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Abstract. In this paper we establish some stability results for Picard and

Mann iteration processes in metric space and normed linear space by employing

contractive condition of integral type. Our results are generalizations and
extensions of some of the existing ones in literature especially Olatinwo [8].

1. Introduction

Let (E, d) be a complete metric space, T : E → E a selfmap of E. Suppose that
FT = {p ∈ E : T (p) = p} is the set of fixed points of T in E.

Let {xn}∞n=0 ⊂ E be the sequence generated by an iteration procedure involving
the operator T , that is,

xn+1 = f(T, xn), n = 0, 1..., (1.1)

where x0 ∈ E is the initial approximation and f is some function.
Let {yn}∞n=0 ⊂ E be an arbitrary sequence in E, and set

εn = d(yn+1, f(T, yn)), n = 0, 1...,

then, the iteration procedure (1.1) is said to be T -stable or stable with respect to
T if and only if

lim
n→∞

εn = 0⇒ lim
n→∞

yn = p.

If in (1.1),

xn+1 = f(T, xn) = Txn, n = 0, 1..., (1.2)

then, we have the Picard iteration process, which has been employed to approximate
the fixed points of mappings satisfying the inequality relation

d(Tx, Ty) ≤ αd(x, y),∀x, y ∈ E and α ∈ [0, 1[ . (1.3)
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Condition (1.3) is called the Banach’s contraction condition. Any operator satis-
fying (1.3) is called strict contraction. Also, condition (1.3) is significant in the
celebrated Banach’s fixed point theorem [1].

In the Banach space setting, we shall state some of the iteration processes gen-
eralizing (1.2) as follows:
For x0 ∈ E, the sequence {xn}∞n=0 defined by

xn+1 = (1− αn)xn + αnT (xn), n = 0, 1..., (1.4)

where {αn}∞n=0 ⊂ [0, 1] is called the Mann iteration process (see Mann [7]).
Several stability results have been obtained by various authors using different

contractive definitions. Harder and Hicks [4] obtained interesting stability results
for some iteration procedures using various contractive definitions. Rhoades [11,
12] generalized the results of Harder and Hicks [4] to a more general contractive
mapping. In Osilike [9], a generalization of some of the results of Harder and Hicks
[4] and Rhoades [12] was obtained by employing the following contractive definition:
there exist a constant L ≥ 0 and α ∈ [0, 1[ such that

d(Tx, Ty) ≤ Ld(x, Tx) + αd(x, y),∀x, y ∈ E. (1.5)

Imoru and Olatinwo [5] obtained some stability results for Picard and Mann itera-
tion procedures by using a more general contractive condition than those of Harder
and Hicks [4], Rhoades [12], Osilike [9], Osilike and Udomene [10] and Berinde
[2]. In the paper [5], the following contractive definition was employed: there exist
α ∈ [0, 1[ and a monotone increasing function ϕ : R+ → R+, with ϕ(0) = 0, such
that,

d(Tx, Ty) ≤ ϕ(d(x, Tx)) + αd(x, y),∀x, y ∈ E. (1.6)

A function h : R+ → R+ is called a comparison function if:
(i) h is monotone increasing;
(ii) lim

n→∞
hn(t) = 0,∀t ≥ 0 (where hn denotes the n-times repeated composition

of h with itself).
We remark here that every comparison function satisfies the condition h(0) = 0.

In 2006, Imoru and Olatinwo [6] proved some stability results for Picard and
Mann iteration processes using the following contractive conditions: there exist a
constant α ∈ [0, 1[ and a monotone increasing function φ : R+ → R+ with φ(0) = 1,
such that,

d(Tx, Ty) ≤ αd(x, y)φ(d(x, Tx)),∀x, y ∈ E. (1.7)

2. Preliminaries

In a recent paper of Branciari [3], a generalization of Banach [1] was established.
In that paper, Branciari [3] employed the following contractive integral inequality
condition: there exist α ∈ [0, 1[ such that ∀x, y ∈ E, we have

d(Tx,Ty)∫
0

ϕ(t)d(t) ≤ α
d(x,y)∫
0

ϕ(t)d(t), (2.1)

where ϕ : R+ → R+ is a Lebesgue-integrable mapping which is summable, nonneg-

ative and such that for each ε > 0,
ε∫
0

ϕ(t)dv(t) > 0.
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In 2010, Olatinwo [8] introduced the following contractive integral inequality
condition: there exist a real number α ∈ [0, 1[ and monotone increasing functions
v, ψ : R+ → R+ such that ψ(0) = 0 and ∀x, y ∈ E, we have

d(Tx,Ty)∫
0

ϕ(t)dv(t) ≤ ψ

 d(x,Tx)∫
0

ϕ(t)dv(t)

