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ϕ-MAPS ON G−CONE METRIC SPACES
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MAHPEYKER ÖZTÜRK, METİN BAŞARIR

Abstract. In this paper, we prove some fixed point theorems for mappings
in G−cone metric space which is defined by I. Beg, M. Abbas and T. Nazir

in [5] via some contractive conditions related to ϕ-maps. Our results are

generalization and extension of several well-known results related to fixed point
theory.

1. Introduction

Since fixed point theory plays a major role in mathematics and applied sciences,
such as optimization, mathematical models, economy and medicine. The metric
fixed point theory has been researched extensively in the past two decades. The
concept of the metric spaces different generalizations have been improved by Gahler
[9],[10] and Dhage [1]. Gahler studied 2-metric spaces and also Dhage’s theory was
related to D-metric spaces.

In 2005, Mustafa and Sims [13] introduced a new structure of generalized metric
spaces which are called G− metric spaces as a generalization of metric spaces. Af-
terwards Mustafa et al. [14]-[16] obtained several fixed point theorems for mappings
satisfying different contractive conditions in G− metric spaces.

Later on, Huang and Zhang [4] generalized the concept of metric spaces, replac-
ing the set of real numbers by an ordered Banach space, hence they have defined
the cone metric spaces. They also described the convergence of sequences and in-
troduced the notion of completeness in cone metric spaces. They have proved some
fixed point theorems of contractive mappings on complete cone metric space with
the assumption of normality of a cone. Subsequently, various authors have gener-
alized the results of Huang and Zhang and have studied fixed point theorems for
normal and non-normal cones.
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Recently, I. Beg, M. Abbas and T. Nazir [5] introduced G− cone metric spaces
which are generalization of G− metric spaces and cone metric spaces. They proved
some topological properties of these spaces such as convergence properties of se-
quences and completeness. Some fixed point theorems satisfying certain contractive
conditions have been also obtained.

Some theorems which given with ϕ−maps have been proved by Cristina Di Pari
and Pasquale Vetro [2] in cone metric spaces and W. Shatanawi [12] also obtained
some fixed point results in G− metric spaces.

The purpose of this paper is to obtain some fixed point results which satisfy
generalized contractive conditions defined by generalized ϕ−maps. Our results are
generalizations of some theorems in [2], [6], [7], [12].

2. Basic Facts and Definitions

We give some facts and definitions which we need them in the sequel. First we
give definition of generalized cone.

Let B be a real Banach space and K be a subset of B. K is called a cone if and
only if

i. K is closed, nonempty and K 6= {0} ,

ii. a, b ∈ R, a, b ≥ 0, x, y ∈ K ⇒ ax+ by ∈ K, more generally if a, b, c ∈ R,

a, b, c ≥ 0, x, y, z ∈ K ⇒ ax+ by + cz ∈ K,

iii. x ∈ K and −x ∈ K ⇒ x = 0.

Given a cone K ⊂ E, we define a partial ordering ≤ with respect to K by x ≤ y
if and only if y− x ∈ K. We write x < y if x ≤ y but x 6= y; x� y if y− x ∈ intK,
where intK is the interior of K.

There exists two kinds of cones which are normal and non normal cones. The
cone K is a normal cone if

inf {‖x+ y‖ : x, y ∈ Kand ‖x‖ = ‖y‖ = 1} > 0 (2.1)

or equivalently, if there is a number M > 0 such that for all x, y ∈ E,
0 ≤ x ≤ y ⇒ ‖x‖ ≤M ‖y‖ . (2.2)

The least positive number satisfying (2.2) is called normal constant of K. From
(2.1) one can conclude that K is a non normal if and only if there exist sequences
xn, yn ∈ K such that

0 ≤ xn ≤ xn + yn, lim
n→∞

(xn + yn) = 0,but lim
n→∞

xn 6= 0

Rezapour and Hamlbarani [11] proved that there are no normal cones with con-
stants M < 1 and for each k > 1 there are cones with normal constants M > k.

