{1}(z)\right) \\
f_{3}(z) & = & f(g(f(z)))=f\left(g_{2}(z)\right)=f\left(g\left(f_{1}(z)\right)\right) \\
& \ldots & \ldots \\
& \ldots & \ldots \\
f_{n}(z) & = & f(g(f \ldots \ldots \ldots(f(z) \text { or } g(z)) \ldots \ldots . .)) \\
& & \text { according as } n \text { is odd or even } \\
& = & f\left(g_{n-1}(z)\right)=f\left(g\left(f_{n-2}(z)\right)\right),
\end{array}
$$

and so

$$
\begin{array}{rlc}
g_{1}(z) & = & g(z) \\
g_{2}(z) & = & g(f(z))=g\left(f_{1}(z)\right) \\
& \cdots & \cdots \\
& \cdots & \cdots \\
g_{n}(z) & = & g\left(f_{n-1}(z)\right)=g\left(f\left(g_{n-2}(z)\right)\right)
\end{array}
$$

Clearly all $f_{n}(z)$ and $g_{n}(z)$ are entire functions.
Notation 1.1. Let $f(z)$ and $g(z)$ be two entire functions. Throughout the paper we use the notations $M_{f_{1}}(r), M_{f_{2}}(r), M_{f_{3}}(r)$ etc., to mean $M(r, f), M(M(r, f), g)$,

2000 Mathematics Subject Classification. 30D35.
Key words and phrases. Entire function; growth; iteration; order.
© 2011 Universiteti i Prishtinës, Prishtinë, Kosovë.
Submitted January 10, 2011. Published January 20, 2011.
$M(M(M(r, f), g), f)$ respectively and $F(r)=O^{*}(G(r))$ to mean that there exist two positive constants K_{1} and K_{2} such that $K_{1} \leq \frac{F(r)}{G(r)} \leq K_{2}$ for any r big enough.

In [2], C. Chuang and C. C. Yang posed the question:
For four entire functions f_{1}, f_{2} and g_{1}, g_{2}, when is $T\left(r, f_{1} o g_{1}\right) \sim T\left(r, f_{2} o g_{2}\right)$ as $r \rightarrow \infty$, provided $T\left(r, f_{1}\right) \sim T\left(r, f_{2}\right)$ and $T\left(r, g_{1}\right) \sim T\left(r, g_{2}\right)$?

In 2003, Sun [7] showed that in general there is no positive answer and he gave a condition under which there is a positive answer by proving the following theorem.

Theorem A. Let f_{1}, f_{2} and g_{1}, g_{2} be four transcendental entire functions with

$$
T\left(r, f_{1}\right)=O^{*}\left((\log r)^{\nu} e^{(\log r)^{\alpha}}\right) \text { and } T\left(r, g_{1}\right)=O^{*}\left((\log r)^{\beta}\right)
$$

If $T\left(r, f_{1}\right) \sim T\left(r, f_{2}\right)$ and $T\left(r, g_{1}\right) \sim T\left(r, g_{2}\right)(r \rightarrow \infty)$, then

$$
T\left(r, f_{1}\left(g_{1}\right)\right) \sim T\left(r, f_{2}\left(g_{2}\right)\right) \quad(r \rightarrow \infty, r \notin E)
$$

where $\nu>0,0<\alpha<1, \beta>1$ and $\alpha \beta<1$ and E is a set of finite logarithmic measure.

We extend Theorem A to iterated entire functions.
Theorem 1.2. Let f, g and u, v be four transcendental entire functions with $T(r, f) \sim$ $T(r, u), T(r, g) \sim T(r, v), T(r, f)=O^{*}\left((\log r)^{\nu} e^{(\log r)^{\alpha}}\right)(0<\alpha<1, \nu>0)$ and $T(r, g)=O^{*}\left((\log r)^{\beta}\right)$ where $\beta>1$ is a constant, then $T\left(r, f_{n}\right) \sim T\left(r, u_{n}\right)$ for $n \geq 2$, where $u_{n}(z)=u(v(u(v \ldots \ldots . .(u(z)$ or $v(z)) \ldots \ldots))$.$) according as n$ is odd or even.

We do not explain the standard notations and definitions of the theory of meromorphic functions because they are available in [4].

