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Abstract. In this paper, we introduce and consider a new class of variational
inequalities involving two operators, which is called the general nonconvex

quasi variational inequality. Several special cases are discussed. We use the

projection technique to establish the equivalence between the general noncon-
vex quasi variational inequalities and the fixed point problems. This alterna-

tive equivalent formulation is used to study the existence of a solution of the
general nonconvex quasi variational inequalities. Using these equivalent for-

mulations, we suggest and analyze a wide class of new extragradient methods

for solving the general nonconvex quasi variational inequalities. Convergence
criteria of these new iterative methods is considered under some suitable con-

ditions.

1. Introduction

Quasi variational inequalities, which were introduced in early 1970’s, are being
used to model various problems arising in different branches of pure and applied
sciences in a unified and general manner. Quasi variational inequalities continu-
ously benefit from cross-fertilization between functional analysis, convex analysis,
numerical analysis and physics. This interaction between these fields have played a
significant and important role in developing several numerical techniques for solving
quasi variational inequalities and related optimization problems, see [1-25] and the
references therein.

It is worth mentioning that almost all the results regarding the existence and
iterative schemes for quasi variational inequalities have been investigated and con-
sidered, if the underlying set is a convex set. This is because all the techniques
are based on the properties of the projection operator over convex sets, which may
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not hold for the nonconvex sets. Motivated and inspired by the ongoing research
in this area, we introduce and consider a new class of quasi-variational inequalities,
which is called the general nonconvex quasi-variational inequality on the uniformly
prox-regular sets, It is well-known [3,24] that the prox-regular sets are nonconvex
sets and include the convex sets as a special case, see [3,24]. Using the idea and
technique of Noor [16,18-21], we show that the projection technique can be ex-
tended for the general nonconvex quasi-variational inequalities. We establish the
equivalence between the general nonconvex quasi-variational inequalities and fixed
point problems using the projection technique. This equivalent alternative formu-
lation is used to discuss the existence of a solution of the general nonconvex quasi
variational inequalities, which is Theorem 3.1. We use this alternative equivalent
formulation to suggest and analyze some implicit type iterative methods for solving
the general nonconvex quasi variational inequalities. In order to implement these
new implicit methods, we use the predictor-corrector technique to suggest some
two-step methods for solving the general nonconvex variational inequalities, which
are Algorithm 3.4 and Algorithm 3.6. We consider the convergence (Theorem 3.2)
of the new iterative method (Algorithm 3.1 ) under some suitable conditions. We
have also suggested three-step iterative methods for solving the general nonconvex
quasi-variational inequalities. Some special cases are also discussed. We would like
to point out that our method of proofs is very simple as compared with other tech-
niques. These results can be viewed as a significant refinement and improvement of
the previously known results for different classes of variational inequalities and opti-
mization problems. We hope that the results proved in this paper may lead to novel
and innovative applications of the general nonconvex quasi variational inequalities
in various branches of pure and applied sciences.

2. Basic Concepts

Let H be a real Hilbert space whose inner product and norm are denoted by
⟨⋅, ⋅⟩ and ∥.∥ respectively. Let K be a nonempty and convex set in H. We, first
of all, recall the following well-known concepts from nonlinear convex analysis and
nonsmooth analysis [3,24].

Definition 2.1. The proximal normal cone of K at u ∈ H is given by

NP
K(u) := {� ∈ H : u ∈ PK [u+ ��]},

where � > 0 is a constant and

PK [u] = {u∗ ∈ K : dK(u) = ∥u− u∗∥}.
Here dK(.) is the usual distance function to the subset K, that is

dK(u) = inf
v∈K
∥v − u∥.

The proximal normal cone NP
K(u) has the following characterization.

Lemma 2.1. Let K be a nonempty, closed and convex subset in H. Then
� ∈ NP

K(u),
if and only if, there exists a constant � > 0 such that

⟨�, v − u⟩ ≤ �∥v − u∥2, ∀v ∈ K.
Poliquin et al. [24] and Clarke et al [3] have introduced and studied a new class of
nonconvex sets, which are called uniformly prox-regular sets. This class of uniformly
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prox-regular sets has played an important part in many nonconvex applications such
as optimization, dynamic systems and differential inclusions.

Definition 2.2. For a given r ∈ (0,∞], a subset Kr is said to be normalized
uniformly r-prox-regular if and only if every nonzero proximal normal to Kr can
be realized by an r-ball, that is, ∀u ∈ Kr and 0 ∕= � ∈ NP

Kr
(u), one has

⟨(�)/∥�∥, v − u⟩ ≤ (1/2r)∥v − u∥2, ∀v ∈ K.