Definition 2.1. [5] Let X be nonempty set, B be a real Banach space and K ⊂ B
be a cone. Suppose the mapping G : X ×X ×X → B satisfies
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G1. G (x, y, z) = 0 if x = y = z,

G2. 0 < G (x, x, y) ; whenever x 6= y, for all x, y ∈ X,

G3. G (x, x, y) ≤ G (x, y, z) ; whenever y 6= z, for all x, y, z ∈ X,

G4. G (x, y, z) = G (x, z, y) = G (y, x, z) = ... (Symmetric in all three variables) ,

G5. G (x, y, z) ≤ G (x, a, a) +G (a, y, z) for all x, y, z, a ∈ X.

Then G is called a generalized cone metric on X and X is called a generalized
cone metric space or more specifically a G−cone metric space. It is obvious that
the concept of a G−cone metric space is more general than a G− metric space and
a cone metric space.

Definition 2.2. [5] A G−cone metric space X is symmetric if

G (x, y, y) = G (y, x, x)

for all x, y ∈ X.

The following examples are symmetric and non symmetricG−cone metric spaces,
respectively.

Example 1. [5] Let (X, d) be a cone metric space. Define G : X×X×X → B, by

G (x, y, z) = d (x, y) + d (y, z) + d (x, z) .

Example 2. [5] Let X = {a, b} , B = R3, K = {(x, y, z) ∈ B : x, y, z ≥ 0} . Define
G : X ×X ×X → B by

G (a, a, a) = (0, 0, 0) = G (b, b, b) ,

G (a, b, b) = (0, 1, 1) = G (b, a, b) = G (b, b, a) ,

G (b, a, a) = (0, 1, 0) = G (a, b, a) = G (a, a, b) ,

X is non symmetric G−cone metric space as G (a, a, b) 6= G (a, b, b) .

Proposition 2.3. [5] Let X be a G−cone metric space, define

dG : X ×X → B

by
dG (x, y) = G (x, y, y) +G (y, x, x) .

Then (X, dG) is a cone metric space. Also it can be written that

G (x, y, y) ≤ 2

3
dG (x, y) .

If X is a symmetric G−cone metric space, then

dG (x, y) = 2G (x, y, y) ,

for all x, y ∈ X.
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Throughout the paper we assume that B is a real Banach space and K is a non
normal cone in B with intK 6= ∅. By this way, we uniquely determine the limit of
a sequence.

Definition 2.4. [5] Let X be a G−cone metric space and {xn} be a sequence in X
and x ∈ X. We say that {xn} is a

i. Convergent sequence if for every c ∈ B with 0� c,there is N ∈ N such that
for all m,n > N, G (xm, xn, x)� c for some fixed x in X.

ii. Cauchy sequence if for every c ∈ B with 0 � c, there is N ∈ N such that
for all m,n, l > N, G (xm, xn, xl)� c.

A G−cone metric space X is said to be complete if every Cauchy sequence in X
is convergent in X.

Proposition 2.5. [5] Let X be a G−cone metric space then the followings are
equivalent;

i. {xn} converges to x.

ii. G (xn, xn, x)→ 0 as n→∞.

iii. G (xn, x, x)→ 0 as n→∞.

iv. G (xm, xn, x)→ 0 as m,n→∞.

The following lemmas are about topological structure of G−cone metric space
and these lemmas have been proved in [5], so we give them without the proofs.

Lemma 2.6. Let X be a G−cone metric space, {xm} , {yn} and {zl} be sequences
in X such that xm → x, yn → y and zl → z, then G (xm, yn, zl) → G (x, y, z) as
m,n, l→∞.

Lemma 2.7. Let {xn} be sequence in a G−cone metric space X and x ∈ X. If
{xn} converges to x and {xn} converges to y, then x = y.

Lemma 2.8. Let {xn} be sequence in a G−cone metric space X and if {xn}
converges to x ∈ X, then G (xm, xn, x)→ 0 as m,n→∞.

Lemma 2.9. Let {xn} be sequence in a G−cone metric space X and x ∈ X. If
{xn} converges to x, then {xn} is a Cauchy sequence.

Lemma 2.10. Let {xn} be sequence in a G−cone metric space X and if {xn} is a
Cauchy sequence in X, then G (xm, xn, xl)→ 0 as m,n, l→∞.

Remark. [3] If B is a real Banach space with cone K and if a ≤ λa where a ∈ K
and 0 < λ < 1 then a = 0.
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Definition 2.11. Let T and S be self mappings of a set X. If w = Tx = Sx for
some x in X, then x is called a coincidence point of T and S and w is called a
point of coincidence of f and g.