2. Lemmas

The following lemmas will be needed in the sequel.
Lemma 2.1. 4] Let $f(z)$ be an entire function. For $0 \leq r<R<\infty$, we have

$$
T(r, f) \leq \log ^{+} M(r, f) \leq \frac{R+r}{R-r} T(R, f)
$$

Lemma 2.2. [3] Let $f(z)$ be an entire function of order $\rho(\rho<\infty)$. If $k>\rho-1$, then

$$
\log M(r, f) \sim \log M\left(r-r^{-k}, f\right) \quad(r \rightarrow \infty)
$$

Lemma 2.3. [6] Let $g(z)$ and $f(z)$ be two entire functions. Suppose that $|g(z)|>$ $R>|g(0)|$ on the circumference $\{|z|=r\}$ for some $r>0$. Then we have

$$
T(r, f(g)) \geq \frac{R-|g(0)|}{R+|g(0)|} T(R, f)
$$

Lemma 2.4. 1] Let f be an entire function of order zero and $z=r e^{i \theta}$. Then for any $\zeta>0$ and $\eta>0$, there exist $R_{0}=R_{0}(\zeta, \eta)$ and $k=k(\zeta, \eta)$ such that for all $R>R_{0}$ it holds

$$
\log \left|f\left(r e^{i \theta}\right)\right|-N(2 R)-\log |c|>-k Q(2 R), \quad \zeta R \leq r \leq R
$$

except in a set of circles enclosing the zeros of f, the sum of whose radii is at most ηR. Here

$$
Q(r)=r \int_{r}^{\infty} \frac{n(t, 1 / f)}{t^{2}} d t \quad \text { and } N(r)=\int_{0}^{r} \frac{n(t, 1 / f)}{t} d t
$$

Lemma 2.5. 7 Let f be a transcendental entire function with

$$
T(r, f)=O^{*}\left((\log r)^{\beta} e^{(\log r)^{\alpha}}\right)(0<\alpha<1, \beta>0)
$$

Then

$$
\begin{aligned}
\text { 1. } T(r, f) & \sim \log M(r, f) \quad(r \rightarrow \infty, r \notin E) \\
\text { 2. } T(\sigma r, f) & \sim T(r, f)(r \rightarrow \infty, \sigma \geq 2, r \notin E),
\end{aligned}
$$

where E is a set of finite logarithmic measure.
Lemma 2.6. Let f be a transcendental entire function with $T(r, f)=O^{*}\left((\log r)^{\beta}\right)$ where $\beta>1$. Then

$$
\begin{aligned}
\text { 1. } T(r, f) & \sim \log M(r, f) \quad(r \rightarrow \infty, r \notin E) \\
\text { 2. } T(\sigma r, f) & \sim T(r, f) \quad(r \rightarrow \infty, \sigma \geq 2, r \notin E)
\end{aligned}
$$

where E is a set of finite logarithmic measure.
Proof. Without loss of generality we may assume that $f(0)=1$, otherwise we set $F(z)=f(z)-f(0)+1$.
By Jensen's theorem,

$$
N(r, 1 / f)=\int_{0}^{r} \frac{n(t, 1 / f)}{t} d t=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| d \theta \leq \log M(r, f)
$$

and so,

$$
n(r, 1 / f) \log A \leq \int_{r}^{A r} \frac{n(t, 1 / f)}{t} d t \leq \int_{0}^{A r} \frac{n(t, 1 / f)}{t} d t \leq \log M(A r, f)
$$

for $r>1$ and $A>1$.
Therefore

$$
\begin{equation*}
n(r, 1 / f) \leq \frac{\log M(A r, f)}{\log A} \tag{2.1}
\end{equation*}
$$

Since $T(r, f)=O^{*}\left((\log r)^{\beta}\right), \beta>1$, by Lemma 2.1 we have

$$
\begin{equation*}
\log M(r, f)=O^{*}\left((\log r)^{\beta}\right) \tag{2.2}
\end{equation*}
$$

Take $A=r^{\sigma(r)}$ and $\sigma(r)=\frac{1}{(\log r)^{1 / 2}}$. Then by 2.1 we have

$$
\begin{equation*}
n(r, 1 / f) \leq \frac{\log M\left(r^{1+\sigma(r)}, f\right)}{\sigma(r) \log r} \tag{2.3}
\end{equation*}
$$

Therefore, putting $r=e^{u}$ we have

$$
\begin{align*}
\frac{\left(\log r^{1+\sigma(r)}\right)^{\beta}}{r^{1 / 2} \sigma(r) \log r} & =\frac{(1+\sigma(r))^{\beta}(\log r)^{\beta}}{r^{1 / 2} \sigma(r) \log r} \\
& =\frac{\left(1+\frac{1}{u^{1 / 2}}\right)^{\beta} u^{\beta}}{e^{u / 2} u^{-1 / 2} u} \\
& =\frac{\left(1+\frac{1}{u^{1 / 2}}\right)^{\beta}}{e^{u / 2} u^{1-1 / 2-\beta}} \\
& =\frac{\left(1+\frac{1}{u^{1 / 2}}\right)^{\beta}}{e^{u / 2} e^{(1 / 2-\beta) \log u}} \\
& =\frac{\left(1+\frac{1}{u^{1 / 2}}\right)^{\beta}}{e^{\frac{u}{2}-(\beta-1 / 2) \log u}} \tag{2.4}
\end{align*}
$$

