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MAXIMUM TERM AND LOWER ORDER OF ENTIRE

FUNCTIONS OF SEVERAL COMPLEX VARIABLES

(COMMUNICATED BY VIJAY GUPTA)

SUSHEEL KUMAR AND G. S. SRIVASTAVA

Abstract. In the present paper, we study the growth properties of entire
functions of several complex variables. The characterizations of lower order

of entire functions of several complex variables have been obtained in terms

of their Taylor’s series coefficients. Also we have obtained some inequalities
between order, type, maximum term and central index of entire functions of

several complex variables.

1. Introduction

We denote complexN−space by CN . Thus, z ∈ CN means that z = (z1, z2, ..., zN ),
where z1, z2, ..., zN are complex numbers. A function f(z) , z ∈ CN is said to be
analytic at a point ξ ∈ CN if it can be expanded in some neighborhood of ξ as
an absolutely convergent power series. If we assume ξ = (0, 0, ..., 0), then f(z) has
representation

f(z) =

∞∑
|k|=0

ak1,k2,...,kN z
k1
1 zk22 ... zkNN =

∞∑
n=0

ak z
k , (1.1)

where k = (k1, k2, ..., kN ) ∈ NN0 and n = |k| = k1 + k2 + ... + kN . For r > 0, the
maximum modulus M(r, f) of entire function f(z) is given by (see [1], p.321)

M(r) = M(r, f) = sup{|f(z)| : |z1|2 + |z2|2 + ...+ |zN |2 = r2} .
For r > 0, the maximum term µ(r) of entire function f(z) is defined as (see [2] and
[3])

µ(r) = µ(r, f) = max
n≥0
{||ak||rn}.

Also the index k with maximal length n for which maximum term is achieved is
called the central index and is denoted by ν(r) = ν(r, f) = k.
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Following Valiron ([9], p. 31), for 0 < r0 < r we have

logµ(r) = log µ(r0) +

∫ r

r0

|ν(t)|
t

dt . (1.2)

Krishna ([3], Thm. 3.2) proved that if f(z) is an entire function of finite order,
then

logµ(r) ' logM(r).

The order ρ of entire function f(z) is defined as [10]

ρ = lim
r→∞

sup
log logM(r)

log r
. (1.3)

Further, for 0 < ρ <∞, the type T of entire function f(z) is defined as [10]

T = lim
r→∞

sup
logM(r)

rρ
. (1.4)

For an entire function f(z), we define the lower order λ of f(z) as

λ = lim
r→∞

inf
log logM(r)

log r
. (1.5)

Further, for 0 < ρ <∞, we define the lower type t of entire function f(z) as

t = lim
r→∞

inf
logM(r)

rρ
. (1.6)

We define the order ρ (0 < ρ <∞) and the lower order λ (0 < λ <∞) of entire
function f(z) in terms of central index as

ρ
λ

= lim
r→∞

sup
inf

log |ν(r)|
log r

. (1.7)

Further for 0 < ρ, λ <∞, we define

γ
δ

= lim
r→∞

sup
inf

|ν(r)|
rρ

. (1.8)

2. Main Results

We now prove

Theorem 2.1. Let f(z) be an entire function whose Taylor’s series representation
is given by (1.1). Then the lower order λ of this entire function f(z) satisfies

λ ≥ lim
n→∞

inf
n log n

− log ||ak||
. (2.1)

Also if ||ak||/||ak′ || , where |k′ | = n+ 1 , is a non-decreasing function of n, then
equality holds in (2.1).

Proof. Write

Φ = lim
n→∞

inf
n log n

− log ||ak||
.
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First we prove that λ ≥ Φ. The coefficients of an entire Taylor’s series satisfy
Cauchy’s inequality, that is

||ak|| ≤M(r) r−n. (2.2)

Also from (1.5), for arbitrary ε > 0 and a sequence r = rs → ∞ as s → ∞, we
have

M(r) ≤ exp
(
rλ
)
, λ = λ+ ε.

So from (2.2), we get

||ak|| ≤ r−n exp
(
rλ
)
.

Putting r =
(
n/λ

)1/λ
in the above inequality we get

||ak|| ≤
(
n/λ

)−n/λ
exp

(
n/λ

)
or

log ||ak||−1 ≥ n log n

λ

[
1− log λ

log n
− 1

log n

]
or

lim
n→∞

inf
n log n

− log ||ak||
≤ λ

or

Φ ≤ λ.

