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SHARPNESS OF NEGOI’S INEQUALITY FOR THE

EULER-MASCHERONI CONSTANT

(COMMUNICATED BY ARMEND SHABANI)

CHAO-PING CHEN

Abstract. We present new estimates for the Euler-Mascheroni constant, which
improve a result of Negoi.

1. Introduction

The Euler-Mascheroni constant γ = 0.577215664 . . . is defined as the limit of the
sequence

Dn =

n∑
k=1

1

k
− lnn (n ∈ N := {1, 2, 3, . . .}) .

Several bounds for Dn−γ have been given in the literature [3, 4, 19, 22, 23, 24, 27]
(see also [6, 20, 21]). For example, the following bounds for Dn−γ were established
in [19, 27]:

1

2(n+ 1)
< Dn − γ <

1

2n
(n ∈ N) .

The convergence of the sequence Dn to γ is very slow. Some quicker approximations
to the Euler-Mascheroni constant were established in [5, 6, 7, 9, 8, 10, 15, 16, 18,
20, 21, 25, 26]. For example, Negoi [18] proved that the sequence

Tn =

n∑
k=1

1

k
− ln

(
n+

1

2
+

1

24n

)
(1.1)

is strictly increasing and convergent to γ. Moreover, the author proved that

1

48(n+ 1)3
< γ − Tn <

1

48n3
. (1.2)

The main objective of this work is to establish closer bounds for γ − Tn.
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Submitted January 5, 2011. Published January 17, 2011.

134



SHARPNESS OF NEGOI’S INEQUALITY FOR THE EULER-MASCHERONI CONSTANT (COMMUNICATED BY ARMEND SHABANI)135

2. Lemmas

Before stating and proving the main theorems, we first include here some pre-
liminary results.

The constant γ is deeply related to the gamma function Γ(x) thanks to the
Weierstrass formula [1, p. 255]:

Γ(x) =
e−γx

x

∞∏
k=1

{(
1 +

x

k

)−1
ex/k

}
for any real number x, except on the negative integers {0,−1,−2, . . .}. The loga-
rithmic derivative of the gamma function:

ψ(x) =
Γ′(x)

Γ(x)

is known as the psi (or digamma) function.
The following recurrence and asymptotic formulas are well known for the psi

function:

ψ(x+ 1) = ψ(x) +
1

x
(2.1)

(see [1, p.258]), and

ψ(x) ∼ lnx− 1

2x
− 1

12x2
+

1

120x4
− 1

252x6
+ . . . (x→∞) (2.2)

(see [1, p.259]). From (2.1) and (2.2), we get

ψ(x+ 1) ∼ lnx+
1

2x
− 1

12x2
+

1

120x4
− 1

252x6
+ . . . (x→∞) . (2.3)

It is also known [1, p.258] that

ψ(n+ 1) = −γ +

n∑
k=1

1

k
. (2.4)

The following lemmas are also needed in our present investigation.

Lemma 2.1. If the sequence (λn)n∈N converges to zero and if there exists the
following limit:

lim
n→∞

nk(λn − λn+1) = l ∈ R (k > 1) ,

then

lim
n→∞

nk−1λn =
l

k − 1
(k > 1) .

This lemma is suitable for accelerating some convergences, or in constructing
some asymptotic expansions. For proofs and other details, see, e.g. [11, 12, 13, 14,
15, 16, 17].

Lemma 2.2 ([2, Theorem 9]). Let k ≥ 1 and n ≥ 0 be integers. Then for all real
numbers x > 0:

Sk(2n;x) < (−1)k+1ψ(k)(x) < Sk(2n+ 1;x), (2.5)

where

Sk(p;x) =
(k − 1)!

xk
+

k!

2xk+1
+

p∑
i=1

[
B2i

k−1∏
j=1

(2i+ j)

]
1

x2i+k
,
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and Bi (i = 0, 1, 2, . . .) are Bernoulli numbers, defined by

t

et − 1
=

∞∑
i=0

Bi
ti

i!

(see [1, p. 804]).

In particular, it follows from (2.5) that

1

x
+

1

2x2
+

1

6x3
− 1

30x5
+

1

42x7
− 1

30x9
< ψ′(x)

<
1

x
+

1

2x2
+

1

6x3
− 1

30x5
+

1

42x7
− 1

30x9
+

5

66x11
, x > 0 . (2.6)

From (2.1) and (2.6), we obtain

1

x
− 1

2x2
+

1

6x3
− 1

30x5
+

1

42x7
− 1

30x9
< ψ′(x+ 1)

<
1

x
− 1

2x2
+

1

6x3
− 1

30x5
+

1

42x7
, x > 0 . (2.7)

3. Main results

3.1. We define the sequence (un)n∈N by

un = ln

(
n+

1

2
+

1

24n

)
− ψ(n+ 1)− a(

n+ b+
c

n+ d

)3 . (3.1)

We are interested in finding the values of the parameters a, b, c and d such that
(un)n∈N is the fastest sequence which would converge to zero. This provides the
best approximations of the form:

ψ(n+ 1) ≈ ln

(
n+

1

2
+

1

24n

)
− a(

n+ b+
c

n+ d

)3 . (3.2)

Our study is based on the above Lemma 2.1.

