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A SIMPLE PROOF OF IDENTITIES OF LEGENDRE AND

RAMANUJAN

(COMMUNICATED BY FRANCISCO MARCELLAN)

BHASKAR SRIVASTAVA

Abstract. By using two simple theta function identities we prove both Ra-
manujan’s celebrated identity and Legendre’s identity.

1. Introduction

Different proofs have been given for the following identities [1, ch. 18, p. 407],
[2, p. 30], [6,7,8].

∞∑
n=0

[
q4n+1

(1− q4n+1)2
− 2q4n+2

(1− q4n+2)2
+

q4n+3

(1− q4n+3)2

]
= q

(q4; q4)4∞
(q2; q4)4∞

, (1.1)

∞∑
n=0

[
q5n+1

(1− q5n+1)2
+

q5n+4

(1− q5n+4)2
− q5n+2

(1− q5n+2)2
− q5n+3

(1− q5n+3)2

]
= q

(q5; q5)5∞
(q; q)∞

,

(1.2)
and

∞∑
n=0

[
q7n+1 1 + q7n+1

(1− q7n+1)3
+q7n+2 1 + q7n+2

(1− q7n+2)3
+q7n+4 1 + q7n+4

(1− q7n+4)3
−q7n+3 1 + q7n+3

(1− q7n+3)3
−

q7n+5 1 + q7n+5

(1− q7n+5)3
−q7n+6 1 + q7n+6

(1− q7n+6)3

]
= q(q; q)3∞(q7; q7)3∞+8q2

(q7; q7)7∞
(q; q)∞

. (1.3)

Identities (1.2) and (1.3) are due to Ramanujan. They lead to Ramanujan’s
partition identities for modulo 5 and modulo 7. Identity (1.1) is due to Legendre.
H.H. Chan [6] has given a new, though complicated, proof of (1.2) and (1.3).

My motivation in writing this paper is to give a unified simple proof of all these
well-known identities by using the following two simple theta function identities,
see [10, eq. (2.14)] and [11, eq.(7.1)], respectively :
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(
θ
′

1

θ1

)′
(z|q) = 4

∞∑
n=0

qne2iz

(1− qne2iz)2
+ 4

∞∑
n=1

qne−2iz

(1− qne−2iz)2
, (1.4)

and (
θ
′

1

θ1

)′
(a|q)−

(
θ
′

1

θ1

)′
(b|q) = θ

′

1 (q)
2 θ1(a− b|q)θ1(a+ b|q)

θ21(a|q)θ21(b|q)
. (1.5)

2. Basic Preliminaries

Throughout this paper we use q to denote e2πiτ , Im(τ) > 0.
We will use the following standard q-notation, |q| < 1:

(a; qk)n = (1− a)(1− aqk).......(1− aqk(n−1)), n ≥ 1 (2.1)

(a; qk)∞ =

∞∏
n=0

(1− aqnk), (2.2)

(a, b, c....; q)∞ = (a; q)∞(b; q)∞(c; q)∞...... (2.3)

Easily, for any integer n > 0

(a, aq, ....., aqn−1; qn)∞ = (a; q)∞. (2.4)

Jacobi theta function θ1(z|q) is defined as [14, p.469]

θ1(z|q) = −iq 1
8

∞∑
n=−∞

(−1)nq
n(n+1)

2 e(2n+1)iz (2.5)

= 2q
1
8

∞∑
n=0

(−1)nq
n(n+1)

2 sin(2n+ 1)z. (2.6)

From (2.6), we have

θ1(−z|q) = −θ1(z|q). (2.7)

The function θ1(z|q) can also be expressed in terms of an infinite product

θ1(z|q) = 2q
1
8 sinz(q; q)∞(qe2iz; q)∞(qe−2iz; q)∞ (2.8)

= iq
1
8 e−iz(q; q)∞(e2iz; q)∞(qe−2iz; q)∞. (2.9)

We define

θ1 (q) = θ1 (0|q) . (2.10)

Differentiating (2.8) with respect to z and then puttingz = 0, we have

θ
′

1 (q) = θ
′

1 (0|q) = 2q
1
8 (q; q)3∞. (2.11)

From (2.9) and (2.7) respectively, we have

θ1
(
nπτ |qk

)
= iq

k−4n
8 (qk; qk)∞(qn; qk)∞(qk−n; qk)∞, (2.12)
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θ1
(
−nπτ |qk

)
= −θ1

(
nπτ |qk

)
. (2.13)

Taking n = 1,k = 5, and n = 2,k = 5 in (2.12) and then multiplying the two
resulting identities, we get

θ1
(
πτ |q5

)
θ1
(
2πτ |q5

)
= −q− 1

4 (q; q)∞(q5; q5)∞. (2.14)

Ramanujan defined general theta function f(a, b)as

f(a, b) =

∞∑
n=−∞

a
n(n+1)

2 b
n(n−1)

2 , |ab| < 1.