+ α

d(x,y)∫
0

ϕ(t)dv(t), (2.2)

where ϕ : R+ → R+ in both cases is as defined in (2.1).
Remark 2.1. If in condition (2.2):
i) we have ϕ(t) = 1 and v(t) = t then we get condition (1.6).
ii) we have ϕ(t) = 1 and v(t) = t and ψ(u) = Lu,L ≥ 0,∀u ∈ R+, then we obtain
condition (1.5).
iii) we have ψ(u) = 0,∀u ∈ R+, then we obtain condition (2.1).

Following Branciari [3] and Olatinwo [8], we now state the following contractive
conditions of integral type which shall be employed in establishing our results.
For a selfmapping T : E → E, there exist a constant α ∈ [0, 1[ and monotone
increasing functions φ, v : R+ → R+ with φ(0) = 1, such that

d(Tx,Ty)∫
0

ϕ(t)dv(t) ≤ αφ

 d(x,Tx)∫
0

ϕ(t)dv(t)

 d(x,y)∫
0

ϕ(t)dv(t),∀x, y ∈ E, (2.3)

where ϕ : R+ → R+ is a Lebesgue-Stieltjes integrable mapping which is summable,

nonnegative and such that for each ε > 0,
ε∫
0

ϕ(t)dv(t) > 0.

Remark 2.2. The contractive condition (2.3) is more general than those considered
by Olatinwo [8], Imoru and Olatinwo [6] and several others in the following sense:
i) If in (2.3), we have

φ (u) = (
ψ(u)

ρ
+ 1), ρ =

d(x,y)∫
0

ϕ(t)dv(t) 6= 0,∀x, y ∈ E, x 6= y, u ∈ R+,

where ψ : R+ → R+ is also a monotone increasing function such that ψ(0) = 0,
then we obtain condition (2.2) employed in Olatinwo [8].
ii) If φ (u) = 1,∀u ∈ R+, then we have the condition (2.1) employed in Branciari
[3] .
iii) If in condition (2.3), we have ϕ(t) = 1 and v(t) = t, then we get condition (1.7)
employed in Imoru and Olatinwo [6].
iv) If in (2.3)

φ (u) = (
ψ(u)

d(x, y)
+ 1), d(x, y) 6= 0,∀x, y ∈ E, x 6= y, u ∈ R+,

where ψ : R+ → R+ is also a monotone increasing function such that ψ(0) = 0,
and

ϕ(t) = 1, v(t) = t,

then we obtain condition (1.6).
v) If in (2.3)

φ (u) = (
Lu

d(x, y)
+ 1), L ≥ 0, d(x, y) 6= 0,∀x, y ∈ E, x 6= y, u ∈ R+,
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and

ϕ(t) = 1, v(t) = t,

then we obtain condition (1.5).
We shall require the following lemmas in the sequel.

Lemma 2.1. (Berinde [2]) If is a real number such that 0 < δ < 1, and {ε′n}
∞
n=0

is a sequence of positive numbers such that lim
n→∞

ε′n = 0 then for any sequence of

positive numbers {un}∞n=0 satisfying

un+1 ≤ δun + ε′n, n = 0, 1, ...,

we have

lim
n→∞

un = 0.

Lemma 2.2. (Olatinwo [8]) Let (E, d) be a complete metric space and ϕ : R+ →
R+ a Lebesgue-Stieltjes integrable mapping which is summable, nonnegative, and

such that for each ε > 0,
ε∫
0

ϕ(t)dv(t) > 0. Suppose that {un}∞n=0 , {vn}
∞
n=0 ⊂ E and

{an}∞n=0 ⊂ ]0, 1[ are sequences such that∣∣∣∣∣d(un, vn)−
d(un,vn)∫

0

ϕ(t)dv(t)

∣∣∣∣∣ ≤ an,
with lim

n→∞
an = 0. Then

d(un, vn)− an ≤
d(un,vn)∫

0

ϕ(t)dv(t) ≤ d(un, vn) + an. (2.4)

Remark 2.3. Lemma 2.2 is also applicable in normed linear space setting since
metric is induced by norm. That is, we have

d(x, y) = ‖x− y‖ ,∀x, y ∈ E,
whenever we are working in a normed linear space.

