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GROWTH OF A CLASS OF ITERATED ENTIRE FUNCTIONS

(COMMUNICATED BY VICENTIU RADULESCU)

DIBYENDU BANERJEE, RATAN KUMAR DUTTA

Abstract. In this paper we generalise a result of J. Sun to n-th iterations of
f(z) with respect to g(z).

1. Introduction and Notation

We first consider two entire functions f(z) and g(z) and following Lahiri and
Banerjee [5] form the iterations of f(z) with respect to g(z) as follows:

f1(z) = f(z)

f2(z) = f(g(z)) = f(g1(z))

f3(z) = f(g(f(z))) = f(g2(z)) = f(g(f1(z)))

.... .... ....

.... .... ....

fn(z) = f(g(f........(f(z) or g(z))........))

according as n is odd or even

= f(gn−1(z)) = f(g(fn−2(z))),

and so

g1(z) = g(z)

g2(z) = g(f(z)) = g(f1(z))

.... ....

.... ....

gn(z) = g(fn−1(z)) = g(f(gn−2(z))).

Clearly all fn(z) and gn(z) are entire functions.

Notation 1.1. Let f(z) and g(z) be two entire functions. Throughout the paper
we use the notations Mf1(r),Mf2(r),Mf3(r) etc., to mean M(r, f),M(M(r, f), g),
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M(M(M(r, f), g), f) respectively and F (r) = O∗(G(r)) to mean that there exist two

positive constants K1and K2 such that K1 ≤ F (r)
G(r) ≤ K2 for any r big enough.

In [2], C. Chuang and C. C. Yang posed the question:
For four entire functions f1, f2 and g1, g2, when is T (r, f1og1) ∼ T (r, f2og2) as

r →∞, provided T (r, f1) ∼ T (r, f2) and T (r, g1) ∼ T (r, g2)?

In 2003, Sun [7] showed that in general there is no positive answer and he gave
a condition under which there is a positive answer by proving the following theorem.

Theorem A. Let f1, f2 and g1, g2 be four transcendental entire functions with

T (r, f1) = O∗((log r)νe(log r)
α

) and T (r, g1) = O∗((log r)β).

If T (r, f1) ∼ T (r, f2) and T (r, g1) ∼ T (r, g2) (r →∞), then

T (r, f1(g1)) ∼ T (r, f2(g2)) (r →∞, r /∈ E),

where ν > 0, 0 < α < 1, β > 1 and αβ < 1 and E is a set of finite logarithmic
measure.

We extend Theorem A to iterated entire functions.

Theorem 1.2. Let f, g and u, v be four transcendental entire functions with T (r, f) ∼
T (r, u), T (r, g) ∼ T (r, v), T (r, f) = O∗((log r)νe(log r)

α

) (0 < α < 1, ν > 0) and
T (r, g) = O∗((log r)β) where β > 1 is a constant, then T (r, fn) ∼ T (r, un) for
n ≥ 2, where un(z) = u(v(u(v........(u(z) or v(z))........))) according as n is odd or
even.

We do not explain the standard notations and definitions of the theory of mero-
morphic functions because they are available in [4].

2. Lemmas

The following lemmas will be needed in the sequel.

Lemma 2.1. [4] Let f(z) be an entire function. For 0 ≤ r < R <∞, we have

T (r, f) ≤ log+M(r, f) ≤ R+ r

R− r
T (R, f).

Lemma 2.2. [3] Let f(z) be an entire function of order ρ(ρ < ∞). If k > ρ − 1,
then

logM(r, f) ∼ logM(r − r−k, f) (r →∞).

Lemma 2.3. [6] Let g(z) and f(z) be two entire functions. Suppose that |g(z)| >
R > |g(0)| on the circumference {|z| = r} for some r > 0. Then we have

T (r, f(g)) ≥ R− |g(0)|
R+ |g(0)|

T (R, f).