Definition 2.12. The mappings T, S : X → X are weakly compatible, if for every
x ∈ X, the following holds:

TSx = STx whenever Sx = Tx. (2.3)

Definition 2.13. [2] Let K be a cone defined as above. A nondecreasing function
ϕ : K → K is called a ϕ−map if the following conditions hold,

i. ϕ (θ) = θ and θ < ϕ (z) < z for z ∈ K\ {θ} ,

ii. z ∈ intK implies z − ϕ (z) ∈ intK,

iii. limn→∞ ϕn (z) = θ for every z ∈ K\ {θ} .

3. Main Results

In [2] some fixed point theorems related to ϕ−maps have been obtained. Also in a
G−metric space, fixed point theorems for contractive mappings satisfying ϕ−maps
have been proved by W.Shatanawi [12] Now, we get some fixed point results with
ϕ− pairs in a G−cone metric space.

Theorem 3.1. Let X be a G−cone metric space and let the mappings T, S : X →
X satisfy the following;

G (Tx, Ty, Tz) ≤ ϕ (G (Sx, Sy, Sz)) (3.1)

for all x, y, z ∈ X.Suppose that T and S are weakly compatible with T (X) ⊂ S (X) .
If T (X) or S (X) is a complete subspace of X, then the mappings T and S have a
unique common fixed point in X.

Proof. Let x0 ∈ X be arbitrary. Choose x1 ∈ X such that Tx0 = Sx1. This is true
since T (X) ⊂ S (X) . Continuing this process, having chosen xn ∈ X, we choose
xn+1 ∈ X such that Txn = Sxn+1 for all n ∈ N. If Txn = Txn−1 for some n ∈ N,
then Txm = Txn for all m ∈ N with m > n and so {Txn} is a Cauchy sequence.
We assume that Txn 6= Txn−1 for all n ∈ N. By (3.1), we have

G (Txn+1, Txn+1, Txn) ≤ ϕ (G (Sxn+1, Sxn+1, Sxn))

= ϕ (G (Txn, Txn, Txn−1))

≤ ϕ2 (G (Sxn, Sxn, Sxn−1))

= ϕ2 (G (Txn−1, Txn−1, Txn−2))

.

.

.

≤ ϕn (G (Tx1, Tx1, Tx0)) .
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Given θ � c and we choose a positive real number δ such that c−ϕ (c)+N (θ + δ) ⊂
intK, where N (θ + δ) = {y ∈ B : ‖y‖ < δ} . Also choose a natural number N such
that ϕm (G (Tx1, Tx1, Tx0))� c− ϕ (c) for all m ≥ N. Consequently

G (Txm+1, Txm+1, Txm)� c− ϕ (c)

for all m ≥ N. Fix m ≥ N and we prove

G (Txm, Txn+1, Txn+1)� c (3.2)

for all n ≥ m. We write (3.2) holds when n = m. We suppose that (3.2) holds for
some n ≥ m. Then we have by using G5,

G (Txm, Txn+2, Txn+2) ≤ G (Txm, Txm+1, Txm+1) +G (Txm+1, Txn+2, Txn+2)

≤ G (Txm, Txm+1, Txm+1) +G (Txm+1, Txn+2, Txn+2)

� c− ϕ (c) + ϕ (G (Sxm+1, Sxn+2, Sxn+2))

� c− ϕ (c) + ϕ (G (Txm, Txn+1, Txn+1))

� c− ϕ (c) + ϕ (c) = c.

Therefore, (3.2) holds when m = n + 1. By induction, we deduce (3.2) holds for
all m,n ≥ N. Hence {Txn} is a Cauchy sequence . Suppose T (X) is a complete
subspace of X, then there exists w ∈ T (X) ⊂ S (X) such that Txn → w and also
Sxn → w. Let v ∈ X be such that Sv = w. We prove that Sv = Tv.

Fix θ � c and we choose a natural number N such that G (w, Txn, Txn) � c
2

and G (Sxn, Sv, Sv)� c
2 . Then by using G5,

G (w, Tv, Tv) ≤ G (w, Txn, Txn) +G (Txn, T v, Tv)

≤ G (w, Txn, Txn) + ϕ (G (Sxn, Sv, Sv))

by using property of ϕ we get

F (G (w, Tv, Tv)) < G (w, Txn, Txn) +G (Sxn, Sv, Sv)

� c

2
+
c

2
= c.

