BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 3 Issue 1(2011), Pages 134-141.

SHARPNESS OF NEGOI'S INEQUALITY FOR THE EULER-MASCHERONI CONSTANT

(COMMUNICATED BY ARMEND SHABANI)

CHAO-PING CHEN

ABSTRACT. We present new estimates for the Euler-Mascheroni constant, which improve a result of Negoi.

1. INTRODUCTION

The Euler-Mascheroni constant $\gamma = 0.577215664\ldots$ is defined as the limit of the sequence

$$D_n = \sum_{k=1}^n \frac{1}{k} - \ln n \qquad (n \in \mathbb{N} := \{1, 2, 3, \ldots\}) \ .$$

Several bounds for $D_n - \gamma$ have been given in the literature [3, 4, 19, 22, 23, 24, 27] (see also [6, 20, 21]). For example, the following bounds for $D_n - \gamma$ were established in [19, 27]:

$$\frac{1}{2(n+1)} < D_n - \gamma < \frac{1}{2n} \qquad (n \in \mathbb{N}) \ .$$

The convergence of the sequence D_n to γ is very slow. Some quicker approximations to the Euler-Mascheroni constant were established in [5, 6, 7, 9, 8, 10, 15, 16, 18, 20, 21, 25, 26]. For example, Negoi [18] proved that the sequence

$$T_n = \sum_{k=1}^n \frac{1}{k} - \ln\left(n + \frac{1}{2} + \frac{1}{24n}\right)$$
(1.1)

is strictly increasing and convergent to γ . Moreover, the author proved that

$$\frac{1}{48(n+1)^3} < \gamma - T_n < \frac{1}{48n^3}.$$
(1.2)

The main objective of this work is to establish closer bounds for $\gamma - T_n$.

²⁰⁰⁰ Mathematics Subject Classification. Primary 11Y60; Secondary 40A05.

 $Key \ words \ and \ phrases.$ Euler-Mascheroni constant; Inequality; Rate of convergence; Digamma function.

^{©2011} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted January 5, 2011. Published January 17, 2011.

2. Lemmas

Before stating and proving the main theorems, we first include here some preliminary results.

The constant γ is deeply related to the gamma function $\Gamma(x)$ thanks to the Weierstrass formula [1, p. 255]:

$$\Gamma(x) = \frac{e^{-\gamma x}}{x} \prod_{k=1}^{\infty} \left\{ \left(1 + \frac{x}{k}\right)^{-1} e^{x/k} \right\}$$

for any real number x, except on the negative integers $\{0, -1, -2, ...\}$. The logarithmic derivative of the gamma function:

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

is known as the psi (or digamma) function.

The following recurrence and asymptotic formulas are well known for the psi function:

$$\psi(x+1) = \psi(x) + \frac{1}{x}$$
 (2.1)

(see [1, p.258]), and

$$\psi(x) \sim \ln x - \frac{1}{2x} - \frac{1}{12x^2} + \frac{1}{120x^4} - \frac{1}{252x^6} + \dots \quad (x \to \infty)$$
 (2.2)

(see [1, p.259]). From (2.1) and (2.2), we get

$$\psi(x+1) \sim \ln x + \frac{1}{2x} - \frac{1}{12x^2} + \frac{1}{120x^4} - \frac{1}{252x^6} + \dots \quad (x \to \infty) .$$
 (2.3)

It is also known [1, p.258] that

$$\psi(n+1) = -\gamma + \sum_{k=1}^{n} \frac{1}{k} .$$
(2.4)

The following lemmas are also needed in our present investigation.

Lemma 2.1. If the sequence $(\lambda_n)_{n \in \mathbb{N}}$ converges to zero and if there exists the following limit:

$$\lim_{n \to \infty} n^k (\lambda_n - \lambda_{n+1}) = l \in \mathbb{R} \qquad (k > 1) ,$$

then

$$\lim_{n \to \infty} n^{k-1} \lambda_n = \frac{l}{k-1} \qquad (k > 1)$$

This lemma is suitable for accelerating some convergences, or in constructing some asymptotic expansions. For proofs and other details, see, e.g. [11, 12, 13, 14, 15, 16, 17].