Lemma 2.4. [1] Let f be an entire function of order zero and z = reiθ. Then for
any ζ > 0 and η > 0, there exist R0 = R0(ζ, η) and k = k(ζ, η) such that for all
R > R0 it holds

log |f(reiθ)| −N(2R)− log |c| > −kQ(2R), ζR ≤ r ≤ R,
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except in a set of circles enclosing the zeros of f , the sum of whose radii is at most
ηR. Here

Q(r) = r

∫ ∞
r

n(t, 1/f)

t2
dt and N(r) =

∫ r

0

n(t, 1/f)

t
dt.

Lemma 2.5. [7] Let f be a transcendental entire function with

T (r, f) = O∗((log r)βe(log r)
α

) (0 < α < 1, β > 0).

Then

1. T (r, f) ∼ logM(r, f) (r →∞, r /∈ E),

2. T (σr, f) ∼ T (r, f) (r →∞, σ ≥ 2, r /∈ E),

where E is a set of finite logarithmic measure.

Lemma 2.6. Let f be a transcendental entire function with T (r, f) = O∗((log r)β)
where β > 1. Then

1. T (r, f) ∼ logM(r, f) (r →∞, r /∈ E),

2. T (σr, f) ∼ T (r, f) (r →∞, σ ≥ 2, r /∈ E),

where E is a set of finite logarithmic measure.

Proof. Without loss of generality we may assume that f(0) = 1, otherwise we set
F (z) = f(z)− f(0) + 1.
By Jensen’s theorem,

N(r, 1/f) =

∫ r

0

n(t, 1/f)

t
dt =

1

2π

∫ 2π

0

log |f(reiθ)|dθ ≤ logM(r, f)

and so,

n(r, 1/f) logA ≤
∫ Ar

r

n(t, 1/f)

t
dt ≤

∫ Ar

0

n(t, 1/f)

t
dt ≤ logM(Ar, f),

for r > 1 and A > 1.
Therefore

n(r, 1/f) ≤ logM(Ar, f)

logA
. (2.1)

Since T (r, f) = O∗((log r)β), β > 1, by Lemma 2.1 we have

logM(r, f) = O∗((log r)β). (2.2)

Take A = rσ(r) and σ(r) = 1
(log r)1/2

. Then by (2.1) we have

n(r, 1/f) ≤ logM(r1+σ(r), f)

σ(r) log r
. (2.3)
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Therefore, putting r = eu we have(
log r1+σ(r)

)β
r1/2σ(r) log r

=
(1 + σ(r))β(log r)β

r1/2σ(r) log r

=

(
1 + 1

u1/2

)β
uβ

eu/2u−1/2u

=

(
1 + 1

u1/2

)β
eu/2u1−1/2−β

=

(
1 + 1

u1/2

)β
eu/2e(1/2−β) log u

=

(
1 + 1

u1/2

)β
e
u
2−(β−1/2) log u

. (2.4)

Since β > 1, for sufficiently large values of u we have u
2 − (β − 1/2) log u > 0 and

u
2 − (β − 1/2) log u increases. By (2.4) for sufficiently large value of r,

(log r1+σ(r))
β

r1/2σ(r) log r

decreases.
From Lemma 2.4, using (2.2) and (2.3), we have

Q(r) = r

∫ ∞
r

n(t, 1/f)dt

t2

≤ r

∫ ∞
r

logM(t1+σ(t), f)

t2σ(t) log t
dt

= r

∫ ∞
r

O∗
(
(log t1+σ(t))β

)
t2σ(t) log t

dt

≤ O∗
(
r

∫ ∞
r

(log t1+σ(t))β

t2σ(t) log t
dt

)
≤

r1/2O∗
(
(log r1+σ(r))β

)
σ(r) log r

∫ ∞
r

t−3/2dt

=
2O∗

(
(log r1+σ(r))β

)
σ(r) log r

=
2 logM(r1+σ(r), f)

σ(r) log r
.