Thus, G (w, Tv, Tv)� c
i for all i ≥ 1. Since c

i −G (w, Tv, Tv) ∈ K, for all i, as i→
∞ we get −G (w, Tv, Tv) ∈ K. But G (w, Tv, Tv) ∈ K. Therefore G (w, Tv, Tv) = θ
which implies that Sv = Tv = w, that is w, is a coincidence point of T and S. To
show that w is a common fixed point of T and S, we need to use the hypothesis of
weak compatibility of the mappings. As Tv = Sv, by weak compatibility of T and
S, it follows that

Tw = TSv = STv = Sw.

We show that Tw = Sw = w. If Sw 6= w, by condition (3.1), we get

G (Tw, Tw, Tv) ≤ ϕ (G (Sw, Sw, Sv))

< G (Sw, Sw, Sv)

= G (Tw, Tw, Tv)

which gives us that Tw = w = Sw. Then w is a common fixed point for the
mappings T and S.
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Finally, let us suppose that u is another common fixed point of T and S. For the
proof we use (3.1).

G (w,w, u) = G (Tw, Tw, Tu)

≤ ϕ (G (Sw, Sw, Su))

< G (Sw, Sw, Su) = G (w,w, u)

which is a contradiction, so uniqueness is obtained. �

Theorem 3.2. Let X be a complete symmetric G−cone metric space. Suppose that
the mappings T, S : X → X satisfy the following

G (Tx, Ty, Tz) ≤ kG (Sx, Sy, Sz) (3.3)

for all x, y, z ∈ X, where k ∈ [0, 1) is a constant. If T (X) ⊂ S (X) and S (X) is
a complete subspace of X, then T and S have a unique point of coincidence in X.
Moreover if T and S are weakly compatible, T and S have a unique common fixed
point.

Proof. Assume that T satisfies the inequality (3.3), then for all x, y ∈ X
G (Tx, Ty, Ty) ≤ kG (Sx, Sy, Sy) (3.4)

and

G (Ty, Tx, Tx) ≤ kG (Sy, Sx, Sx) . (3.5)

Since X is a symmetric G−cone metric space, by adding (3.4) and (3.5) we have

dG (Tx, Ty) ≤ kdG (Sx, Sy) (3.6)

for all x, y ∈ X.
Let x0 ∈ X be an arbitrary point in X. Choose x1 ∈ X such that Tx0 = Sx1.

This is true since T (X) ⊂ S (X) . Continuing this process, having chosen xn ∈ X,
we choose xn+1 ∈ X such that Txn = Sxn+1 for all n ∈ N. Then we have

dG (Sxn+1, Sxn) = dG (Txn, Txn−1) ≤ kdG (Sxn, Sxn−1)

≤ k2dG (Sxn−1, Sxn−2)

≤ ... ≤ kndG (Sx1, Sx0) .

Then, for n > m, we have

dG (Sxn, Sxm) ≤ dG (Sxn, Sxn−1) + dG (Sxn−1, Sxn−2) + ...+ dG (Sxm+1, Sxm)

≤
(
kn−1 + kn−2 + ...+ km

)
dG (Sx1, Sx0)

≤ km

1− k
dG (Sx1, Sx0) .

Let 0 � c be given. Following similar arguments to those given in [11], we con-

clude that km

1−kdG (Sx1, Sx0) � c. So we have dG (Sxn, Sxm) � c, for all n > m.

Therefore {Sxn} is a Cauchy sequence. Since S (X) is a complete subspace of X,
then there exists a w ∈ S (X) such that Sxn → w as n → ∞. Hence we can find
v in X such that Sv = w. We show that Sv = Tv. Given θ � c and we choose a
natural number N such that
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dG (Sxn, w)� c

2
and dG (Txn, w)� c

2
.

Then,

dG (w, Tv) ≤ dG (w, Txn) + dG (Txn, T v)

≤ dG (w, Txn) + kdG (Sxn, Sv)

� c

2
+
c

2
= c.

Thus, dG (w, Tv)� c
i for all i ≥ 1. Since c

i −dG (w, Tv) ∈ K for all i, as i→∞ we
obtain −dG (w, Tv) ∈ K. But dG (w, Tv) ∈ K. Hence, dG (w, Tv) = θ which implies
that Tv = Sv = w. So that v is a coincidence of T and S.