Since $\beta>1$, for sufficiently large values of u we have $\frac{u}{2}-(\beta-1 / 2) \log u>0$ and $\frac{u}{2}-(\beta-1 / 2) \log u$ increases. By 2.4 for sufficiently large value of $r, \frac{\left(\log r^{1+\sigma(r)}\right)^{\beta}}{r^{1 / 2} \sigma(r) \log r}$ decreases.
From Lemma 2.4 using 2.2 and 2.3 , we have

$$
\begin{aligned}
Q(r) & =r \int_{r}^{\infty} \frac{n(t, 1 / f) d t}{t^{2}} \\
& \leq r \int_{r}^{\infty} \frac{\log M\left(t^{1+\sigma(t)}, f\right)}{t^{2} \sigma(t) \log t} d t \\
& =r \int_{r}^{\infty} \frac{O^{*}\left(\left(\log t^{1+\sigma(t)}\right)^{\beta}\right)}{t^{2} \sigma(t) \log t} d t \\
& \leq O^{*}\left(r \int_{r}^{\infty} \frac{\left(\log t^{1+\sigma(t)}\right)^{\beta}}{t^{2} \sigma(t) \log t} d t\right) \\
& \leq \frac{r^{1 / 2} O^{*}\left(\left(\log r^{\left.1+\sigma(r))^{\beta}\right)}\right.\right.}{\sigma(r) \log r} \int_{r}^{\infty} t^{-3 / 2} d t \\
& =\frac{2 O^{*}\left(\left(\log r^{1+\sigma(r)}\right)^{\beta}\right)}{\sigma(r) \log r} \\
& =\frac{2 \log M\left(r^{1+\sigma(r)}, f\right)}{\sigma(r) \log r}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{Q(r)}{\log M(r, f)} & \leq \frac{2 \log M\left(r^{1+\sigma(r)}, f\right)}{\sigma(r) \log r \log M(r, f)} \\
& \leq \frac{2 K_{2}\left(\log r^{1+\sigma(r)}\right)^{\beta}}{\sigma(r) \log r K_{1}(\log r)^{\beta}}, \quad \text { for some suitable constants } K_{1} \text { and } K_{2} \\
& =\frac{2 K_{2}}{K_{1}} \frac{(1+\sigma(r))^{\beta}(\log r)^{\beta}}{\sigma(r) \log r(\log r)^{\beta}} \\
& =\frac{2 K_{2}}{K_{1}} \frac{(1+\sigma(r))^{\beta}}{\sigma(r) \log r} \\
& \rightarrow 0 \text { as } r \rightarrow \infty
\end{aligned}
$$

So

$$
\begin{equation*}
Q(r)=o(\log M(r, f)) \tag{2.5}
\end{equation*}
$$

Since $T(r, f)=O^{*}\left((\log r)^{\beta}\right), n(r, 1 / f)=o(r)$.
The concluding part of the proof of the lemma is similar to that of Lemma 5 of J. Sun [7. But still for the sake of completeness and for convenience of readers, we outline the proof.

$$
\begin{align*}
\log M(r, f) & \leq \log \Pi_{n=1}^{\infty}\left(1+r / r_{n}\right) \\
& =\int_{0}^{\infty} \log (1+r / t) d n(t, 1 / f) \\
& \leq \int_{0}^{\infty} \frac{r}{t} d n(t, 1 / f) \\
& =r \int_{0}^{\infty} \frac{n(t, 1 / f)}{t(t+r)} d t \\
& =r\left(\int_{0}^{r}+\int_{r}^{\infty}\right) \frac{n(t, 1 / f)}{t(t+r)} d t \\
& \leq r \cdot \frac{1}{r} \int_{0}^{r} \frac{n(t, 1 / f)}{t} d t+r \int_{r}^{\infty} \frac{n(t, 1 / f)}{t^{2}} d t \\
& =N(r)+Q(r) \tag{2.6}
\end{align*}
$$

So, from Lemma 2.4 and (2.5, 2.6) we have

$$
\begin{align*}
\log \left|f\left(r e^{i \theta}\right)\right| & >N(2 R)-k Q(2 R) \quad(\zeta R \leq r \leq R, r \notin E) \\
& =N(2 R)+Q(2 R)-(k+1) Q(2 R) \\
& \geq \log M(2 R, f)+(k+1) o(\log M(2 R, f)) \\
& =\log M(2 R, f)(1-o(1)) \tag{2.7}\\
& \geq \log M(r, f)(1-o(1)) \tag{2.8}
\end{align*}
$$

where E is a set of finite logarithmic measure.
On the other hand

$$
\begin{equation*}
\log |f(z)| \leq \log M(r, f) \leq \log M(\sigma r, f) \quad(|z|=r, \sigma \geq 2,) \tag{2.9}
\end{equation*}
$$