Therefore

Q(r)

logM(r, f)
≤ 2 logM(r1+σ(r), f)

σ(r) log r logM(r, f)

≤ 2K2(log r1+σ(r))β

σ(r) log r K1(log r)β
, for some suitable constants K1 and K2

=
2K2

K1

(1 + σ(r))β(log r)β

σ(r) log r (log r)β

=
2K2

K1

(1 + σ(r))β

σ(r) log r

→ 0 as r →∞.
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So

Q(r) = o(logM(r, f)) (2.5)

Since T (r, f) = O∗((log r)β), n(r, 1/f) = o(r).
The concluding part of the proof of the lemma is similar to that of Lemma 5 of J.
Sun [7]. But still for the sake of completeness and for convenience of readers, we
outline the proof.

logM(r, f) ≤ log Π∞n=1(1 + r/rn)

=

∫ ∞
0

log(1 + r/t)dn(t, 1/f)

≤
∫ ∞
0

r

t
dn(t, 1/f)

= r

∫ ∞
0

n(t, 1/f)

t(t+ r)
dt

= r

(∫ r

0

+

∫ ∞
r

)
n(t, 1/f)

t(t+ r)
dt

≤ r.
1

r

∫ r

0

n(t, 1/f)

t
dt+ r

∫ ∞
r

n(t, 1/f)

t2
dt

= N(r) +Q(r) (2.6)

So, from Lemma 2.4 and (2.5), (2.6) we have

log |f(reiθ)| > N(2R)− kQ(2R) (ζR ≤ r ≤ R, r /∈ E)

= N(2R) +Q(2R)− (k + 1)Q(2R)

≥ logM(2R, f) + (k + 1)o(logM(2R, f))

= logM(2R, f)(1− o(1)) (2.7)

≥ logM(r, f)(1− o(1)) (2.8)

where E is a set of finite logarithmic measure.
On the other hand

log |f(z)| ≤ logM(r, f) ≤ logM(σr, f) (|z| = r, σ ≥ 2, ) (2.9)

Let 2R = σr, σ ≥ 2 then from (2.7), (2.8) and (2.9) we have,

log |f(z)| ∼ logM(σr, f) (r →∞, σ ≥ 2, r /∈ E) (2.10)

and

log |f(z)| ∼ logM(r, f) (r →∞, r /∈ E). (2.11)

From (2.11) for sufficiently large value of r, we have,

m(r, f) =
1

2π

∫ 2π

0

log+ |f(reiθ)|dθ =
1

2π

∫ 2π

0

logM(r, f)(1 + o(1))dθ

= logM(r, f)(1 + o(1)) (r →∞, r /∈ E).

So,

lim
r→∞

T (r, f)

logM(r, f)
= 1, (r /∈ E)

i.e.

T (r, f) ∼ logM(r, f), (r /∈ E). (2.12)
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From (2.10) and (2.11) we have

logM(r, f) ∼ logM(σr, f) (r →∞, σ ≥ 2, r /∈ E). (2.13)

From (2.12) and (2.13) we have

T (σr, f) ∼ T (r, f) (r →∞, σ ≥ 2, r /∈ E). (2.14)

From (2.12) and (2.14) we have the required result.
This proves the lemma. �

Lemma 2.7. Let f1and f2 be two entire functions with T (r, f1) = O∗((log r)β)
where β > 1 and T (r, f1) ∼ T (r, f2) then M(r, f1) ∼M(r, f2).

Proof. From Lemma 2.6 we have,

logM(r, f1) ∼ T (r, f1) ∼ T (r, f2) ∼ logM(r, f2) (r →∞, r /∈ E)

where E is a set of finite logarithmic measure.
Since logM(r, f1) ∼ logM(r, f2), so for given ε > 0, there exist r1, r2 > 0 such

that
logM(r, f1)

logM(r, f2)
< 1 +

log(1 + ε)

logM(r, f2)
for r > r1 (2.15)

and
logM(r, f2)

logM(r, f1)
< 1 +

log(1 + ε)

logM(r, f1)
for r > r2 (2.16)

Now from (2.15) we have

logM(r, f1) < logM(r, f2) + log(1 + ε).