Now we use the hypothesis that T and S are weakly compatible to deduce that
w is a common fixed point. Since Tv = Sv, by weak compatibility of T and S, this
gives that

Tw = TSv = STv = Sw.

We show that Tw = Sw = w. If Sw 6= w, by condition (3.6) we get

dG (Tw, Tv) ≤ kdG (Sw, Sv) = kdG (Tw, Tv)

which gives that Tw = Sw = w. Then w is a common fixed point for T and S.
The uniqueness can be obtained easily, so we omit it. �

Corollary 3.3. Let X be a complete symmetric G−cone metric space. Suppose
that the mapping T : X → X satisfies the following

G (Tx, Ty, Tz) ≤ kG (x, y, z) (3.7)

for all x, y, z ∈ X, where k ∈ [0, 1) is a constant. Then T has unique common fixed
point.

Proof. The proof can be obtained from Theorem 3.2 by taking S = I where I is
identity map. �

Theorem 3.4. Let X be a complete G−cone metric space. Suppose that the map
T : X → X satisfies

G (Tx, Ty, Tz) ≤ ϕ (M (x, y, z)) (3.8)

where

M (x, y, z) ∈ {G (x, y, z) , G (x, Tx, Tx) , G (y, Ty, Ty) , G (Tx, y, z)} (3.9)

for all x, y, z ∈ X. Then T has a unique fixed point in X.

Proof. Choose x0 ∈ X. Let xn = Txn−1, for n ∈ N. Suppose that xn 6= xn−1, for
each n ∈ N. Thus we have

G (xn, xn+1, xn+1) = G (Txn−1, Txn, Txn) ≤ ϕ (M (xn−1, xn, xn))
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where

M (xn−1, xn, xn) ∈ {G (xn−1, xn, xn) , G (xn−1, Txn−1, Txn−1) ,

G (xn, Txn, Txn) , G (Txn−1, xn, xn)}
= {G (xn−1, xn, xn) , G (xn−1, xn, xn) ,

G (xn, xn+1, xn+1) , G (xn, xn, xn)}
= {G (xn−1, xn, xn) , G (xn, xn+1, xn+1) , θ} .

If M (xn−1, xn, xn) = G (xn, xn+1, xn+1) , then

G (xn, xn+1, xn+1) ≤ ϕ (G (xn, xn+1, xn+1))

by the property of ϕ we have

G (xn, xn+1, xn+1) < G (xn, xn+1, xn+1)

which is impossible. If M (xn−1, xn, xn) = θ, then

G (xn, xn+1, xn+1) ≤ ϕ (θ) < θ

which is a contradiction. And at last, if M (xn−1, xn, xn) = G (xn−1, xn, xn) , then

G (xn, xn+1, xn+1) ≤ ϕ (G (xn−1, xn, xn))

and by using the same technique as in Theorem 3.1, we conclude that {xn} is a
Cauchy sequence. Since X is complete, xn is convergent to u ∈ X. Now we show
that u = Tu. For n ∈ N, we have by using G5

G (u, u, Tu) ≤ G (u, u, xn) +G (xn, xn, Tu)

= G (u, u, xn) +G (Txn−1, Txn−1, Tu)

≤ G (u, u, xn) + ϕ (M (xn−1, xn−1, u))

and

M (xn−1, xn−1, u) ∈ {G (xn−1, xn−1, u) , G (xn−1, Txn−1, Txn−1) ,

G (xn−1, Txn−1, Txn−1) , G (Txn−1, xn−1, u)}
= {G (xn−1, xn−1, u) , G (xn−1, xn, xn) ,

G (xn, xn−1, u)} .

Choose a natural number N1 such that G (u, u, xn) � c
2 , for all n ≥ N1. We

investigate these situations as follows;

Case 1: If M (xn−1, xn−1, u) = G (xn−1, xn−1, u) , then

G (u, u, Tu) ≤ G (u, u, xn) + ϕ (G (xn−1, xn−1, u))

< G (u, u, xn) +G (xn−1, xn−1, u)

� c

2
+
c

2
= c.