3. Main results

We give here our main results.

Theorem 3.1. Let (E, d) be a complete metric space and T : E → E a selfmap of
E satisfying condition (2.3). Suppose T has a fixed point p. Let x0 ∈ E and let

xn+1 = Txn, n = 0, 1...,

be the Picard iteration associated to T . Let v, φ : R+ → R+ be monotone increasing
functions such that φ(0) = 1 and ϕ : R+ → R+ a Lebesgue-Stieltjes integrable map-

ping which is summable, nonnegative and such that for each ε > 0,
ε∫
0

ϕ(t)dv(t) > 0.

Then, the Picard iteration process is T -stable.

Proof. Let {y∞n=0} ⊂ E and εn = d(yn+1, T yn), and suppose lim
n→∞

εn = 0. Then,

we shall establish that lim
n→∞

yn = p. Then, by using condition (2.3), Lemma 2.2 and

the triangle inequality as follows. Let {an}∞n=0 ⊂ ]0, 1[ . Then,
d(yn+1,p)∫

0

ϕ(t)dv(t) ≤ d(yn+1, p) + an
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≤ d(yn+1, T yn) + d(Tyn, p) + an

≤
d(yn+1,Tyn)∫

0

ϕ(t)dv(t) +
d(Tyn,p)∫

0

ϕ(t)dv(t) + 3an

≤
εn∫
0

ϕ(t)dv(t) + αφ

(
d(p,Tp)∫

0

ϕ(t)dv(t)

)
(
d(yn,p)∫

0

ϕ(t)dv(t)) + 3an

≤ αφ(0)(
d(yn,p)∫

0

ϕ(t)dv(t)) +
εn∫
0

ϕ(t)dv(t) + 3an,

therefore
d(yn+1,p)∫

0

ϕ(t)dv(t) ≤ α
d(yn,p)∫
0

ϕ(t)dv(t) +

εn∫
0

ϕ(t)dv(t) + 3an. (3.1)

We can now express (3.1) in the form un+1 ≤ δun + ε′n,
where

0 ≤ δ = α < 1, un =

d(Tyn,p)∫
0

ϕ(t)dv(t),

and

ε′n =

εn∫
0

ϕ(t)dv(t) + 3an,

with

lim
n→∞

ε′n = lim
n→∞

(

εn∫
0

ϕ(t)dv(t) + 3an) = 0,

so that by Lemma 2.1 and the fact that
ε∫
0

ϕ(t)dv(t) > 0, for each ε > 0 we have

that lim
n→∞

d(Tyn,p)∫
0

ϕ(t)dv(t) = 0 from which it follows that lim
n→∞

d(Tyn, p) = 0, that

is lim
n→∞

yn = p.

Conversely, let lim
n→∞

yn = p. Then, by the contractive condition (2.3), Lemma 2.2

and the triangle inequality again, we have
εn∫
0

ϕ(t)dv(t) =
d(yn+1,Tyn)∫

0

ϕ(t)dv(t)

≤ d(yn+1, T yn) + an
≤ d(yn+1, p) + d(p, Tyn) + an

≤
d(yn+1,p)∫

0

ϕ(t)dv(t) +
d(p,Tyn)∫

0

ϕ(t)dv(t) + 3an

≤
d(yn+1,p)∫

0

ϕ(t)dv(t) + αφ

(
d(p,Tp)∫

0

ϕ(t)dv(t)

)
(
d(yn,p)∫

0

ϕ(t)dv(t)) + 3an

≤
d(yn+1,p)∫

0

ϕ(t)dv(t) + αφ(0)(
d(yn,p)∫

0

ϕ(t)dv(t)) + 3an

≤
d(yn+1,p)∫

0

ϕ(t)dv(t) + α
d(yn,p)∫

0

ϕ(t)dv(t)) + 3an → 0 as n→∞.

Again, using the condition on ϕ yields lim
n→∞

εn = 0. �
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Remark 3.1. Theorem 3.1 is a generalization and extension of Theorem 3.1 of
Olatinwo [8]. Theorem 3.1 is also a generalization of the results obtained in [5, 6,
2, 4, 11, 12].