Since ε > 0 is arbitrarily small so finally we get

Φ ≤ λ .

Now we prove that λ ≤ Φ. Let

ψ(n) = ||ak||/||ak′ || ,
then

ψ(n)→∞ as n →∞.
Also

ψ(|k
′
|)>ψ(n).

Now suppose that ||ak1 ||r|k
1| and ||ak2 ||r|k

2| are two consecutive maximum terms.
Then

|k1| ≤ |k2| − 1.

Let

|k1| ≤ n ≤ |k2|,
then
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|ν(r)| = |k1|
for

ψ(|k1
∗
|) ≤ r < ψ(|k1|) ,

where

|k1
∗
| = |k1| − 1.

Hence from (1.7), for arbitrary ε > 0 and all r > r0(ε), we have

|k1| = |ν(r)| > rλ
′

, λ
′

= λ− ε
or

|k1| = |ν(r)| ≥
{
ψ(|k1|)− q

}λ′
,

where q is a constant such that 0 < q < min
{

1 , [ψ(|k1|)− ψ(|k1∗ |)]/2
}

or

logψ(|k1|) ≤ O(1) +
log |k1|
λ′

.

Further we have

ψ(|k1|) = ψ(|k1|+ 1) = ... = ψ(n− 1).

Now we can write

ψ(|k0|) ... ψ(|k∗|) =
||ak0 ||
||ak||

≤ [ψ(|k∗|]n−|k
0| ,

where |k∗| = n− 1 and n � |k0|

or

log ||ak||−1 ≤ n logψ(|k1|) +O(1)

or

log ||ak||−1 ≤ n
log |k1|
λ′

[1 + o(1)]

or

1

n
log ||ak||−1 ≤

log |k1|
λ′

[1 + o(1)]

or

1

n
log ||ak||−1 ≤

log n

λ′
[1 + o(1)]

or

λ
′
≤ n log n

− log ||ak||
[1 + o(1)].

Now taking limits as n→∞, we get λ ≤ Φ. Hence the Theorem 2.1 is proved. �
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Next we prove

Theorem 2.2. Let f(z) be an entire function whose Taylor’s series representation
is given by (1.1). Then for 0 < ρ , λ <∞, following inequalities hold

lim
r→∞

inf
logµ(r)

|ν(r)|
≤ 1

ρ
≤ 1

λ
≤ lim
r→∞

sup
logµ(r)

|ν(r)|
.

Proof. Let

lim
r→∞

sup
logµ(r)

|ν(r)|
= A.

Then for ε >0 and r>r0(ε) , we have

logµ(r) < (A+ ε) |ν(r)|. (2.3)

From (1.2), we have

µ
′
(r)

µ(r)
=
|ν(r)|
r

.

So from (2.3), we get

logµ(r) < (A+ ε)
µ
′
(r)

µ(r)
r

or

µ
′
(r)

µ(r) logµ(r)
>

1

(A+ ε) r
or

log logµ(r) >
1

(A+ ε)
log r + O(1)

or

log log µ(r)

log r
>

1

(A+ ε)
+ o(1).

Proceeding to limits as r →∞ and taking inf on both sides we get

λ ≥ 1

A
. (2.4)

Now let us assume that

lim
r→∞

inf
logµ(r)

|ν(r)|
= B.

Proceeding as above and using definations of limit inf and limit sup, we obtain

ρ ≥ 1

B
. (2.5)

Combining (2.4) and (2.5), we get

lim
r→∞

inf
logµ(r)

|ν(r)|
≤ 1

ρ
≤ 1

λ
≤ lim
r→∞

sup
logµ(r)

|ν(r)|
.

Hence the Theorem 2.2 is proved. �
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Next we prove

Theorem 2.3. Let f(z) be an entire function whose Taylor’s series representation
is given by (1.1). Then for 0 < ρ <∞, following inequalities hold

δ ≤ γ

e
eδ/γ ≤ δ T ≤ γ ,

δ ≤ ρ t ≤ δ(1 + log
γ

δ
) ≤ γ ,

and

γ + δ ≤ eδ T.