Let $2 R=\sigma r, \sigma \geq 2$ then from (2.7), 2.8) and 2.9 we have,

$$
\begin{equation*}
\log |f(z)| \sim \log M(\sigma r, f) \quad(r \rightarrow \infty, \sigma \geq 2, r \notin E) \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\log |f(z)| \sim \log M(r, f) \quad(r \rightarrow \infty, r \notin E) \tag{2.11}
\end{equation*}
$$

From 2.11 for sufficiently large value of r, we have,

$$
\begin{aligned}
m(r, f) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log M(r, f)(1+o(1)) d \theta \\
& =\log M(r, f)(1+o(1)) \quad(r \rightarrow \infty, r \notin E)
\end{aligned}
$$

So,

$$
\lim _{r \rightarrow \infty} \frac{T(r, f)}{\log M(r, f)}=1, \quad(r \notin E)
$$

i.e.

$$
\begin{equation*}
T(r, f) \sim \log M(r, f),(r \notin E) \tag{2.12}
\end{equation*}
$$

From 2.10 and 2.11 we have

$$
\begin{equation*}
\log M(r, f) \sim \log M(\sigma r, f) \quad(r \rightarrow \infty, \sigma \geq 2, r \notin E) \tag{2.13}
\end{equation*}
$$

From 2.12 and 2.13 we have

$$
\begin{equation*}
T(\sigma r, f) \sim T(r, f) \quad(r \rightarrow \infty, \sigma \geq 2, r \notin E) \tag{2.14}
\end{equation*}
$$

From (2.12) and (2.14) we have the required result.
This proves the lemma.
Lemma 2.7. Let f_{1} and f_{2} be two entire functions with $T\left(r, f_{1}\right)=O^{*}\left((\log r)^{\beta}\right)$ where $\beta>1$ and $T\left(r, f_{1}\right) \sim T\left(r, f_{2}\right)$ then $M\left(r, f_{1}\right) \sim M\left(r, f_{2}\right)$.
Proof. From Lemma 2.6 we have,

$$
\log M\left(r, f_{1}\right) \sim T\left(r, f_{1}\right) \sim T\left(r, f_{2}\right) \sim \log M\left(r, f_{2}\right) \quad(r \rightarrow \infty, r \notin E)
$$

where E is a set of finite logarithmic measure.
Since $\log M\left(r, f_{1}\right) \sim \log M\left(r, f_{2}\right)$, so for given $\epsilon>0$, there exist $r_{1}, r_{2}>0$ such that

$$
\begin{equation*}
\frac{\log M\left(r, f_{1}\right)}{\log M\left(r, f_{2}\right)}<1+\frac{\log (1+\epsilon)}{\log M\left(r, f_{2}\right)} \text { for } r>r_{1} \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\log M\left(r, f_{2}\right)}{\log M\left(r, f_{1}\right)}<1+\frac{\log (1+\epsilon)}{\log M\left(r, f_{1}\right)} \text { for } r>r_{2} \tag{2.16}
\end{equation*}
$$

Now from 2.15 we have

$$
\begin{align*}
\log M\left(r, f_{1}\right) & <\log M\left(r, f_{2}\right)+\log (1+\epsilon) . \\
\text { So, } \quad \frac{M\left(r, f_{1}\right)}{M\left(r, f_{2}\right)} & <1+\epsilon \text { for } r>r_{1} \tag{2.17}
\end{align*}
$$

Similarly from 2.16

$$
\begin{align*}
& \frac{M\left(r, f_{2}\right)}{M\left(r, f_{1}\right)}<1+\epsilon \text { for } r>r_{2} \\
\text { i.e. } & \frac{M\left(r, f_{1}\right)}{M\left(r, f_{2}\right)}>1-\epsilon \text { for } r>r_{2} \tag{2.18}
\end{align*}
$$

From (2.17) and 2.18 we have

$$
\begin{aligned}
1-\epsilon & <\frac{M\left(r, f_{1}\right)}{M\left(r, f_{2}\right)}<1+\epsilon \text { for } r>r_{0}=\max \left\{r_{1}, r_{2}\right\} . \\
\text { So, } M\left(r, f_{1}\right) & \sim M\left(r, f_{2}\right)
\end{aligned}
$$

This proves the lemma.
Lemma 2.8. Let f_{1} and f_{2} be two entire functions with $T\left(r, f_{1}\right)=O^{*}\left((\log r)^{\nu} e^{(\log r)^{\alpha}}\right)$ where $\nu>0$ and $0<\alpha<1$ and $T\left(r, f_{1}\right) \sim T\left(r, f_{2}\right)$ then $M\left(r, f_{1}\right) \sim M\left(r, f_{2}\right)$.

