A new factor theorem for absolute Cesàro summability

(communicated by Naim Braha) *

HÜSEYiN BOR

Abstract

In this paper, a known theorem dealing with $|C, \alpha ; \delta|_{k}$ summability factors has been generalized for $|C, \alpha, \beta ; \delta|_{k}$ summability factors.Our theorem also includes some known results.

1 Introduction

Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. We denote by $u_{n}^{\alpha, \beta}$ and $t_{n}^{\alpha, \beta}$ the nth Cesàro means of order (α, β), with $\alpha+\beta>-1$, of the sequence $\left(s_{n}\right)$ and $\left(n a_{n}\right)$, respectively, i.e., (see [3])

$$
\begin{align*}
u_{n}^{\alpha, \beta} & =\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} s_{v} \tag{1}\\
t_{n}^{\alpha, \beta} & =\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \tag{2}
\end{align*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha+\beta}=O\left(n^{\alpha+\beta}\right), \quad A_{0}^{\alpha+\beta}=1 \quad \text { and } \quad A_{-n}^{\alpha+\beta}=0 \quad \text { for } \quad n>0 \tag{3}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $|C, \alpha, \beta|_{k}, k \geq 1$, if (see [5])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}^{\alpha, \beta}-u_{n-1}^{\alpha, \beta}\right|^{k}<\infty \tag{4}
\end{equation*}
$$

[^0]Since $t_{n}^{\alpha, \beta}=n\left(u_{n}^{\alpha, \beta}-u_{n-1}^{\alpha, \beta}\right)($ see [5]), condition (4) can also be written as

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}^{\alpha, \beta}\right|^{k}<\infty \tag{5}
\end{equation*}
$$

The series $\sum a_{n}$ is summable $|C, \alpha, \beta ; \delta|_{k}, k \geq 1$ and $\delta \geq 0$, if (see [2])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\delta k+k-1}\left|u_{n}^{\alpha, \beta}-u_{n-1}^{\alpha, \beta}\right|^{k}=\sum_{n=1}^{\infty} n^{\delta k-1}\left|t_{n}^{\alpha, \beta}\right|^{k}<\infty \tag{6}
\end{equation*}
$$

If we take $\delta=0$, then $|C, \alpha, \beta ; \delta|_{k}$ summability reduces to $|C, \alpha, \beta|_{k}$ summability.Also if we take $\beta=0$, then we get $|C, \alpha ; \delta|_{k}$ summability (see [7]). Furthermore, if we take $\beta=0$ and $\delta=0$, then $|C, \alpha, \beta ; \delta|_{k}$ summability reduces to $|C, \alpha|_{k}$ summability (see [6]). It should be noted that obviously $(C, \alpha, 0)$ mean is the same as (C, α) mean. A sequence $\left(\lambda_{n}\right)$ is said to be convex if $\Delta^{2} \lambda_{n} \geq 0$, where $\Delta^{2} \lambda_{n}=\Delta \lambda_{n}-\Delta \lambda_{n+1}$ and $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$. In [8] Lal and Singh have proved the following theorem dealing with $|C, \alpha ; \delta|_{k}$ summability factors of infinite series.
Theorem A. If (λ_{n}) is a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent and the sequence $\left(\theta_{n}^{\alpha}\right)$ defined by

$$
\begin{gather*}
\theta_{n}^{\alpha}=\left|t_{n}^{\alpha}\right|, \quad \alpha=1 \tag{7}\\
\theta_{n}^{\alpha}=\max _{1 \leq v \leq n}\left|t_{v}^{\alpha}\right|, \quad 0<\alpha<1 \tag{8}
\end{gather*}
$$

satisfies the condition

$$
\left(n^{\delta} \theta_{n}^{\alpha}\right)^{k}=O\left\{(\log n)^{p+k-1}\right\}(C, 1)
$$

then the series $\sum(\log n)^{-p-k+1} a_{n} \lambda_{n}$ is summable $|C, \alpha ; \delta|_{k}$ for $0<\alpha \leq 1, p \geq$ $0, k \geq 1, \delta \geq 0$ and $\delta k<\alpha$.

2 The Main Result

The aim of this paper is to generalize Theorem A for $|C, \alpha, \beta ; \delta|_{k}$ summability. We shall prove the following theorem.
Theorem. If (λ_{n}) is a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent and the sequence $\left(\theta_{n}^{\alpha, \beta}\right)$ defined by

$$
\begin{gather*}
\theta_{n}^{\alpha, \beta}=\left|t_{n}^{\alpha, \beta}\right|, \quad \alpha=1, \beta>-1 \tag{9}\\
\theta_{n}^{\alpha, \beta}=\max _{1 \leq v \leq n}\left|t_{v}^{\alpha, \beta}\right|, \quad 0<\alpha<1, \beta>-1 \tag{10}
\end{gather*}
$$

satisfies the condition

$$
\left(n^{\delta} \theta_{n}^{\alpha, \beta}\right)^{k}=O\left\{(\log n)^{p+k-1}\right\}(C, 1)
$$