We then have [1, p. 35, Entry 19]

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

3. Proof of Identities (1.1) and (1.2)

Making q → q4 and then setting z = πτ and z = 2πτ, respectively, in (1.4), to
obtain (

θ
′

1

θ1

)′
(πτ |q4) = 4

∞∑
n=0

q4n+1

(1− q4n+1)2
+ 4

∞∑
n=1

q4n−1

(1− q4n−1)2
(3.1)

and (
θ
′

1

θ1

)′
(2πτ |q4) = 4

∞∑
n=0

q4n+2

(1− q4n+2)2
+ 4

∞∑
n=1

q4n−2

(1− q4n−2)2
. (3.2)

Writing n+ 1for n in the second summation on the right hand side of equation
(3.1) and (3.2) and then subtracting (3.2) from (3.1), we have

(
θ
′

1

θ1

)′
(πτ |q4)−

(
θ
′

1

θ1

)′
(2πτ |q4) = 4

∞∑
n=0

[
q4n+1

(1− q4n+1)2
− 2q4n+2

(1− q4n+2)2
+

q4n+3

(1− q4n+3)2

]
.

(3.3)
This identity we proved in [13, eq. (7(ii))].
Making q → q4 and then taking a = πτ , b = 2πτ in (1.5), we have(

θ
′

1

θ1

)′
(πτ |q4)−

(
θ
′

1

θ1

)′
(2πτ |q4) = θ

′

1

(
q4
)2 θ1(−πτ |q4)θ1(3πτ |q4)

θ21(πτ |q4)θ21(2πτ |q4)

= 4q
(q4; q4)4∞
(q2; q4)4∞

. (3.4)

We have used (2.11) and (2.12) in simplifying the right hand side of the above
identity.

From (3.3) and (3.4), we have

∞∑
n=0

[
q4n+1

(1− q4n+1)2
− 2q4n+2

(1− q4n+2)2
+

q4n+3

(1− q4n+3)2

]
= q

(q4; q4)4∞
(q2; q4)4∞

,
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which is (1.1).
Now we prove (1.2) using the same identity (1.4).
Making q → q5 and then setting z = πτ and z = 2πτ, respectively, in (1.4), and

then substracting, we have(
θ
′

1

θ1

)′
(πτ |q5)−

(
θ
′

1

θ1

)′
(2πτ |q5) = 4

∞∑
n=0

[
q5n+1

(1− q5n+1)2
+

q5n+4

(1− q5n+4)2
− q5n+2

(1− q5n+2)2
− q5n+3

(1− q5n+3)2

]

= 4

∞∑
n=1

(n
5

) qn

(1− qn)2
, (3.5)

where
(
n
5

)
is Legendre symbol.

Making q → q5 and then taking a = πτ and b = 2πτ in (1.5), using (2.11) and
(2.14), we have (

θ
′

1

θ1

)′
(πτ |q5)−

(
θ
′

1

θ1

)′
(2πτ |q5) = 4q

(q5; q5)5∞
(q; q)∞

. (3.6)

From (3.5) and (3.6), we have

∞∑
n=1

(n
5

) qn

(1− qn)2
= q

(q5; q5)5∞
(q; q)∞

,

which is (1.2).

4. Proof of Identity (1.3)

In proving the identity (1.3) we use the same theta function identity (1.4) only
we differentiate partially (1.4) with respect to z.

Differentiate partially with respect to z both side of (1.4), to get

(
θ
′

1

θ1

)′′
(z|q) = 8i

∞∑
n=0

qne2iz(1 + qne2iz)

(1− qne2iz)3
− 8i

∞∑
n=1

qne−2iz(1 + qne−2iz)

(1− qne−2iz)3
. (4.1)

Making q → q7 and then writing n + 1 for n in the second summation on the
right hand side of (4.1), we get

(
θ
′

1

θ1

)′′
(z|q7) = 8i

∞∑
n=0

q7ne2iz(1 + q7ne2iz)

(1− q7ne2iz)3
− 8i

∞∑
n=0

q7n+7e−2iz(1 + q7n+7e−2iz)

(1− q7n+7e−2iz)3
.