It is clear that the class of normalized uniformly prox-regular sets is sufficiently
large to include the class of convex sets, p-convex sets, C1,1submanifolds (possibly
with boundary) of H, the images under a C1,1 diffeomorphism of convex sets and
many other nonconvex sets; see [3,24]. It is clear that if r = ∞, then uniformly
prox-regularity of Kr is equivalent to the convexity of K. It is known that if Kr is
a uniformly prox-regular set, then the proximal normal cone NP

Kr
(u) is closed as a

set-valued mapping.

For given nonlinear operators T, ℎ and a point-to-set mapping Kr : u −→ Kr(u),
which associates a closed uniformly prox-regular set Kr(u) of H with any element
of H, we consider the problem of finding u ∈ H : ℎ(u) ∈ Kr(u) such that

⟨�Tu+ ℎ(u)− u, v − ℎ(u)⟩ ≥ 0, ∀v ∈ Kr(u), (2.1)

which is called the general nonconvex quasi variational inequality.
If ℎ ≡ I, the identity operator and Kr(u) ≡ Kr, then problem (2.1) is equivalent

to finding u ∈ Kr such that

⟨�Tu, v − u⟩ ≥ 0, ∀v ∈ K, (2.2)

which is known as the nonconvex variational inequality, studied and introduced by
Noor [18].

We now consider the following simple examples to give an idea of the importance
of the nonconvex sets. These examples are due to Noor [21]

Example 2.1[21]. Let u = (x, y) and v = (t, z) belong to the real Euclidean
plane and consider Tu = (2x, 2(y − 1)). Let K = {t2 + (z − 2)2 ≥ 4, −2 ≤ t ≤
2, z ≥ −2} be a subset of the Euclidean plane. Then one can easily show that
the set K is a prox-regular set Kr. It is clear that nonconvex variational inequality
(2.2) has no solution.

Example 2.2 [21]. Let u = (x, y) ∈ R2, v = (t, z) ∈ R2 and let Tu =
(−x, 1− y). Let the set K be the union of 2 disjoint squares, say A and B having
respectively, the vertices in the points (0, 1), (2, 1), (2, 3), (0, 3) and in the points
(4, 1), (5, 2), (4, 3), (3, 2).
The fact that K can be written in the form:{

(t, z) ∈ R2 : max{∣t− 1∣, ∣z − 2∣} ≤ 1} ∪ {∣t− 4∣+ ∣z − 2∣ ≤ 1}
}

shows that it is a prox-regular set in R2 and the nonconvex variational inequality
(2.1) has a solution on the square B. We note that the operator T is the gradient
of a strictly concave function. This shows that the square A is redundant.

We note that, if Kr(u) ≡ K(u), the convex set in H, then problem (2.1) is
equivalent to finding u ∈ H : ℎ(u) ∈ K(u) such that

⟨�Tu+ ℎ(u)− u, v − ℎ(u)⟩ ≥ 0, ∀v ∈ K(u). (2.3)

Inequality of type (2.3) is called the general quasi variational inequality.
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If ℎ(u) = u, then problem (2.1) is equivalent to finding u ∈ H : ℎ(u) ∈ Kr(u)
such that

⟨T (ℎ(u)), v − ℎ(u)⟩ ≥ 0, ∀v ∈ Kr(u), (2.4)

which is also called the general nonconvex quasi variational inequality and appears
to be a new one.

If Kr(u) ≡ K(u), the convex-valued set in H, then problem (2.4) is equivalent
to finding u ∈ H : ℎ(u) ∈ K(u) such that

⟨T (ℎ(u)), v − ℎ(u)⟩ ≥ 0,∀v ∈ K(u), (2.5)

which was introduced and studied by Noor [9] in 1988. It has been shown that the
minimum of a differentiable nonconvex function can be characterized by the general
variational inequality (2.5).

If ℎ ≡ I, the identity operator, then problem (2.5) is equivalent to finding u ∈
K(u) such that

⟨Tu, v − u⟩ ≥ 0, v ∈ K(u), (2.6)

which is known as the classical quasi variational inequality, introduced and studied
by Bensoussan and Lions [1].

In brief, for suitable choice of the operators and the spaces, one can obtain sev-
eral new and previous known classes of (quasi) variational inequalities and related
optimization problems. It turned out that a number of unrelated obstacle, free,
moving, unilateral and equilibrium problems arising in various branches of pure
and applied sciences can be studied via variational inequalities, see [1-25] and the
references therein.