Lemma 2.2 ([2, Theorem 9]). Let $k \ge 1$ and $n \ge 0$ be integers. Then for all real numbers x > 0:

$$S_k(2n;x) < (-1)^{k+1} \psi^{(k)}(x) < S_k(2n+1;x),$$
(2.5)

where

$$S_k(p;x) = \frac{(k-1)!}{x^k} + \frac{k!}{2x^{k+1}} + \sum_{i=1}^p \left[B_{2i} \prod_{j=1}^{k-1} (2i+j) \right] \frac{1}{x^{2i+k}},$$

and B_i (i = 0, 1, 2, ...) are Bernoulli numbers, defined by

$$\frac{t}{e^t - 1} = \sum_{i=0}^{\infty} B_i \frac{t^i}{i!}$$

(see [1, p. 804]).

In particular, it follows from (2.5) that

$$\frac{1}{x} + \frac{1}{2x^2} + \frac{1}{6x^3} - \frac{1}{30x^5} + \frac{1}{42x^7} - \frac{1}{30x^9} < \psi'(x) < \frac{1}{x} + \frac{1}{2x^2} + \frac{1}{6x^3} - \frac{1}{30x^5} + \frac{1}{42x^7} - \frac{1}{30x^9} + \frac{5}{66x^{11}}, \quad x > 0.$$
(2.6)

From (2.1) and (2.6), we obtain

$$\frac{1}{x} - \frac{1}{2x^2} + \frac{1}{6x^3} - \frac{1}{30x^5} + \frac{1}{42x^7} - \frac{1}{30x^9} < \psi'(x+1) < \frac{1}{x} - \frac{1}{2x^2} + \frac{1}{6x^3} - \frac{1}{30x^5} + \frac{1}{42x^7}, \quad x > 0.$$
 (2.7)

3. Main results

3.1. We define the sequence $(u_n)_{n \in \mathbb{N}}$ by

$$u_n = \ln\left(n + \frac{1}{2} + \frac{1}{24n}\right) - \psi(n+1) - \frac{a}{\left(n + b + \frac{c}{n+d}\right)^3}.$$
 (3.1)

We are interested in finding the values of the parameters a, b, c and d such that $(u_n)_{n \in \mathbb{N}}$ is the *fastest* sequence which would converge to zero. This provides the best approximations of the form:

$$\psi(n+1) \approx \ln\left(n + \frac{1}{2} + \frac{1}{24n}\right) - \frac{a}{\left(n+b + \frac{c}{n+d}\right)^3}$$
 (3.2)

Our study is based on the above Lemma 2.1.

Theorem 3.1. Let the sequence $(u_n)_{n \in \mathbb{N}}$ be defined by (3.1). Then for

$$a = \frac{1}{48}, \quad b = \frac{83}{360}, \quad c = \frac{4909}{64800}, \quad d = \frac{11976997}{37112040},$$
 (3.3)

we have

$$\lim_{n \to \infty} n^8 (u_n - u_{n+1}) = \frac{1763157528883853}{83111968235520000}$$
(3.4)

and

$$\lim_{n \to \infty} n^7 u_n = \frac{1763157528883853}{581783777648640000} \ . \tag{3.5}$$

The speed of convergence of the sequence $(u_n)_{n\in\mathbb{N}}$ is given by the order estimate $O(n^{-7})$.

Proof. First of all, we write the difference $u_n - u_{n+1}$ as the following power series in n^{-1} :

$$u_{n} - u_{n+1} = \frac{1 - 48a}{16n^{4}} + \frac{-263 + 8640a + 17280ab}{1440n^{5}} \\ + \frac{139 - 3840a - 11520ab - 11520ab^{2} + 5760ac}{384n^{6}} \\ + \left(90720a + 362880ab + 362880ab^{3} + 544320ab^{2} - 272160ac \\ - 435456acb - 108864acd - 3685\right) \frac{1}{6048n^{7}} \\ + \left(-193536a - 967680ab + 774144acbd + 1935360acb^{2} + 193536acd^{2} \\ + 8663 + 2322432acb - 387072ac^{2} - 1935360ab^{3} - 967680ab^{4} \\ + 580608acd + 967680ac - 1935360ab^{2}\right) \frac{1}{9216n^{8}} + O\left(\frac{1}{n^{9}}\right) .$$

$$(3.6)$$

The fastest sequence $(u_n)_{n \in \mathbb{N}}$ is obtained when the first four coefficients of this power series vanish. In this case

$$a = \frac{1}{48}, \quad b = \frac{83}{360}, \quad c = \frac{4909}{64800}, \quad d = \frac{11976997}{37112040},$$
$$u_n - u_{n+1} = \frac{1763157528883853}{83111968235520000n^8} + O\left(\frac{1}{n^9}\right). \tag{3.7}$$

we have

Finally, by using Lemma 2.1, we obtain assertions (3.4) and (3.5) of Theorem 3.1. $\hfill \Box$

Solution (3.1) provides the best approximation of type (3.2):

$$\psi(n+1) \approx \ln\left(n + \frac{1}{2} + \frac{1}{24n}\right) - \frac{\frac{1}{48}}{\left(n + \frac{83}{360} + \frac{\frac{4909}{64800}}{n + \frac{11976997}{37112040}\right)^3} .$$
 (3.8)

Motivated by approximation (3.8), we establish Theorem 3.2 below, which provides closer bounds for $\gamma - T_n$.