Proof. From Lemma 2.5 we have,

$$
\log M\left(r, f_{1}\right) \sim T\left(r, f_{1}\right) \sim T\left(r, f_{2}\right) \sim \log M\left(r, f_{2}\right) \quad(r \rightarrow \infty, r \notin E)
$$

where E is a set of finite logarithmic measure and concluding part follows from Lemma 2.7

3. Theorems

In [6] K. Niino and N. Suita proved the following theorem.
Theorem 3.1. Let $f(z)$ and $g(z)$ be entire functions. If $M(r, g)>\frac{2+\epsilon}{\epsilon}|g(0)|$ for any $\epsilon>0$, then we have

$$
T(r, f(g)) \leq(1+\epsilon) T(M(r, g), f)
$$

In particular, if $g(0)=0$, then

$$
T(r, f(g)) \leq T(M(r, g), f)
$$

for all $r>0$.
The following theorem is the generalization of the above.
Theorem 3.2. Let $f(z)$ and $g(z)$ be two entire functions. Then we have

$$
\begin{equation*}
T\left(R_{2}, f\right) \leq T\left(r, f_{n}\right) \leq T\left(R_{3}, f\right) \tag{3.1}
\end{equation*}
$$

where $|f(z)|>R_{1}>\frac{2+\epsilon}{\epsilon}|f(0)|$ and $|g(z)|>R_{2}>\frac{2+\epsilon}{\epsilon}|g(0)|, R_{3}=\max \left\{M_{f_{n-1}}(r), M_{g_{n-1}}(r)\right\}$ for sufficiently large values of r and any integer $n \geq 2$.
Proof. By Theorem 3.1 we have for odd n and any $\epsilon>0$ arbitrary small

$$
\begin{aligned}
T\left(r, f_{n}\right) & =T\left(r, f_{n-1}(f)\right) \\
& \leq(1+\epsilon) T\left(M(r, f), f_{n-1}\right) \\
& =(1+\epsilon) T\left(M_{f_{1}}(r), f_{n-2}(g)\right) \\
& \leq(1+\epsilon)^{2} T\left(M_{f_{2}}(r), f_{n-2}\right) \\
& =(1+\epsilon)^{2} T\left(M_{f_{2}}(r), f_{n-3}(f)\right) \\
& \leq(1+\epsilon)^{3} T\left(M_{f_{3}}(r), f_{n-3}\right) \\
& \cdots \\
& \cdots \\
& \leq(1+\epsilon)^{n-1} T\left(M_{f_{n-1}}(r), f\right) \\
& \leq(1+\epsilon)^{n-1} T\left(R_{3,} f\right) .
\end{aligned}
$$

Similarly when n is even, we have

$$
\begin{array}{rlc}
T\left(r, f_{n}\right) & =T\left(r, f_{n-1}(g)\right) \\
& \leq(1+\epsilon) T\left(M(r, g), f_{n-1}\right) \\
& =(1+\epsilon) T\left(M_{g_{1}}(r), f_{n-2}(f)\right) \\
& \leq & (1+\epsilon)^{2} T\left(M_{g_{2}}(r), f_{n-2}\right) \\
& \cdots & \cdots \\
& \cdots & \cdots \\
& \leq & (1+\epsilon)^{n-1} T\left(M_{g_{n-1}}(r), f\right) \\
& \leq(1+\epsilon)^{n-1} T\left(R_{3,} f\right)
\end{array}
$$

Therefore

$$
T\left(r, f_{n}\right) \leq(1+\epsilon)^{n-1} T\left(R_{3}, f\right) \text { for any integer } n \geq 2
$$

Since $\epsilon>0$ was arbitrary, we have for sufficiently large values of r

$$
\begin{equation*}
T\left(r, f_{n}\right) \leq T\left(R_{3}, f\right) \tag{3.2}
\end{equation*}
$$

Also using Lemma 2.3 we have for odd n

$$
\begin{aligned}
T\left(r, f_{n}\right) & =T\left(r, f_{n-1}(f)\right) \\
\geq & \left(\frac{R_{1}-|f(0)|}{R_{1}+|f(0)|}\right) T\left(R_{1}, f_{n-1}\right) \\
& >(1-\epsilon) T\left(R_{1}, f_{n-2}(g)\right) \\
\geq & (1-\epsilon)\left(\frac{R_{2}-|g(0)|}{R_{2}+|g(0)|}\right) T\left(R_{2}, f_{n-2}\right) \\
> & (1-\epsilon)^{2} T\left(R_{2}, f_{n-2}\right) \\
\geq & (1-\epsilon)^{3} T\left(R_{1}, f_{n-3}\right) \\
& \cdots \\
& \cdots \\
\geq & (1-\epsilon)^{n-2} T\left(R_{1}, f(g)\right) \\
\geq & (1-\epsilon)^{n-1} T\left(R_{2}, f\right)
\end{aligned}
$$