We note that for the nonconvex-valued (uniformly prox-regular) set Kr(u), prob-
lem (2.1) is equivalent to finding u ∈ Kr(u) such that

0 ∈ �Tu+ ℎ(u)− u+ �NP
Kr(u)

(ℎ(u)), (2.7)

where NP
Kr(u)

(u) denotes the normal cone of Kr(u) at u in the sense of nonconvex

analysis. Problem (2.8) is called the general nonconvex quasi variational inclusion
problem associated with nonconvex variational inequality (2.1). This implies that
the general nonconvex quasi variational inequality (2.1) is equivalent to finding
a zero of the sum of two monotone operators (2.7). This equivalent formulation
plays a crucial and basic part in this paper. We would like to point out this
equivalent formulation allows us to use the projection operator technique for solving
the general nonconvex variational inequality (2.1).

We now recall the well known proposition which summarizes some important
properties of the uniform prox-regular sets.

Lemma 2.2. Let K be a nonempty closed subset of H, r ∈ (0,∞] and set
Kr = {u ∈ H : dK(u) < r}. If Kr is uniformly prox-regular, then
i. ∀u ∈ Kr, PKr (u) ∕= ∅.
ii. ∀r′ ∈ (0, r), PKr

is Lipschitz continuous with constant r
r−r′ on Kr′ .

Definition 2.3. An operator T : H → H is said to be:
(i) strongly monotone, if and only if, there exists a constant � > 0 such that

⟨Tu− Tv, u− v⟩ ≥ �∣∣u− v∣∣2, ∀u, v ∈ H.
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(ii) Lipschitz continuous, if and only if, there exists a constant � > 0 such that

∣∣Tu− Tv∣∣ ≤ �∣∣u− v∣∣, ∀u, v ∈ H.

3. Main Results

In this section, we establish the equivalence between the general nonconvex quasi
variational inequality (2.1) and the fixed point problem using the projection oper-
ator technique. This alternative formulation is used to discuss the existence of a
solution of the problem (2.1) and to suggest some new iterative methods for solving
the general nonconvex quasi variational inequality (2.1).

Lemma 3.1. u ∈ H : ℎ(u) ∈ Kr(u) is a solution of the general nonconvex quasi
variational inequality (2.1), if and only if, u ∈ H : ℎ(u) ∈ Kr(u) satisfies the
relation

ℎ(u) = PKr(u)[u− �Tu], (3.1)

where PKr(u) is the projection of H onto the uniformly prox-regular set Kr(u).

Proof. Let u ∈ H : ℎ(u) ∈ Kr(u) be a solution of (2.1). Then, for a constant
� > 0,

0 ∈ ℎ(u) + �NP
Kr(u)

(ℎ(u))− (u− �Tu) = (I + �NP
Kr(u)

)(ℎ(u))− (u− �Tu)

⇐⇒
ℎ(u) = (I + �NP

Kr(u)
)−1[u− �Tu] = PKr(u)[u− �Tu],

where we have used the well-known fact that PKr(u) ≡ (I +NP
Kr(u)

)−1. □

We would like to point out that the implicit projection operator PKr(u) is not
nonexpansive. We shall assume that the implicit projection operator PKr(u) satisfies
the Lipschitz type continuity, which plays an important and fundamental role in
the existence theory and in developing numerical methods for solving nonconvex
quasi-variational inequalities.

Assumption 3.1 [18]. For all u, v, w ∈ H, the implicit projection operator
PKr(u) satisfies the condition

∥PKr(u)w − PKr(v)w∣∥ ≤ �∥u− v∣∣,

where � > 0 is a positive constant.

Lemma 3.1 implies that the general nonconvex quasi-variational inequality (2.1)
is equivalent to the fixed point problem (3.1). This alternative equivalent formula-
tion is very useful from the numerical and theoretical point of views.

We rewrite the the relation (3.1) in the following form

F (u) = u− ℎ(u) + PKr(u)[u− �Tu], (3.2)

which is used to study the existence of a solution of the general nonconvex quasi-
variational inequality (2.1).

We now study those conditions under which the general nonconvex quasi-variational
inequality (2.1) has a solution and this is the main motivation of our next result.

Theorem 3.1. Let PKr
be the Lipschitz continuous operator with constant � =

r
r−r′ . Let T, ℎ be strongly monotone with constants � > 0, � > 0 and Lipschitz
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continuous with constants � > 0, � > 0, respectively. If Assumption 3.1 holds and
there exists a constant � > 0 such that

∣�− �

�2
∣ <

√
�2�2 − �2(�2 − (1− k)2))

��2
, �� > �

√
�2 − (1− k)2, (3.3)

k = � +
√

1− 2� + �2 < 1, (3.4)

then there exists a solution of the problem (2.1).