Theorem 3.2. For $n \ge 1$, then

$$\frac{\frac{1}{48}}{\left(n+\frac{83}{360}+\frac{\frac{4909}{64800}}{n+\frac{11976997}{37112040}}\right)^3} < \gamma - T_n < \frac{\frac{1}{48}}{\left(n+\frac{83}{360}\right)^3} .$$
(3.9)

Proof. We only prove the right-hand inequality in (3.9). The proof of the left-hand inequality in (3.9) is similar. The inequality (3.9) can be written for $n \ge 1$ as

$$\frac{\frac{1}{48}}{\left(n+\frac{83}{360}+\frac{\frac{4909}{64800}}{n+\frac{11976997}{37112040}}\right)^3} < \ln\left(n+\frac{1}{2}+\frac{1}{24n}\right) - \psi(n+1) < \frac{\frac{1}{48}}{\left(n+\frac{83}{360}\right)^3} .$$
(3.10)

The upper bound of (3.9) is obtained by considering the function f(x) which is defined, for x > 0, by

$$f(x) = \ln\left(x + \frac{1}{2} + \frac{1}{24x}\right) - \psi(x+1) - \frac{\frac{1}{48}}{\left(x + \frac{83}{360}\right)^3}.$$

We conclude from the asymptotic formula (2.3) that

$$\lim_{x \to \infty} f(x) = 0 \; .$$

Differentiating f(x) and applying the second inequality in (2.7) yields,

$$\begin{aligned} f'(x) &= \frac{24x^2 - 1}{x(24x^2 + 12x + 1)} - \psi'(x + 1) + \frac{1049760000}{(360x + 83)^4} \\ &> \frac{24x^2 - 1}{x(24x^2 + 12x + 1)} - \left(\frac{1}{x} - \frac{1}{2x^2} + \frac{1}{6x^3} - \frac{1}{30x^5} + \frac{1}{42x^7}\right) + \frac{1049760000}{(360x + 83)^4} \\ &= \frac{p(x)}{210x^7(24x^2 + 12x + 1)(360x + 83)^4} \ , \end{aligned}$$

where

$$\begin{split} p(x) &= 147550579398783 + 637562673548352(x-2) + 1095096221221183(x-2)^2 \\ &+ 997896029835428(x-2)^3 + 528831825356263(x-2)^4 \\ &+ 164401992148725(x-2)^5 + 27912981996000(x-2)^6 \\ &+ 2004050160000(x-2)^7 > 0 \quad \text{for} \quad x \geq 2 \;. \end{split}$$

Therefore, f'(x) > 0 for $x \ge 2$.

Direct computation would yield

$$f(1) = \gamma + \ln\left(\frac{37}{24}\right) - \frac{87910307}{86938307} = -0.00110059\dots,$$

$$f(2) = \gamma + \ln\left(\frac{121}{48}\right) - \frac{1555288881}{1035563254} = -0.000072039\dots.$$

Consequently, the sequence $\big(f(n)\big)_{n\in\mathbb{N}}$ is strictly increasing. This leads us to

$$f(n) < \lim_{n \to \infty} f(n) = 0 , \quad n \ge 1 ,$$

which means that the upper bound in assertion (3.9) of Theorem 3.2 holds true for all $n \in \mathbb{N}$. The proof of Theorem 3.2 is thus completed.

Remark 1. In fact, the following inequality holds true:

$$\gamma - T_n < \frac{\frac{1}{48}}{\left(n + \frac{83}{360} + \frac{\frac{4909}{64800}}{n + \frac{11976997}{37112040} + \frac{\frac{1763157528838353}{275460705293200}}{n + \frac{2160995763710564441795}{13086874547647741578024}}\right)^3}$$
(3.11)

1

for $n \in \mathbb{N}$.