Case 2: If M (xn−1, xn−1, u) = G (xn−1, xn, xn) , then

G (u, u, Tu) ≤ G (u, u, xn) + ϕ (G (xn−1, xn, xn))

< G (u, u, xn) +G (xn−1, xn, xn)

� c.
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Case 3: If M (xn−1, xn−1, u) = G (xn, xn−1, u) , then

G (u, u, Tu) ≤ G (u, u, xn) + ϕ (G (xn, xn−1, u))

< G (u, u, xn) +G (xn, xn−1, u)

≤ G (u, u, xn) +G (xn, xn−1, , xn−1) +G (xn−1, xn−1, u)

� c.

whenever n ∈ N. Thus in all cases G (u, u, Tu) � c
i , for all i ≥ 1. So c

i −
G (u, u, Tu) ∈ K, for all i ≥ 1. Since c

i → 0 as i → ∞ and K is closed, hence
−G (u, u, Tu) ∈ K and G (u, u, Tu) = θ therefore u = Tu.

And this gives us the desired result. �

The following theorem is an extension of Theorem 2.1 and 2.2 in [8] to G−cone
metric spaces.

Theorem 3.5. Let X be a complete G−cone metric space, T a self map of X
satisfying for all x, y, z ∈ X

G (Tx, Ty, Tz) ≤ kM (x, y, z) (3.10)

where

M (x, y, z) ∈ {G (x, y, z) , G (x, Tx, Tx) , G (y, Ty, Ty) , G (z, Tz, Tz)

[G (x, Ty, Ty) +G (z, Tx, Tx)] /2, [G (x, Ty, Ty) +G (y, Tx, Tx)] /2,

[G (y, Tz, Tz) +G (z, Ty, Ty)] /2, [G (x, Tz, Tz) +G (z, Tx, Tx)] /2}

and k is a constant satisfying 0 ≤ k < 1. Then T has a unique fixed point.

Proof. Applying the similar method as in Theorem 3.4 with taking ϕ (x) = kx,
where k ∈ [0, 1) . �

Theorem 3.6. Let X be a complete symmetric G−cone metric space, T a self map
of X satisfying for all x, y, z ∈ X

G (Tx, Ty, Tz) ≤ km (x, y, z) (3.11)

where
m (x, y, z) ∈ {G (x, y, z) , G (x, Tx, Tx) , G (y, Ty, Ty)

G (x, Ty, Ty) , G (y, Tx, Tx) , G (z, Tz, Tz)}
(3.12)

or
m∗ (x, y, z) ∈ {G (x, y, z) , G (x, x, Tx) , G (y, y, Ty)

G (x, x, Ty) , G (y, y, Tx) , G (z, z, Tz)}
(3.13)

here k is a constant satisfying k ∈ [0, 1). Then T has a unique fixed point.

Proof. Assume that T satisfies (3.11). Using (3.11) with z = y we have

G (Tx, Ty, Ty) ≤ km
′
(x, y, y)

we have

m
′
(x, y, y) ∈ {G (x, y, y) , G (x, Tx, Tx) , G (y, Ty, Ty) , G (x, Ty, Ty) ,

G (y, Tx, Tx)}
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and

m
′′

(x, y, y) ∈ {G (x, y, y) , G (x, x, Tx) , G (y, y, Ty) , G (x, x, Ty) ,

G (y, y, Tx)} .

By Proposition 2.3 we know that dG (x, y) = 2G (x, y, y) makes X to cone metric
space

m
′
(x, y) ∈ {dG (x, y) , dG (x, Tx) , dG (y, Ty) , dG (x, Ty) ,

dG (y, Tx)} .

Let x0 ∈ X and xn = Txn−1. Suppose that xn 6= xn+1, then

dG (xn, xn+1) = dG (Txn−1, Txn) ≤ km∗∗ (xn−1, xn)

where

m∗∗ (xn−1, xn) ∈ {dG (xn−1, xn) , dG (xn−1, Txn−1) , dG (xn, Txn) ,

dG (xn−1, Txn) , dG (xn, Txn−1)}
∈ {dG (xn−1, xn) , dG (xn, xn+1) , dG (xn−1, xn+1) , θ} .