Theorem 3.2. Let (E, ‖.‖) be a normed linear space and T : E → E a selfmapping
of E satisfying condition (2.3). Suppose T has a fixed point p. Let x0 ∈ E, and let

xn+1 = (1− αn)xn + αnT (xn), αn ∈ ]0, 1] , n = 0, 1, ...

be the Mann iteration process such that 0 < γ ≤ αn, (n = 0, 1...). Let v, ψ :
R+ → R+ be monotone increasing functions such that ψ(0) = 0 and ϕ : R+ → R+

a Lebesgue-Stieltjes integrable mapping which is summable, nonnegative and such

that for each ε > 0,
ε∫
0

ϕ(t)dv(t) > 0. Then, the Mann iteration process is T -stable.

Proof. Let {y∞n=0} ⊂ E and εn = ‖yn+1 − (1− αn)yn − αnT (yn)‖ , and suppose
lim
n→∞

εn = 0. Then, we shall establish that lim
n→∞

yn = p. Then, by using condition

(2.3), Lemma 2.3 and the triangle inequality as follows. Let {an}∞n=0 ⊂ ]0, 1[ . Then,
‖yn+1−p‖∫

0

ϕ(t)dv(t) ≤ ‖yn+1 − p‖+ an

≤ ‖yn+1 − (1− αn)yn − αnT (yn)‖+ ‖(1− αn)yn + αnT (yn)− p‖+ an
≤ εn + ‖(1− αn)yn + αnT (yn)− (1− αn + αn)p‖+ an
≤ (1− αn) ‖yn − p‖+ αn ‖T (yn)− Tp‖+ an + εn

≤ (1− αn)
‖yn−p‖∫

0

ϕ(t)dv(t) + αn
‖T (yn)−Tp‖∫

0

ϕ(t)dv(t) + 3an + εn

≤ (1−αn)
‖yn−p‖∫

0

ϕ(t)dv(t)+αnαφ

(
‖p−Tp‖∫

0

ϕ(t)dv(t)

)
‖yn−p‖∫

0

ϕ(t)dv(t)+3an+εn

≤ (1− αn)
‖yn−p‖∫

0

ϕ(t)dv(t) + αnαφ (0)
‖yn−p‖∫

0

ϕ(t)dv(t) + 3an + εn

≤ (1− (1− α)αn)
‖yn−p‖∫

0

ϕ(t)dv(t) + εn + 3an,

therefore

‖yn+1−p‖∫
0

ϕ(t)dv(t) ≤ (1− (1− α)γ)

‖yn−p‖∫
0

ϕ(t)dv(t) + εn + 3an. (3.2)

We can now express (3.2) in the form un+1 ≤ δun + ε′n,
where

0 ≤ δ = 1− (1− α)γ < 1, un =

‖yn−p‖∫
0

ϕ(t)dv(t),

and

ε′n = εn + 3an,

with
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lim
n→∞

ε′n = lim
n→∞

(εn + 3an) = 0,

applying Lemma 2.1 in (3.2) yields lim
n→∞

yn = p.

Conversely, let lim
n→∞

yn = p. Then, by the contractive condition (2.3), Lemma 2.2

and the triangle inequality again, we have
εn∫
0

ϕ(t)dv(t) =
‖yn+1−(1−αn)yn−αnT (yn)‖∫

0

ϕ(t)dv(t)

≤ ‖yn+1 − (1− αn)yn − αnT (yn)‖+ an
≤ ‖yn+1 − p‖+ ‖(1− αn + αn)p− (1− αn)yn − αnT (yn)‖+ an

≤ ‖yn+1 − p‖+ (1− αn) ‖p− yn‖+ αn
‖T (yn)−Tp‖∫

0

ϕ(t)dv(t) + αnan + an

≤ ‖yn+1 − p‖+ (1− αn) ‖p− yn‖+ αnan + an

+αnαφ

(
‖p−Tp‖∫

0

ϕ(t)dv(t)

)
‖yn−p‖∫

0

ϕ(t)dv(t)

≤ ‖yn+1 − p‖+ (1− αn) ‖p− yn‖

+αnα
‖yn−p‖∫

0

ϕ(t)dv(t) + αnan + an → 0 as n→∞.

Again, using the condition on ϕ yields lim
n→∞

εn = 0. �

Remark 3.2. Our Theorem 3.2 of this paper is a generalization of Olatinwo [8].
Theorem 3.2 is also a generalization of the results obtained by Imoru and Olatinwo
[6] and this is a further improvement to many existing known results in literature.
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