Similarly when n is even we obtain

$$
\begin{array}{rlc}
T\left(r, f_{n}\right) & =T\left(r, f_{n-1}(g)\right) \\
& \geq\left(\frac{R_{2}-|g(0)|}{R_{2}+|g(0)|}\right) T\left(R_{2}, f_{n-1}\right) \\
& > & (1-\epsilon) T\left(R_{2}, f_{n-2}(f)\right) \\
& \cdots & \cdots \\
& \cdots & \cdots \\
& \geq & (1-\epsilon)^{n-2} T\left(R_{1}, f(g)\right) \\
& \geq(1-\epsilon)^{n-1} T\left(R_{2}, f\right)
\end{array}
$$

So,

$$
T\left(r, f_{n}\right) \geq(1-\epsilon)^{n-1} T\left(R_{2}, f\right)
$$

Since $\epsilon>0$ was arbitrary, we have for sufficiently large values of r

$$
\begin{equation*}
T\left(r, f_{n}\right) \geq T\left(R_{2}, f\right) \tag{3.3}
\end{equation*}
$$

Hence from (3.2) and (3.3) we obtain (3.1).
This proves the theorem.

4. Proof of the Theorem 1.2

Proof. From Theorem 3.2 we have

$$
\begin{align*}
& T\left(R_{1}, f\right) \leq T\left(r, f_{n}\right) \leq T\left(R_{2}, f\right) \tag{4.1}\\
& T\left(R_{1}^{\prime}, u\right) \leq T\left(r, u_{n}\right) \leq T\left(R_{2}^{\prime}, u\right) \tag{4.2}
\end{align*}
$$

and choose R_{1} and R_{1}^{\prime} in such way that $|g(z)|>R_{1}>\frac{2+\epsilon}{\epsilon}|g(0)|,|v(z)|>R_{1}^{\prime}>$ $\frac{2+\epsilon}{\epsilon}|v(0)|$ and $T\left(R_{1}, f\right) \sim T\left(R_{1}^{\prime}, f\right)$, where $R_{2}=\max \left\{M_{f_{n-1}}(r), M_{g_{n-1}}(r)\right\}$ and $R_{2}^{\prime}=\max \left\{M_{u_{n-1}}(r), M_{v_{n-1}}(r)\right\}$ for sufficiently large value of r and arbitrary small $\epsilon>0$.
Since $T(r, f) \sim T(r, u)$, so

$$
\begin{align*}
T\left(R_{1}, f\right) & \sim T\left(R_{1}^{\prime}, f\right) \sim T\left(R_{1}^{\prime}, u\right) \\
\text { i.e. } T\left(R_{1}, f\right) & \sim T\left(R_{1}^{\prime}, u\right) \quad(r \rightarrow \infty, r \notin E) \tag{4.3}
\end{align*}
$$

Also from Lemma 2.8 we have $M(r, f) \sim M(r, u)$.
So,

$$
\begin{aligned}
M(M(r, f), g) & \sim M(M(r, u), v) \quad(r \rightarrow \infty), \text { using Lemma } 2.2 \\
\text { i.e. } M(M(M(r, f), g), f) & \sim M(M(M(r, u), v), u) \quad(r \rightarrow \infty) .
\end{aligned}
$$

Finally, for odd n,

$$
\begin{equation*}
M_{f_{n-1}}(r) \sim M_{u_{n-1}}(r) \quad(r \rightarrow \infty) \tag{4.4}
\end{equation*}
$$

Similarly, for even n,

$$
\begin{equation*}
M_{g_{n-1}}(r) \sim M_{v_{n-1}}(r) \quad(r \rightarrow \infty) \tag{4.5}
\end{equation*}
$$

From 4.4 and 4.5 for any integer $n \geq 2$, we have $R_{2} \sim R_{2}^{\prime}$ for large r. So from $T(r, f) \sim T(r, u)$ and $R_{2} \sim R_{2}^{\prime}$ we have

$$
\begin{equation*}
T\left(R_{2}, u\right) \sim T\left(R_{2}^{\prime}, f\right) \quad(r \rightarrow \infty) \tag{4.6}
\end{equation*}
$$

So from 4.1, 4.2, 4.3) and 4.6) we have $T\left(r, f_{n}\right) \sim T\left(r, u_{n}\right)$.
This proves the theorem.
Theorem 4.1. Let f, g and u, v be four transcendental entire functions with $T(r, f) \sim$ $T(r, u), T(r, g) \sim T(r, v), T(r, f)=O^{*}\left((\log r)^{\beta}\right)$ and $T(r, g)=O^{*}\left((\log r)^{\beta}\right)$ where $\beta>1$ is a constant, then $T\left(r, f_{n}\right) \sim T\left(r, u_{n}\right)$.

Note 4.2. The conditions of Theorem 1.2 and Theorem 4.1 are not strictly sharp. Which are illustrated by the following examples.