We investigate these possibilities with four cases:

Case 1: If m∗∗ (xn−1, xn) = dG (xn−1, xn+1) , then

dG (xn, xn+1) ≤ kdG (xn−1, xn+1)

≤ k [dG (xn−1, xn) + kdG (xn, xn+1)]

≤ k

1− k
dG (xn−1, xn) ≤ kdG (xn−1, xn) .

Case 2: If m∗∗ (xn−1, xn) = dG (xn−1, xn+1) , then

dG (xn, xn+1) ≤ kdG (xn, xn+1)

we have dG (xn, xn+1) (1− k) ≤ θ, since k ∈ [0, 1) this a contradiction.

Case 3: If m∗∗ (xn−1, xn) = θ, then

dG (xn, xn+1) ≤ kθ

which contradict with the assumption of xn 6= xn+1.
And the last case we have

Case 4: If m∗∗ (xn−1, xn) = dG (xn−1, xn) , then

dG (xn, xn+1) ≤ kdG (xn−1, xn) ≤ k2dG (xn−2, xn−1)

≤ ... ≤ kndG (x0, x1) .

So we get the desired result. And the continuation of proof is same with the tecnique
as in [11] Theorem 2.3. By this way we obtain that T has a unique fixed point. �

And last we give an example for Theorem 3.1.
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Example 3. Let E = R and K = {x ∈ R : x ≥ 0} be a cone. Let X = [1,∞) with
the following metric

G (x, y, z) = d (x, y) + d (y, z) + d (x, z)

and the usual metric d (x, y) = |x− y| . Define the two maps T, S : X → X by

Tx = x,

Sx = 2x− 1,

for all x ∈ X. And let define the function ϕ : K → K by ϕt = 2
3 t, for all t ∈ K.

Then we have

i. TX ⊂ SX,
ii. T and S are weakly compatible maps,

iii. the condition (3.1) holds as,

G (Tx, Ty, Tz) = d (Tx, Ty) + d (Ty, Tz) + d (Tx, Tz)

= |Tx− Ty|+ |Ty − Tz|+ |Tx− Tz|
= |x− y|+ |y − z|+ |x− z|

≤ 4

3
(|x− y|+ |y − z|+ |x− z|)

=
2

3
(|2x− 2y|+ |2y − 2z|+ |2x− 2z|)

=
2

3
(|2x− 1− 2y + 1|+ |2y − 1− 2z + 1|+ |2x− 1− 2z + 1|)

=
2

3
(|Sx− Sy|+ |Sy − Sz|+ |Sx− Sz|)

=
2

3
G (Sx, Sy, Sz)

G (Tx, Ty, Tz) ≤ ϕ (G (Sx, Sy, Sz)) .

iv. T1 = S1 = 1.

Hence we have the conditions of Theorem 3.1 and we see that x = 1 is unique
common fixed point for T and S.
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[9] S. Gahler, 2- Metrische Raume and İhre Topologische Struktur, Mathematische Nachrichten
26 (1963) 115–148.

[10] S. Gahler, Zur Geometric 2-Metriche Raume, Revue Roumanie de Mathematiques Pures et

Appliqueés 11 (1966) 665–667.
[11] S. Rezapour, R. Hamlbarani, Some Notes on the Paper ”Cone Metric Spaces and Fixed Point

Theorems of Contractive Mappings”, J. Math. Anal. Appl. 345 (2008) 719–724.
[12] W. Shatanawi, Fixed Point Theory for Contractive Mappings Satisfying ϕ−Maps in G−

Metric Spaces, Fixed Point Theory and Appications 2010 (2010) 1–9.

[13] Z. Mustafa, A New Structure for Generalized Metric Spaces with Applications to Fixed Point
Theory, PhD Thesis, The University of New Castle, Australia (2005).

[14] Z. Mustafa, B. Sims, Some Remarks Concerning D−Metric Spaces, Proceedings of the Int.

Conference on Fixed Point Theory and Applications Yokohama, Yokohama, Japan, (2004)
189–198.

[15] Z. Mustafa, B. Sims, A New Approach to Generalized Metric Spaces, J. Nonlinear and Convex

Anal. 7 2 (2006) 289–297.
[16] Z. Mustafa, O. Hamed, F. Awawdeh, Some Fixed Point Theorem for Mappings on Complete

G−Metric Spaces, Fixed Point Theory and Applications 2008 (2008) 1–12.

Mahpeyker ÖZTÜRK
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