So,
M(r, f1)

M(r, f2)
< 1 + ε for r > r1. (2.17)

Similarly from (2.16)

M(r, f2)

M(r, f1)
< 1 + ε for r > r2.

i.e.
M(r, f1)

M(r, f2)
> 1− ε for r > r2. (2.18)

From (2.17) and (2.18) we have

1− ε <
M(r, f1)

M(r, f2)
< 1 + ε for r > r0 = max {r1, r2}.

So, M(r, f1) ∼ M(r, f2).

This proves the lemma. �

Lemma 2.8. Let f1and f2 be two entire functions with T (r, f1) = O∗((log r)νe(log r)
α

)
where ν > 0 and 0 < α < 1 and T (r, f1) ∼ T (r, f2) then M(r, f1) ∼M(r, f2).

Proof. From Lemma 2.5 we have,

logM(r, f1) ∼ T (r, f1) ∼ T (r, f2) ∼ logM(r, f2) (r →∞, r /∈ E)

where E is a set of finite logarithmic measure and concluding part follows from
Lemma 2.7. �
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3. Theorems

In [6] K. Niino and N. Suita proved the following theorem.

Theorem 3.1. Let f(z) and g(z) be entire functions. If M(r, g) > 2+ε
ε |g(0)| for

any ε > 0, then we have

T (r, f(g)) ≤ (1 + ε)T (M(r, g), f).

In particular, if g(0) = 0, then

T (r, f(g)) ≤ T (M(r, g), f)

for all r > 0.

The following theorem is the generalization of the above.

Theorem 3.2. Let f(z) and g(z) be two entire functions. Then we have

T (R2, f) ≤ T (r, fn) ≤ T (R3, f) (3.1)

where |f(z)| > R1 >
2+ε
ε |f(0)| and |g(z)| > R2 >

2+ε
ε |g(0)|, R3 =max{Mfn−1(r), Mgn−1(r)}

for sufficiently large values of r and any integer n ≥ 2.

Proof. By Theorem 3.1 we have for odd n and any ε > 0 arbitrary small

T (r, fn) = T (r, fn−1(f))

≤ (1 + ε)T (M(r, f), fn−1)

= (1 + ε)T (Mf1(r), fn−2(g))

≤ (1 + ε)2T (Mf2(r), fn−2)

= (1 + ε)2T (Mf2(r), fn−3(f))

≤ (1 + ε)3T (Mf3(r), fn−3)

.... ....

.... ....

≤ (1 + ε)n−1T (Mfn−1(r), f)

≤ (1 + ε)n−1T (R3,f).

Similarly when n is even, we have

T (r, fn) = T (r, fn−1(g))

≤ (1 + ε)T (M(r, g), fn−1)

= (1 + ε)T (Mg1(r), fn−2(f))

≤ (1 + ε)2T (Mg2(r), fn−2)

.... ....

.... ....

≤ (1 + ε)n−1T (Mgn−1
(r), f)

≤ (1 + ε)n−1T (R3,f).

Therefore

T (r, fn) ≤ (1 + ε)n−1T (R3, f) for any integer n ≥ 2.

Since ε > 0 was arbitrary, we have for sufficiently large values of r

T (r, fn) ≤ T (R3, f). (3.2)
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Also using Lemma 2.3 we have for odd n

T (r, fn) = T (r, fn−1(f))

≥
(
R1 − |f(0)|
R1 + |f(0)|

)
T (R1, fn−1)

> (1− ε)T (R1, fn−2(g))

≥ (1− ε)
(
R2 − |g(0)|
R2 + |g(0)|

)
T (R2, fn−2)

> (1− ε)2T (R2, fn−2)

≥ (1− ε)3T (R1, fn−3)

.... ....

.... ....

≥ (1− ε)n−2T (R1, f(g))

≥ (1− ε)n−1T (R2, f).