3.2. We now define the sequence $(v_n)_{n \in \mathbb{N}}$ by

$$v_n = \ln\left(n + \frac{1}{2} + \frac{1}{24n}\right) - \psi(n+1) - \frac{1}{a_1n^3 + b_1n^2 + c_1n + d_1} .$$
(3.12)

where $a_1, b_1, c_1, d_1 \in \mathbb{R}$. Following the same method used in the proof of Theorem 3.1, we find that for

$$a_1 = 48$$
, $b_1 = \frac{166}{5}$, $c_1 = \frac{5569}{300}$, $d_1 = \frac{58741}{28000}$, (3.13)

we have

$$\lim_{n \to \infty} n^8 (v_n - v_{n+1}) = \frac{183358033}{9953280000} \quad and \quad \lim_{n \to \infty} n^7 v_n = \frac{183358033}{69672960000} .$$
(3.14)

The speed of convergence of the sequence $(v_n)_{n \in \mathbb{N}}$ is given by the order estimate $O(n^{-7})$.

Theorem 3.3. For $n \ge 1$, then

$$\frac{1}{48n^3 + \frac{166}{5}n^2 + \frac{5569}{300}n + \frac{58741}{28000}} < \gamma - T_n .$$
(3.15)

Proof. The inequality (3.15) can be written for $n \ge 1$ as

$$\frac{1}{48n^3 + \frac{166}{5}n^2 + \frac{5569}{300}n + \frac{58741}{28000}} < \ln\left(n + \frac{1}{2} + \frac{1}{24n}\right) - \psi(n+1) .$$
(3.16)

We consider the function F(x) defined for x > 0 by

$$F(x) = \ln\left(x + \frac{1}{2} + \frac{1}{24x}\right) - \psi(x+1) - \frac{1}{48x^3 + \frac{166}{5}x^2 + \frac{5569}{300}x + \frac{58741}{28000}} \ .$$

We conclude from the asymptotic formula (2.3) that

$$\lim_{x \to \infty} F(x) = 0 \; .$$

Differentiating F(x) and applying the first inequality in (2.7) yields,

$$\begin{split} F'(x) &= \frac{24x^2 - 1}{x(24x^2 + 12x + 1)} - \psi'(x + 1) \\ &+ \frac{23520000(43200x^2 + 19920x + 5569)}{(4032000x^3 + 2788800x^2 + 1559320x + 176223)^2} \\ &< \frac{24x^2 - 1}{x(24x^2 + 12x + 1)} - \left(\frac{1}{x} - \frac{1}{2x^2} + \frac{1}{6x^3} - \frac{1}{30x^5} + \frac{1}{42x^7} - \frac{1}{30x^9}\right) \\ &+ \frac{23520000(43200x^2 + 19920x + 5569)}{(4032000x^3 + 2788800x^2 + 1559320x + 176223)^2} \\ &= -\frac{q(x)}{210x^9(24x^2 + 12x + 1)(4032000x^3 + 2788800x^2 + 1559320x + 176223)^2} \\ &\text{where} \\ q(x) &= 18130487257947165687 + 63552993678839537457(x - 3) \\ &+ 94471229612034347921(x - 3)^2 + 79408865830190450709(x - 3)^3 \\ &+ 41975644888778012717(x - 3)^4 + 14553520724815257633(x - 3)^5 \\ &+ 3322393272176291138(x - 3)^6 + 482867798807968875(x - 3)^7 \end{split}$$

$$+\; 40622141576265200(x-3)^8 + 1509403327656000(x-3)^9 > 0 \quad {\rm for} \quad x \geq 3 \ .$$

Therefore, F'(x) < 0 for $x \ge 3$.

Direct computation would yield

$$F(1) = -\frac{8640343}{8556343} + \gamma + \ln 37 - 3\ln 2 - \ln 3 = 0.000262469...,$$

$$F(2) = -\frac{140286189}{93412126} + \gamma + 2\ln 11 - 4\ln 2 - \ln 3 = 0.000006718...,$$

$$F(3) = -\frac{509165071}{277634766} + \gamma + \ln 11 + \ln 23 - 3\ln 2 - 2\ln 3 = 0.000000589...$$

Consequently, the sequence $(F(n))_{n \in \mathbb{N}}$ is strictly decreasing. This leads us to

$$F(n) > \lim_{n \to \infty} F(n) = 0$$
, $n \ge 1$,

which means that inequality (3.15) holds true for all $n \in \mathbb{N}$.

Remark 2. The lower bound in (3.15) is sharper than one in (3.9).

Remark 3. In fact, the following inequality holds true:

$$\gamma - T_n < \frac{1}{48n^3 + \frac{166}{5}n^2 + \frac{5569}{300}n + \frac{58741}{28000} - \frac{183358033}{30240000n}}$$
(3.17)

for $n \in \mathbb{N}$.