then the series $\sum(\log (n+1))^{-p+k+1} a_{n} \lambda_{n}$ is summable $|C, \alpha, \beta ; \delta|_{k}$ for $0<$ $\alpha \leq 1, \beta>-1, k \geq 1, \delta \geq 0, p \geq 0$ and $\alpha+\beta-\delta>0$.
We need the following lemmas for the proof of our theorem.
Lemma 1 ([4]). If $\left(\lambda_{n}\right)$ is a convex sequence such that the series $\sum n^{-1} \lambda_{n}$ is convergent, then $\left(\lambda_{n}\right)$ is non-negative and non-increasing, $n \Delta \lambda_{n}=O(1)$ and $\lambda_{n} \log n=o(1)$, as $n \rightarrow \infty$.
Lemma 2 ([1]). If $0<\alpha \leq 1, \beta>-1$ and $1 \leq v \leq n$, then

$$
\begin{equation*}
\left|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right| \leq \max _{1 \leq m \leq v}\left|\sum_{p=0}^{m} A_{m-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right| \tag{11}
\end{equation*}
$$

Lemma 3 ([10]). If $\left((\log (n+1))^{p+k-1} X_{n}\right)$ satisfies the same conditions as $\left(\lambda_{n}\right)$ in Lemma 1, then

$$
n(\log (n+1))^{p+k-1} \Delta X_{n}=O(1) \quad \text {, as } n \rightarrow \infty
$$

and

$$
\sum_{n=1}^{m} n(\log (n+1))^{p+k-1} \Delta^{2} X_{n}=O(1) \quad \text {, as } m \rightarrow \infty
$$

Lemma 4 ([8]). If $\left(\lambda_{n}\right)$ is a convex sequence such that the series $\sum n^{-1} \lambda_{n}$ is convergent, then for $p \geq 0$ and $k \geq 1$

$$
\sum_{n=1}^{m} \frac{\Delta\left(\lambda_{n}\right)^{k}}{(\log (n+1))^{p(k+1)+(k-1)^{2}}}=O(1), \quad \text { as } m \rightarrow \infty
$$

3 Proof of the Theorem

We write

$$
X_{n}=\frac{\lambda_{n}}{(\log (n+1))^{p+k-1}}
$$

Let $\left(T_{n}^{\alpha, \beta}\right)$ be the n-th (C, α, β) mean of the sequence ($n a_{n} X_{n}$). Then, by (2), we have

$$
T_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} X_{v}
$$

First applying Abel's transformation and then using Lemma 2, we have that

$$
T_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} \Delta X_{v} \sum_{i=1}^{v} A_{n-i}^{\alpha-1} A_{i}^{\beta} i a_{i}+\frac{X_{n}}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v},
$$

$$
\begin{aligned}
\left|T_{n}^{\alpha, \beta}\right| & \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} \Delta X_{v}\left|\sum_{i=1}^{v} A_{n-i}^{\alpha-1} A_{i}^{\beta} i a_{i}\right|+\frac{X_{n}}{A_{n}^{\alpha+\beta}}\left|\sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v}\right| \\
& \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{\alpha} A_{v}^{\beta} \theta_{v}^{\alpha, \beta} \Delta X_{v}+X_{n} \theta_{n}^{\alpha, \beta} \\
& =T_{n, 1}^{\alpha, \beta}+T_{n, 2}^{\alpha, \beta}, \quad \text { say. }
\end{aligned}
$$

Since

$$
\left|T_{n, 1}^{\alpha, \beta}+T_{n, 2}^{\alpha, \beta}\right|^{k} \leq 2^{k}\left(\left|T_{n, 1}^{\alpha, \beta}\right|^{k}+\left|T_{n, 2}^{\alpha, \beta}\right|^{k}\right)
$$

in order to complete the proof of the theorem, by (6), it is sufficient to show that

$$
\sum_{n=1}^{\infty} n^{\delta k-1}\left|T_{n, r}^{\alpha, \beta}\right|^{k}<\infty \quad, \text { for } \quad r=1,2
$$

Whenever $k>1$, we can apply Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we get that

$$
\begin{aligned}
\sum_{n=2}^{m+1} n^{\delta k-1}\left|T_{n, 1}^{\alpha, \beta}\right|^{k} & \leq \sum_{n=2}^{m+1} n^{\delta k-1}\left|\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{\alpha} A_{v}^{\beta} \theta_{v}^{\alpha, \beta} \Delta X_{v}\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{1+(\alpha+\beta-\delta) k}}\left\{\sum_{v=1}^{n-1} v^{\alpha k} v^{\beta k} \Delta X_{v}\left(\theta_{v}^{\alpha, \beta}\right)^{k}\right\} \times\left\{\sum_{v=1}^{n-1} \Delta X_{v}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k} \Delta X_{v}\left(\theta_{v}^{\alpha, \beta}\right)^{k} \sum_{n=v+1}^{m+1} \frac{1}{n^{1+(\alpha+\beta-\delta) k}} \\
& =O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k} \Delta X_{v}\left(\theta_{v}^{\alpha, \beta}\right)^{k} \int_{v}^{\infty} \frac{d x}{x^{1+(\alpha+\beta-\delta) k}} \\
& =O(1) \sum_{v=1}^{m} \Delta X_{v}\left(v^{\delta} \theta_{v}^{\alpha, \beta}\right)^{k} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(\Delta X_{v}\right) \sum_{p=1}^{v}\left(p^{\delta} \theta_{p}^{\alpha, \beta}\right)^{k} \\
& +O(1) \Delta X_{m} \sum_{v=1}^{m}\left(v^{\delta} \theta_{v}^{\alpha, \beta}\right)^{k} \\
& =O(1) \sum_{v=1}^{m-1} v(\log (v+1))^{p+k-1} \Delta^{2} X_{v}+O\left(m(\log (m+1))^{p+k-1} \Delta X_{m}\right) \\
& =O(1) a s m \rightarrow \infty
\end{aligned}
$$