Theorem 3.1. Let the sequence (un)n∈N be defined by (3.1). Then for

a =
1

48
, b =

83

360
, c =

4909

64800
, d =

11976997

37112040
, (3.3)

we have

lim
n→∞

n8(un − un+1) =
1763157528883853

83111968235520000
(3.4)

and

lim
n→∞

n7un =
1763157528883853

581783777648640000
. (3.5)

The speed of convergence of the sequence (un)n∈N is given by the order estimate
O
(
n−7

)
.
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Proof. First of all, we write the difference un − un+1 as the following power series
in n−1:

un − un+1 =
1− 48a

16n4
+
−263 + 8640a+ 17280ab

1440n5

+
139− 3840a− 11520ab− 11520ab2 + 5760ac

384n6

+
(

90720a+ 362880ab+ 362880ab3 + 544320ab2 − 272160ac

− 435456acb− 108864acd− 3685
) 1

6048n7

+
(
− 193536a− 967680ab+ 774144acbd+ 1935360acb2 + 193536acd2

+ 8663 + 2322432acb− 387072ac2 − 1935360ab3 − 967680ab4

+ 580608acd+ 967680ac− 1935360ab2
) 1

9216n8
+O

(
1

n9

)
.

(3.6)

The fastest sequence (un)n∈N is obtained when the first four coefficients of this
power series vanish. In this case

a =
1

48
, b =

83

360
, c =

4909

64800
, d =

11976997

37112040
,

we have

un − un+1 =
1763157528883853

83111968235520000n8
+O

(
1

n9

)
. (3.7)

Finally, by using Lemma 2.1, we obtain assertions (3.4) and (3.5) of Theorem
3.1. �

Solution (3.1) provides the best approximation of type (3.2):

ψ(n+ 1) ≈ ln

(
n+

1

2
+

1

24n

)
−

1
48(

n+ 83
360 +

4909
64800

n+ 11976997
37112040

)3 . (3.8)

Motivated by approximation (3.8), we establish Theorem 3.2 below, which pro-
vides closer bounds for γ − Tn.

Theorem 3.2. For n ≥ 1, then

1
48(

n+ 83
360 +

4909
64800

n+ 11976997
37112040

)3 < γ − Tn <
1
48(

n+ 83
360

)3 . (3.9)

Proof. We only prove the right-hand inequality in (3.9). The proof of the left-hand
inequality in (3.9) is similar. The inequality (3.9) can be written for n ≥ 1 as

1
48(

n+ 83
360 +

4909
64800

n+ 11976997
37112040

)3 < ln

(
n+

1

2
+

1

24n

)
− ψ(n+ 1) <

1
48(

n+ 83
360

)3 .

(3.10)
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The upper bound of (3.9) is obtained by considering the function f(x) which is
defined, for x > 0, by

f(x) = ln

(
x+

1

2
+

1

24x

)
− ψ(x+ 1)−

1
48(

x+ 83
360

)3 .

We conclude from the asymptotic formula (2.3) that

lim
x→∞

f(x) = 0 .

Differentiating f(x) and applying the second inequality in (2.7) yields,

f ′(x) =
24x2 − 1

x(24x2 + 12x+ 1)
− ψ′(x+ 1) +

1049760000

(360x+ 83)4

>
24x2 − 1

x(24x2 + 12x+ 1)
−
(

1

x
− 1

2x2
+

1

6x3
− 1

30x5
+

1

42x7

)
+

1049760000

(360x+ 83)4

=
p(x)

210x7(24x2 + 12x+ 1)(360x+ 83)4
,

where

p(x) = 147550579398783 + 637562673548352(x− 2) + 1095096221221183(x− 2)2

+ 997896029835428(x− 2)3 + 528831825356263(x− 2)4

+ 164401992148725(x− 2)5 + 27912981996000(x− 2)6

+ 2004050160000(x− 2)7 > 0 for x ≥ 2 .