Remark 4. The numerical calculations presented in this work were performed by using the Maple software for symbolic computations.

Acknowledgments. The author would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

- M. Abramowitz and I. A. Stegun (Editors), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series 55, Ninth printing, National Bureau of Standards, Washington, D.C., 1972.
- [2] H. Alzer, On some inequalities for the gamma and psi functions, Math. Comp. 66 (1997), 373–389.
- [3] H. Alzer, Inequalities for the gamma and polygamma functions, Abh. Math. Sem. Univ. Hamburg 68 (1998), 363–372.
- [4] G. D. Anderson, R. W. Barnard, K. C. Richards, M. K. Vamanamurthy and M. Vuorinen, Inequalities for zero-balanced hypergeometric functions, Trans. Amer. Math. Soc. 347 (1995), 1713–1723.
- [5] E. Cesàro, Sur la serie harmonique, Nouvelles Annales de Mathématiques 4 (1885), 295–296.
- [6] C.-P. Chen, Inequalities for the Euler-Mascheroni constant, Appl. Math. Lett. 23 (2010), 161–164.
- [7] C.-P. Chen, Inequalities and monotonicity properties for some special functions, J. Math. Inequal. 3 (2009), 79–91.
- [8] C.-P. Chen, Monotonicity properties of functions related to the psi function, Appl. Math. Comput. 217 (2010), 2905–2911.
- C.-P. Chen, The Best Bounds in Vernescu's Inequalities for the Euler's Constant, RGMIA Res. Rep. Coll. 12 (2009), no.3, Article 11. Available online at http://ajmaa.org/RGMIA/ v12n3.php.
- [10] D. W. DeTemple, A quicker convergence to Euler's constant, Amer. Math. Monthly 100 (1993), 468–470.
- [11] C. Mortici, New bounds for a convergence by DeTemple, J. Sci. Arts 10 (2010), 239-242.
- [12] C. Mortici, Product approximations via asymptotic integration, Amer. Math. Monthly 117 (2010), 434–441.
- [13] C. Mortici, The proof of Muqattash-Yahdi conjecture, Math. Comput. Modelling 51 (2010), 1154-1159.

140

SHARPNESS OF NEGOI'S INEQUALITY FOR THE EULER-MASCHERONI CONSTANT (COMMUNICATED BY ARMEND SHABAN

- [14] C. Mortici, Best estimates of the generalized Stirling formula, Appl. Math. Comp. 215 (2010), 4044-4048.
- [15] C. Mortici, On new sequences converging towards the Euler-Mascheroni constant. Comput. Math. Appl. 59 (2010), 2610–2614.
- [16] C. Mortici, Improved convergence towards generalized Euler-Mascheroni constant. Appl. Math. Comput. 215 (2010), 3443–3448.
- [17] C. Mortici, A new Stirling series as continued fraction, Numer. Algorithms 56 (2011), 17-26.
- [18] T. Negoi, A faster convergence to the constant of Euler, Gazeta Matematică, seria A, 15 (1997), 111–113 (in Romanian).
- [19] P. J. Rippon, Convergence with pictures, Amer. Math. Monthly, 93 (1986), 476–478.
- [20] A. Sîntămărian, A generalization of Euler's constant, Numer. Algorithms 46 (2007), 141–151.
- [21] A. Sîntămărian, Some inequalities regarding a generalization of Euler's constant, J. Inequal. Pure Appl. Math. 9 (2008), no.2, Article 46. http://www.emis.de/journals/JIPAM/images/ 352_07_JIPAM/352_07.pdf.
- [22] S. R. Tims and J. A. Tyrrell, Approximate evaluation of Euler's constant, Math. Gaz. 55 (1971), 65–67.
- [23] L. Tóth, Problem E3432, Amer. Math. Monthly, 98 (1991), 264.
- [24] L. Tóth, Problem E3432 (Solution), Amer. Math. Monthly, 99 (1992), 684-685.
- [25] A. Vernescu, A new accelerate convergence to the constant of Euler, Gaz. Mat. Ser. A (17) 96 (1999), 273-278 (in Romanian).
- [26] M. Villarino, Ramanujan's harmonic number expansion into negative powers of a triangular number, J. Inequal. Pure Appl. Math. 9 (2008), no. 3, Article 89. Available online at
- [27] R. M. Young, Euler's Constant, Math. Gaz. 75 (1991), 187–190.

Chao-Ping Chen

School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City 454003, Henan Province, People's Republic of China

E-mail address: chenchaoping@sohu.com