Example 4.3. Let $f(z)=e^{z}, g(z)=z$ and $u(z)=2 e^{z}, v(z)=2 z$. Then we have $f_{2}=f(g)=e^{z}, u_{2}=u(v)=2 e^{2 z}$ and $f_{4}=f(g(f(g)))=e^{e^{z}}, u_{4}=u(v(u(v)))=$ $2 e^{4 e^{2 z}}$.
Also

$$
\begin{aligned}
T(r, f) & =\frac{r}{\pi}, \quad T(r, u)=\frac{r}{\pi}+\log 2, \\
T(r, g) & =\log r, \quad T(r, v)=\log r+\log 2 \\
T\left(r, f_{2}\right) & =\frac{r}{\pi}, \quad T\left(r, u_{2}\right)=\frac{2 r}{\pi}+\log 2,
\end{aligned}
$$

Thus

$$
T(r, f) \sim T(r, u), T(r, g) \sim T(r, v) \quad(r \rightarrow \infty)
$$

But

$$
\frac{T\left(r, f_{2}\right)}{T\left(r, u_{2}\right)}=2 \text { as } \quad r \rightarrow \infty
$$

so

$$
T\left(r, f_{2}\right) \nsim T\left(r, u_{2}\right) .
$$

Also

$$
T\left(r, f_{4}\right) \leq \log M\left(r, f_{4}\right)=e^{r}
$$

and

$$
\begin{aligned}
3 T\left(2 r, u_{4}\right) & \geq \log M\left(r, u_{4}\right)=\log 2+4 e^{2 r} \\
\text { i.e. } T\left(r, u_{4}\right) & \geq \frac{1}{3} \log 2+\frac{4}{3} e^{r} \\
\text { i.e. } \frac{1}{T\left(r, u_{4}\right)} & \leq \frac{1}{\frac{1}{3} \log 2+\frac{4}{3} e^{r}} .
\end{aligned}
$$

Therefore

$$
\frac{T\left(r, f_{4}\right)}{T\left(r, u_{4}\right)} \leq \frac{e^{r}}{\frac{1}{3} \log 2+\frac{4}{3} e^{r}}=3 / 4 \text { as } \quad r \rightarrow \infty
$$

so

$$
T\left(r, f_{4}\right) \nsim T\left(r, u_{4}\right)
$$

Thus, $T\left(r, f_{n}\right) \sim T\left(r, u_{n}\right)$ does not hold for all $n \geq 2$. Here $T(r, f) \neq O^{*}\left((\log r)^{\beta}\right)$ where $\beta>1$ is a constant.

Example 4.4. Let $f(z)=e^{z}, g(z)=\log z$ and $u(z)=2 e^{z}, v(z)=\log 2 z$. Then we have

$$
\begin{aligned}
f_{2} & =f(g)=z, u_{2}=u(v)=4 z \\
f_{3} & =f(g(f))=e^{z}, u_{3}=u(v(u))=8 e^{z} \\
f_{4} & =f(g(f(g)))=z, u_{4}=u(v(u(v)))=16 z
\end{aligned}
$$

Here

$$
\begin{aligned}
T(r, f) & =\frac{r}{\pi}, \quad T(r, u)=\frac{r}{\pi}+\log 2 \\
\therefore \quad T(r, f) & \sim T(r, u) \quad(r \rightarrow \infty)
\end{aligned}
$$

Also

$$
T(r, g) \leq \log \log r
$$

and

$$
\begin{aligned}
3 T(2 r, v) & \geq \log \log 2 r \\
\text { i.e. } T(r, v) & \geq \frac{\log \log r}{3} \\
\text { i.e. } \frac{1}{T(r, v)} & \leq \frac{3}{\log \log r}
\end{aligned}
$$

So

$$
\frac{T(r, g)}{T(r, v)} \leq 3
$$

Again

$$
T(r, v) \leq \log \log 2 r
$$

and

$$
\begin{aligned}
3 T(2 r, g) & \geq \log \log r \\
\text { i.e } T(r, g) & \geq \frac{\log \log r / 2}{3} \\
\text { i.e. } \frac{1}{T(r, g)} & \leq \frac{3}{\log \log r / 2}
\end{aligned}
$$

So

$$
\begin{gathered}
\begin{array}{c}
\frac{T(r, v)}{T(r, g)} \leq 3 \frac{\log \log 2 r}{\log \log r / 2} \\
\end{array} \quad \leq 3 \text { as } r \rightarrow \infty . \\
\therefore \quad \\
\frac{1}{3} \leq \frac{T(r, g)}{T(r, v)} \leq 3 \text { as } r \rightarrow \infty .
\end{gathered}
$$

Also

$$
\begin{aligned}
& T\left(r, f_{2}\right)=\log r, T\left(r, u_{2}\right)=\log r+\log 4 \\
& T\left(r, f_{3}\right)=\frac{r}{\pi}, T\left(r, u_{3}\right)=\frac{r}{\pi}+\log 8 \\
& T\left(r, f_{4}\right)=\log r, T\left(r, u_{4}\right)=\log r+\log 16
\end{aligned}
$$