Similarly when n is even we obtain

T (r, fn) = T (r, fn−1(g))

≥
(
R2 − |g(0)|
R2 + |g(0)|

)
T (R2, fn−1)

> (1− ε)T (R2, fn−2(f))

.... ....

.... ....

≥ (1− ε)n−2T (R1, f(g))

≥ (1− ε)n−1T (R2, f).

So,
T (r, fn) ≥ (1− ε)n−1T (R2, f).

Since ε > 0 was arbitrary, we have for sufficiently large values of r

T (r, fn) ≥ T (R2, f). (3.3)

Hence from (3.2) and (3.3) we obtain (3.1).
This proves the theorem. �

4. Proof of the Theorem 1.2

Proof. From Theorem 3.2 we have

T (R1, f) ≤ T (r, fn) ≤ T (R2, f) (4.1)

T (R
′

1, u) ≤ T (r, un) ≤ T (R
′

2, u) (4.2)

and choose R1 and R
′

1 in such way that |g(z)| > R1 >
2+ε
ε |g(0)|, |v(z)| > R

′

1 >
2+ε
ε |v(0)| and T (R1, f) ∼ T (R

′

1, f), where R2 =max{Mfn−1
(r), Mgn−1

(r)} and

R
′

2 =max{Mun−1
(r), Mvn−1

(r)} for sufficiently large value of r and arbitrary small
ε > 0.
Since T (r, f) ∼ T (r, u), so

T (R1, f) ∼ T (R
′

1, f) ∼ T (R
′

1, u)

i.e. T (R1, f) ∼ T (R
′

1, u) (r →∞, r /∈ E). (4.3)
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Also from Lemma 2.8 we have M(r, f) ∼M(r, u).
So,

M(M(r, f), g) ∼ M(M(r, u), v) (r →∞), using Lemma 2.2

i.e. M(M(M(r, f), g), f) ∼ M(M(M(r, u), v), u) (r →∞).

Finally, for odd n,

Mfn−1
(r) ∼Mun−1

(r) (r →∞). (4.4)

Similarly, for even n,

Mgn−1
(r) ∼Mvn−1

(r) (r →∞). (4.5)

From (4.4) and (4.5) for any integer n ≥ 2, we have R2 ∼ R
′

2 for large r. So from

T (r, f) ∼ T (r, u) and R2 ∼ R
′

2 we have

T (R2, u) ∼ T (R
′

2, f) (r →∞) (4.6)

So from (4.1), (4.2), (4.3) and (4.6) we have T (r, fn) ∼ T (r, un).
This proves the theorem. �

Theorem 4.1. Let f, g and u, v be four transcendental entire functions with T (r, f) ∼
T (r, u), T (r, g) ∼ T (r, v), T (r, f) = O∗((log r)β) and T (r, g) = O∗((log r)β) where
β > 1 is a constant, then T (r, fn) ∼ T (r, un).

Note 4.2. The conditions of Theorem 1.2 and Theorem 4.1 are not strictly sharp.
Which are illustrated by the following examples.

Example 4.3. Let f(z) = ez, g(z) = z and u(z) = 2ez, v(z) = 2z. Then we have
f2 = f(g) = ez, u2 = u(v) = 2e2z and f4 = f(g(f(g))) = ee

z

, u4 = u(v(u(v))) =

2e4e
2z

.
Also

T (r, f) =
r

π
, T (r, u) =

r

π
+ log 2,

T (r, g) = log r, T (r, v) = log r + log 2,

T (r, f2) =
r

π
, T (r, u2) =

2r

π
+ log 2,

Thus

T (r, f) ∼ T (r, u), T (r, g) ∼ T (r, v) (r →∞).

But
T (r, f2)

T (r, u2)
= 2 as r →∞,

so

T (r, f2) � T (r, u2).

Also

T (r, f4) ≤ logM(r, f4) = er

and

3T (2r, u4) ≥ logM(r, u4) = log 2 + 4e2r

i.e. T (r, u4) ≥ 1

3
log 2 +

4

3
er

i.e.
1

T (r, u4)
≤ 1

1
3 log 2 + 4

3e
r
.