Proof. From (1.2), for r ≥ r0 and k ≥ 1 we have

logµ(kr) = O(1) +

∫ r

r0

|ν(t)|
t

dt +

∫ kr

r

|ν(t)|
t

dt (2.6)

or

logµ(kr) > O(1) +
(δ − ε) rρ

ρ
+ |ν(r)| log k .

Dividing both sides by (kr)ρ, we get

logµ(kr)

(kr)ρ
> o(1) +

(δ − ε)
ρ kρ

+
|ν(r)|
rρ

log k

kρ
. (2.7)

Proceeding to limits as r →∞ and taking sup on both sides of (2.7), we get

T ≥ δ + ρ γ log k

ρ kρ
. (2.8)

Also proceeding to limits as r →∞ and taking inf on both sides of (2.7), we get

t ≥ δ(1 + ρ log k)

ρ kρ
. (2.9)

Taking k = exp[(γ − δ)/(γρ)] in (2.8), we get

eρ T ≥ γ eδ/γ .

Since exp(t) ≥ e t for all t ≥ 0. Therefore finally, we get

eρ T ≥ γ eδ/γ ≥ eδ . (2.10)

Also taking k = 1 in (2.9), we get

t ≥ δ

ρ
. (2.11)

Again from (2.6), we have

logµ(kr) < O(1) +
(γ + ε) rρ

ρ
+ |ν(kr)| log k .

Dividing both sides by (kr)ρ , we get

logµ(kr)

(kr)ρ
< o(1) +

(γ + ε)

ρ kρ
+
|ν(kr)|
(kr)ρ

log k. (2.12)
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So in this case we get

T ≤ γ(1 + ρkρ log k)

ρkρ
(2.13)

and

t ≤ γ + ρδkρ log k

ρkρ
. (2.14)

Taking k = 1 in (2.13), we get

T ≤ γ

ρ
. (2.15)

Also taking k = (γ/δ)1/ρ in (2.14), we get

ρ t ≤ δ(1 + log
γ

δ
) .

Since log(1 + t) ≤ t for all t ≥ 0. Therefore finally we get

ρ t ≤ δ(1 + log
γ

δ
) ≤ γ . (2.16)

Now from (2.10), (2.11), (2.15) and (2.16), we get

δ ≤ γ

e
eδ/γ ≤ δ T ≤ γ (2.17)

and

δ ≤ ρ t ≤ δ(1 + log
γ

δ
) ≤ γ.

From (2.17), we have

γ

e
eδ/γ ≤ δ T

or

γ

[
1 +

δ

λ
+ ....

]
≤ eδ T

or

γ

[
1 +

δ

λ

]
≤ eδ T

or

γ + δ ≤ eδ T.

Hence the Theorem 2.3 is proved. �

Next we prove

Theorem 2.4. Let f(z) be an entire function whose Taylor’s series representation
is given by (1.1). Then for 0 < ρ <∞, following inequalities holds

γ + ρ t ≤ eρ T

and
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eρ t ≤ ρ T + eδ.

Proof. From (1.2) for r ≥ r0 and k ≥ 1 , we have

logµ(kr) = logµ(r) +

∫ kr

r

|ν(t)|
t

dt (2.18)

or

logµ(kr) > (t− ε)rρ + |ν(r)| log k .

Dividing both sides by (kr)ρ , we get

logµ(kr)

(kr)ρ
>

(t− ε)
kρ

+
|ν(r)|
rρ

log k

kρ
.

Proceeding to limits as r →∞ and taking sup on both sides, we get

T ≥ t

kρ
+
γ log k

kρ
.

Taking k = e1/ρ in above inequality, we get

T ≥ t

e
+

γ

ρe
. (2.19)

Again from (2.18), we have

logµ(kr) < (T + ε)rρ + |ν(kr)| log k .

Dividing both sides by (kr)ρ , we get

logµ(kr)

(kr)ρ
<

(T + ε)

kρ
+
|ν(kr)|
(kr)ρ

log k .

Proceeding to limits as r →∞ and taking inf on both sides, we get

t ≤ T

kρ
+ δ log k .

Taking k = e1/ρ in above inequality, we get

t ≤ T

e
+
δ

ρ
. (2.20)

Now from (2.19) and (2.20), we get

γ + ρ t ≤ eρ T

and

eρ t ≤ ρ T + eδ.

Hence the Theorem 2.4 is proved. �

Note: Similar results were obtained for entire functions of one variable by Shah
([5] , [6] , [7] and [8]).
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