(4.2)
Put z = πτ and z = 2πτ, respectively, in (4.2) and add to get(

θ
′

1

θ1

)′′
(πτ |q7) +

(
θ
′

1

θ1

)′′
(2πτ |q7)

= 8i

∞∑
n=0

q7n+1(1 + q7n+1)

(1− q7n+1)3
− 8i

∞∑
n=0

q7n+6(1 + q7n+6)

(1− q7n+6)3
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+ 8i

∞∑
n=0

q7n+2(1 + q7n+2)

(1− q7n+2)3
− 8i

∞∑
n=0

q7n+5(1 + q7n+5)

(1− q7n+5)3
. (4.3)

Now put z = 3πτ in (4.2) and subtract from (4.3) to obtain(
θ
′

1

θ1

)′′
(πτ |q7) +

(
θ
′

1

θ1

)′′
(2πτ |q7)−

(
θ
′

1

θ1

)′′
(3πτ |q7)

= 8i

∞∑
n=0

q7n+1(1 + q7n+1)

(1− q7n+1)3
− 8i

∞∑
n=0

q7n+6(1 + q7n+6)

(1− q7n+6)3

+8i

∞∑
n=0

q7n+2(1 + q7n+2)

(1− q7n+2)3
− 8i

∞∑
n=0

q7n+5(1 + q7n+5)

(1− q7n+5)3

− 8i

∞∑
n=0

q7n+3(1 + q7n+3)

(1− q7n+3)3
+ 8i

∞∑
n=0

q7n+4(1 + q7n+4)

(1− q7n+4)3
. (4.4)

For evaluating the left hand side of (4.4) we use the second identity (1.5).
Differentiating partially both side of (1.5) with respect to a and then putting

b = a, and making q → q7, we obtain(
θ
′

1

θ1

)′′
(a|q7) = θ

′

1

(
q7
)3 θ1(2a|q7)

θ41(a|q7)
. (4.5)

Taking a = πτ , 2πτ and 3πτ, respectively, in (4.5) and using (2.11) and (2.12),
we have (

θ
′

1

θ1

)′′
(πτ |q7) = 8iq

(q7; q7)9∞(q2; q7)∞(q5; q7)∞(q7; q7)∞
(q; q7)4∞(q6; q7)4∞(q7; q7)4∞

, (4.6)

(
θ
′

1

θ1

)′′
(2πτ |q7) = 8iq2

(q7; q7)9∞(q3; q7)∞(q4; q7)∞(q7; q7)∞
(q2; q7)4∞(q5; q7)4∞(q7; q7)4∞

, (4.7)

and (
θ
′

1

θ1

)′′
(3πτ |q7) = 8iq3

(q7; q7)9∞(q; q7)∞(q6; q7)∞(q7; q7)∞
(q3; q7)4∞(q4; q7)4∞(q7; q7)4∞

. (4.8)

Using (4.6), (4.7) and (4.8) the left hand side of (4.4) equals

8iq(q7; q7)9∞

[
q

(q2; q7)∞(q5; q7)∞(q7; q7)∞
(q; q7)4∞(q6; q7)4∞(q7; q7)4∞

+ q2
(q3; q7)∞(q4; q7)∞(q7; q7)∞
(q2; q7)4∞(q5; q7)4∞(q7; q7)4∞

−

q3
(q; q7)∞(q6; q7)∞(q7; q7)∞
(q3; q7)4∞(q4; q7)4∞(q7; q7)4∞

]

= 8iq2(q7; q7)9∞

[
q−1

f(−q2,−q5)

f4(−q,−q6)
+

f(−q3,−q4)

f4(−q2,−q5)
− q f(−q,−q6)

f4(−q3,−q4)

]
. (4.9)

Using the following identity [4, eq.(4.22)] to evaluate the right hand side of (4.9)
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(q; q)∞(q7; q7)2∞

[
q−1

f(−q2,−q5)

f4(−q,−q6)
+

f(−q3,−q4)

f4(−q2,−q5)
− q f(−q,−q6)

f4(−q3,−q4)

]
=

f4(−q)
qf4(−q7)

+ 8

we have (
θ
′

1

θ1

)′′
(πτ |q7) +

(
θ
′

1

θ1

)′′
(2πτ |q7)−

(
θ
′

1

θ1

)′′
(3πτ |q7)

= 8i

[
q(q; q)3∞(q7; q7)3∞ + 8q2

(q7; q7)7∞
(q; q)∞

]
.

Now by (4.4)

∞∑
n=0

[
q7n+1 1 + q7n+1

(1− q7n+1)3
+q7n+2 1 + q7n+2

(1− q7n+2)3
+q7n+4 1 + q7n+4

(1− q7n+4)3
−q7n+3 1 + q7n+3

(1− q7n+3)3
−

q7n+5 1 + q7n+5

(1− q7n+5)3
− q7n+6 1 + q7n+6

(1− q7n+6)3
= q(q; q)3∞(q7; q7)3∞ + 8q2

(q7; q7)7∞
(q; q)∞

,

which is (1.3).
This identity has also been proved by Liu [9], using these two identities.
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