Therefore, f ′(x) > 0 for x ≥ 2.
Direct computation would yield

f(1) = γ + ln

(
37

24

)
− 87910307

86938307
= −0.00110059 . . . ,

f(2) = γ + ln

(
121

48

)
− 1555288881

1035563254
= −0.000072039 . . . .

Consequently, the sequence
(
f(n)

)
n∈N is strictly increasing. This leads us to

f(n) < lim
n→∞

f(n) = 0 , n ≥ 1 ,

which means that the upper bound in assertion (3.9) of Theorem 3.2 holds true for
all n ∈ N. The proof of Theorem 3.2 is thus completed. �

Remark 1. In fact, the following inequality holds true:

γ − Tn <
1
48n+ 83

360 +
4909
64800

n+ 11976997
37112040 +

1763157528883853
2754607025923200

n+ 2160995763710564441795
13086874547647741578024

3 (3.11)

for n ∈ N.
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3.2. We now define the sequence (vn)n∈N by

vn = ln

(
n+

1

2
+

1

24n

)
− ψ(n+ 1)− 1

a1n3 + b1n2 + c1n+ d1
. (3.12)

where a1, b1, c1, d1 ∈ R. Following the same method used in the proof of Theorem
3.1, we find that for

a1 = 48 , b1 =
166

5
, c1 =

5569

300
, d1 =

58741

28000
, (3.13)

we have

lim
n→∞

n8(vn − vn+1) =
183358033

9953280000
and lim

n→∞
n7vn =

183358033

69672960000
. (3.14)

The speed of convergence of the sequence (vn)n∈N is given by the order estimate
O
(
n−7

)
.

Theorem 3.3. For n ≥ 1, then

1

48n3 + 166
5 n2 + 5569

300 n+ 58741
28000

< γ − Tn . (3.15)

Proof. The inequality (3.15) can be written for n ≥ 1 as

1

48n3 + 166
5 n2 + 5569

300 n+ 58741
28000

< ln

(
n+

1

2
+

1

24n

)
− ψ(n+ 1) . (3.16)

We consider the function F (x) defined for x > 0 by

F (x) = ln

(
x+

1

2
+

1

24x

)
− ψ(x+ 1)− 1

48x3 + 166
5 x2 + 5569

300 x+ 58741
28000

.

We conclude from the asymptotic formula (2.3) that

lim
x→∞

F (x) = 0 .

Differentiating F (x) and applying the first inequality in (2.7) yields,

F ′(x) =
24x2 − 1

x(24x2 + 12x+ 1)
− ψ′(x+ 1)

+
23520000(43200x2 + 19920x+ 5569)

(4032000x3 + 2788800x2 + 1559320x+ 176223)2

<
24x2 − 1

x(24x2 + 12x+ 1)
−
(

1

x
− 1

2x2
+

1

6x3
− 1

30x5
+

1

42x7
− 1

30x9

)
+

23520000(43200x2 + 19920x+ 5569)

(4032000x3 + 2788800x2 + 1559320x+ 176223)2

= − q(x)

210x9(24x2 + 12x+ 1)(4032000x3 + 2788800x2 + 1559320x+ 176223)2
,

where

q(x) = 18130487257947165687 + 63552993678839537457(x− 3)

+ 94471229612034347921(x− 3)2 + 79408865830190450709(x− 3)3

+ 41975644888778012717(x− 3)4 + 14553520724815257633(x− 3)5

+ 3322393272176291138(x− 3)6 + 482867798807968875(x− 3)7

+ 40622141576265200(x− 3)8 + 1509403327656000(x− 3)9 > 0 for x ≥ 3 .
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Therefore, F ′(x) < 0 for x ≥ 3.
Direct computation would yield

F (1) = −8640343

8556343
+ γ + ln 37− 3 ln 2− ln 3 = 0.000262469 . . . ,

F (2) = −140286189

93412126
+ γ + 2 ln 11− 4 ln 2− ln 3 = 0.000006718 . . . ,

F (3) = −509165071

277634766
+ γ + ln 11 + ln 23− 3 ln 2− 2 ln 3 = 0.000000589 . . . .

Consequently, the sequence
(
F (n)

)
n∈N is strictly decreasing. This leads us to

F (n) > lim
n→∞

F (n) = 0 , n ≥ 1 ,

which means that inequality (3.15) holds true for all n ∈ N. �

Remark 2. The lower bound in (3.15) is sharper than one in (3.9).

Remark 3. In fact, the following inequality holds true:

γ − Tn <
1

48n3 + 166
5 n2 + 5569

300 n+ 58741
28000 −

183358033
30240000n

. (3.17)

for n ∈ N.

Remark 4. The numerical calculations presented in this work were performed by
using the Maple software for symbolic computations.
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