86 D. BANERJEE, R. DUTTA

Therefore
T (r, f4)

T (r, u4)
≤ er

1
3 log 2 + 4

3e
r

= 3/4 as r →∞,

so

T (r, f4) � T (r, u4).

Thus, T (r, fn) ∼ T (r, un) does not hold for all n ≥ 2. Here T (r, f) 6= O∗((log r)β)
where β > 1 is a constant.

Example 4.4. Let f(z) = ez, g(z) = log z and u(z) = 2ez, v(z) = log 2z. Then we
have

f2 = f(g) = z, u2 = u(v) = 4z,

f3 = f(g(f)) = ez, u3 = u(v(u)) = 8ez,

f4 = f(g(f(g))) = z, u4 = u(v(u(v))) = 16z.

Here

T (r, f) =
r

π
, T (r, u) =

r

π
+ log 2,

∴ T (r, f) ∼ T (r, u) (r →∞).

Also

T (r, g) ≤ log log r,

and

3T (2r, v) ≥ log log 2r

i.e. T (r, v) ≥ log log r

3

i.e.
1

T (r, v)
≤ 3

log log r
.

So
T (r, g)

T (r, v)
≤ 3.

Again

T (r, v) ≤ log log 2r,

and

3T (2r, g) ≥ log log r

i.e T (r, g) ≥ log log r/2

3

i.e.
1

T (r, g)
≤ 3

log log r/2
.

So

T (r, v)

T (r, g)
≤ 3

log log 2r

log log r/2

≤ 3 as r →∞.

∴
1

3
≤ T (r, g)

T (r, v)
≤ 3 as r →∞.
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Also

T (r, f2) = log r, T (r, u2) = log r + log 4,

T (r, f3) =
r

π
, T (r, u3) =

r

π
+ log 8,

T (r, f4) = log r, T (r, u4) = log r + log 16.

Here T (r, g) � T (r, v). But still T (r, fn) ∼ T (r, un) for n = 2, 3, 4.

Example 4.5. Let f(z) = ez, g(z) = (log z)2 and u(z) = 2ez, v(z) = (log 2z)2.
Then we have

f2 = f(g) = e(log z)
2

, u2 = u(v) = 2e(log 2z)2 ,

f3 = f(g(f)) = ez
2

, u3 = u(v(u)) = 2e(log 4)242zez
2

,

f4 = f(g(f(g))) = e(log z)
4

, u4 = u(v(u(v))) = 2e(log 4)242(log 2z)2e(log 2z)4 ,

f5 = f(g(f(g(f)))) = ez
4

, u5 = u(v(u(v(u)))) = 32e(log 4)242(log 4ez)2e(log 4ez)4 .

Also

T (r, f) =
r

π
, T (r, u) =

r

π
+ log 2,

∴ T (r, f) ∼ T (r, u).

and
1

3
≤ T (r, g)

T (r, v)
≤ 3 as r →∞.

Here T (r, f) 6= O∗((log r)β) where β > 1 is a constant and T (r, g) � T (r, v). But

T (r, f2) = (log r)2 and T (r, u2) = (log r)2 + 2 log 2 log r + (log 2)2 + log 2

so

T (r, f2) ∼ T (r, u2) as r →∞,
and

T (r, f3) =
r2

π
and T (r, u3) = log 2 + (log 4)2 + 2r log 4 +

r2

π
,

so

T (r, f3) ∼ T (r, u3) as r →∞,
and

T (r, f4) = (log r)4and T (r, u4) = log 2 + (log 4)2 +O(log r)2 + (log 2r)4,

so

T (r, f4) ∼ T (r, u4) as r →∞,
and

T (r, f5) =
r4

π
and T (r, u5) = log 2 + (log 4)2 +O(r2) +

r4

π
,

so

T (r, f5) ∼ T (r, u5) as r →∞,
and so on.
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