Here $T(r, g) \nsim T(r, v)$. But still $T\left(r, f_{n}\right) \sim T\left(r, u_{n}\right)$ for $n=2,3,4$.
Example 4.5. Let $f(z)=e^{z}, g(z)=(\log z)^{2}$ and $u(z)=2 e^{z}, v(z)=(\log 2 z)^{2}$.
Then we have

$$
\begin{aligned}
f_{2} & =f(g)=e^{(\log z)^{2}}, u_{2}=u(v)=2 e^{(\log 2 z)^{2}}, \\
f_{3} & =f(g(f))=e^{z^{2}}, u_{3}=u(v(u))=2 e^{(\log 4)^{2}} 4^{2 z} e^{z^{2}}, \\
f_{4} & =f(g(f(g)))=e^{(\log z)^{4}}, u_{4}=u(v(u(v)))=2 e^{(\log 4)^{2}} 4^{2(\log 2 z)^{2}} e^{(\log 2 z)^{4}}, \\
f_{5} & =f(g(f(g(f))))=e^{z^{4}}, u_{5}=u(v(u(v(u))))=32 e^{(\log 4)^{2}} 4^{2\left(\log 4 e^{z}\right)^{2}} e^{\left(\log 4 e^{z}\right)^{4}} .
\end{aligned}
$$

Also

$$
\begin{aligned}
T(r, f) & =\frac{r}{\pi}, \quad T(r, u)=\frac{r}{\pi}+\log 2, \\
& \therefore \quad T(r, f) \sim T(r, u)
\end{aligned}
$$

and

$$
\frac{1}{3} \leq \frac{T(r, g)}{T(r, v)} \leq 3 \quad \text { as } \quad r \rightarrow \infty
$$

Here $T(r, f) \neq O^{*}\left((\log r)^{\beta}\right)$ where $\beta>1$ is a constant and $T(r, g) \nsim T(r, v)$. But

$$
T\left(r, f_{2}\right)=(\log r)^{2} \text { and } T\left(r, u_{2}\right)=(\log r)^{2}+2 \log 2 \log r+(\log 2)^{2}+\log 2
$$

so

$$
T\left(r, f_{2}\right) \sim T\left(r, u_{2}\right) \quad \text { as } \quad r \rightarrow \infty
$$

and

$$
T\left(r, f_{3}\right)=\frac{r^{2}}{\pi} \quad \text { and } \quad T\left(r, u_{3}\right)=\log 2+(\log 4)^{2}+2 r \log 4+\frac{r^{2}}{\pi}
$$

so

$$
T\left(r, f_{3}\right) \sim T\left(r, u_{3}\right) \quad \text { as } \quad r \rightarrow \infty
$$

and

$$
T\left(r, f_{4}\right)=(\log r)^{4} \text { and } T\left(r, u_{4}\right)=\log 2+(\log 4)^{2}+O(\log r)^{2}+(\log 2 r)^{4}
$$

so

$$
T\left(r, f_{4}\right) \sim T\left(r, u_{4}\right) \quad \text { as } \quad r \rightarrow \infty
$$

and

$$
T\left(r, f_{5}\right)=\frac{r^{4}}{\pi} \quad \text { and } \quad T\left(r, u_{5}\right)=\log 2+(\log 4)^{2}+O\left(r^{2}\right)+\frac{r^{4}}{\pi}
$$

so

$$
T\left(r, f_{5}\right) \sim T\left(r, u_{5}\right) \quad \text { as } \quad r \rightarrow \infty
$$

and so on.
Acknowledgments. The authors are thankful to the referee for several suggestions which considerably improve the presentation of the paper.

References

[1] M. L. Cartwight, Integral Function, Cambridge University Press, 1956.
[2] C. Chuang, C. C. Yang, The Fixpoint of Meromorphic and Factorization Theory, Beijing University Press, 1988.
[3] J. Clunie, The composition of entire and meromorphic functions, Mathematical Essays dedicated to A. J. Macintyre, Ohio. Univ. Press, (1970), 75-92.
[4] W. K. Hayman, Meromorphic Functions, Oxford University Press, 1964.
[5] B. K. Lahiri, D. Banerjee, Relative fix points of entire functions, J. Indian Acad. Math., 19(1) (1997), 87-97.
[6] K. Niino, N. Suita, Growth of a composite function of entire functions, Kodai Math. J., $\mathbf{3}$ (1980), 374-379.
[7] J. Sun, Growth of a class of composite entire functions, Acta Math. Vietnamica, 28(2) (2003), 175-183.

Dibyendu Banerjee
Department of Mathematics, Visva-Bharati, Santiniketan-731235, West Bengal, India
E-mail address: dibyendu192@yahoo.com
Ratan Kumar Dutta
Department of Mathematics, Siliguri Institute of Technology, Post.-Sukna, Siliguri, Darjeeling-734009, West Bengal, India

E-mail address: ratan_3128@yahoo.com