by the application of Lemma 3. Similarly, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} n^{\delta k-1}\left|X_{n} \theta_{n}^{\alpha, \beta}\right|^{k} & =O(1) \sum_{n=1}^{m} \frac{X_{n}^{k}}{n}\left(n^{\delta} \theta_{n}^{\alpha, \beta}\right)^{k} \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left(n^{-1} X_{n}^{k}\right) \sum_{v=1}^{n}\left(v^{\delta} \theta_{v}^{\alpha, \beta}\right)^{k} \\
& +O(1) \frac{X_{m}^{k}}{m} \sum_{v=1}^{m}\left(v^{\delta} \theta_{v}^{\alpha, \beta}\right)^{k} \\
& =O(1) \sum_{n=1}^{m-1} n(\log (n+1))^{p+k-1} \Delta\left(n^{-1} X_{n}^{k}\right)+O\left(X_{m}^{k}(\log (m+1))^{p+k-1}\right) \\
& =O(1) \sum_{n=1}^{m-1} n^{-1} X_{n}^{k}(\log (n+1))^{p+k-1}+O(1) \sum_{n=1}^{m-1}(\log (n+1))^{p+k-1} \Delta X_{n}^{k} \\
& +O(1)\left((\log (m+1))^{p+k-1} X_{m}^{k}\right) \\
& =O(1) \sum_{n=1}^{m-1} \frac{\left(\lambda_{n} \log (n+1)\right)^{k}}{(n+1)(\log (n+1))^{1+p(k-1)+k(k-1)}} \\
& +O(1) \sum_{n=1}^{m-1} \frac{\Delta \lambda_{n}^{k}}{(\log (n+1))^{p(k-1)+(k-1)^{2}}} \\
& +O\left(\frac{\left(\lambda_{m} \log (m+1)\right)^{k}}{\left.(\log (m+1))^{p(k-1)+k(k-1)+1}\right)}\right. \\
& =O(1) a s m m,
\end{aligned}
$$

by the application of Lemma 4 and $\lambda_{n} \log n=O(1)$. Therefore, by (6), we get that

$$
\sum_{n=1}^{\infty} n^{\delta k-1}\left|T_{n, r}^{\alpha, \beta}\right|^{k}<\infty \quad, \text { for } \quad r=1,2
$$

This completes the proof of the theorem. It should be noted that if we take $\beta=0$, then we obtain Theorem A. This theorem also includes as particular cases the results of Pati [9] and Prasad and Bhatt [10].

References

[1] H. Bor, On a new application of quasi power increasing sequences, Proc. Estonian Acad. Sci. Phys. Math., 57 (2008), 205-209.
[2] H. Bor, On the generalized absolute Cesàro summability, Pac. J. Appl. Math., (2009), 35-40.
[3] D. Borwein, Theorems on some methods of summability, Quart. J. Math., Oxford, Ser. 9 (1958), 310-316.
[4] H. C. Chow, On the summability factors of Fourier Series, J. London Math. Soc., 16 (1941), 215-220.
[5] G. Das, A Tauberian theorem for absolute summability, Proc. Camb. Phil. Soc., 67 (1970), 321-326.
[6] T.M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957), 113-141.
[7] T.M. Flett, Some more theorems concerning the absolute summability of Fourier series and power series , Proc. London Math. Soc., 7 (1958), 357387.
[8] S. N. Lal and S. R. Singh, On the absolute summability factors in infinite series, Bull. Acad. Polon. Sci. Math. Astronom. Phys., 17 (1969), 711-714.
[9] T. Pati, The summability factors of infinite series, Duke Math. J., 21 (1954), 271-284.
[10] B. N. Prasad and S. N. Bhatt, The summability factors of a Fourier series, Duke Math. J., 24 (1957), 103- 107.

HÜSEYİN BOR

P.O.Box 121 , 06502 Bahçelievler,

Ankara, Turkey
e-mail: hbor33@gmail.com

[^0]: * 2010 Mathematics Subject Classifications: 40D15, 40F05, 40G05,40G99.

 Key words: Absolute Cesàro summability, infinite series, summability factors. © 2008 Universiteti i Prishtines, Prishtine, Kosovë.
 Submitted December 22, 2010. Published February 22, 2011.