Proof. From Lemma 3.1, it follows that problems (3.1) and (2.1) are equivalent.
Thus it is enough to show that the map F (u), defined by (3.2), has a fixed point.
For all u ∕= v ∈ Kr, we have

∣∣F (u)− F (v)∣∣ = ∥u− v − (ℎ(u)− ℎ(v))∥+ ∥PKr(u)[u− �Tu]− PKr(v)[v − �Tv]∣∣
≤ ∥u− v − (ℎ(u)− ℎ(v))∥+ ∥PKr(u)[u− �Tu]− PKr(v)[u− �Tu]∣∣

+∥PKr(v)[u− �Tu]− PKr(v)[v − �Tv]∥
≤ ∥u− v − (ℎ(u)− ℎ(v)) + �∥u− v − �(Tu− Tv)∥+ �∥u− v∥,(3.5)

where we have used the fact that the operator PKr is a Lipschitz continuous operator
with constant � and the Assumption 3.1.

Since the operator T is strongly monotone with constant � > 0 and Lipschitz
continuous with constant � > 0, it follows that

∣∣u− v − �(Tu− Tv)∣∣2 ≤ ∣∣u− v∣∣2 − 2�⟨Tu− Tv, u− v⟩+ �2∣∣Tu− Tv∣∣2

≤ (1− 2��+ �2�2)∣∣u− v∣∣2. (3.6)

In a similar way, we have

∥u− v − (ℎ(u)− ℎ(v))∥ ≤
√

1− 2� + �2∥u− v∣, (3.7)

where � > 0 is the strongly monotonicity constant and � > 0 is the Lipschitz
continuity constant of the operator ℎ respectively.

From (3.4), (3.5), (3.6) and (3.7), we have

∣∣F (u)− F (v)∣∣ ≤
{
k + �

√
1− 2��+ �2�2)

}
∣∣u− v∣∣

= �∣∣u− v∣∣,
where

� = �
√

1− 2��+ �2�2 + k. (3.8)

From (3.3), it follows that � < 1, which implies that the map F (u) defined by (3.2),
has a fixed point, which is the unique solution of (2.1). □

This fixed point formulation (3.1) is used to suggest the following iterative
method for solving the general nonconvex quasi-variational inequality (2.1).

Algorithm 3.1. For a given u0 ∈ H, find the approximate solution un+1 by the
iterative scheme

un+1 = (1− �n)un − �n{un − ℎ(un) + PKr(un)[un − �Tun]}, n = 0, 1, 2, . . . ,(3.9)

where �n ∈ [0, 1],∀n ≥ 0 is a constant. Algorithm 3.1 is also called the Mann
iteration process. For �n = 1, Algorithm 3.1 collapse to:

Algorithm 3.2. For a given u0 ∈ H, find the approximate solution un+1 by the
iterative scheme

ℎ(un+1) = PKr(un)[un − �Tun], n = 0, 1, 2, . . .
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We again use the fixed-point formulation (3.1) to suggest and analyze an iterative
method for solving the general nonconvex quasi-variational inequalities (2.1) as:

Algorithm 3.3. For a given u0 ∈ H, find the approximate solution un+1 by the
iterative scheme

ℎ(un+1) = PKr(un)[un+1 − �Tun+1], n = 0, 1, 2, . . .

Algorithm 3.3 is an implicit type iterative method, which is difficult to implement.
To implement Algorithm 3.3, we use the predictor-corrector technique. Here we use
the Algorithm 3.1 as a predictor and Algorithm 3.3 as a corrector. Consequently,
we have the following iterative method

Algorithm 3.4. For a given u0 ∈ H, find the approximate solution un+1 by the
iterative schemes

ℎ(yn) = PKr(un)[un − �Tun]

ℎ(un+1) = PKr(yn)[yn − �Tyn], n = 0, 1, 2, . . .

which is called the two-step or splitting type iterative method for solving the general
nonconvex quasi-variational inequalities (2.1). Algorithm 3.4 is also known as the
modified extragradient method. It is worth mentioning that Algorithm 3.4 can be
suggested by using the updating the technique of the solution.

Using the fixed point formulation (3.1), one can suggest and analyze the following
iterative method for solving the general nonconvex quasi-variational inequality (2.1)
as;

Algorithm 3.5. For a given u0 ∈ H, find the approximate solution un+1 by the
iterative scheme

un+1 = PKr(un)[un − �Tun+1], n = 0, 1, 2, . . . ,

which is an implicit iterative method. To implement Algorithm 3.5, we use the
predictor-corrector technique to suggest the following iterative method for solving
the general nonconvex quasi-variational inequality (2.1) as:

Algorithm 3.6. For a given u0 ∈ H, find the approximate solution un+1 by the
iterative schemes

yn = PKr(un)[un − �Tun]

un+1 = PKr(yn)[un − �Tyn], n = 0, 1, 2, . . . ,

which is called the extragradient method. We would like to mention that Algorithm
3.4 and Algorithm 3.6 are remarkably different from each other.

Algorithm 3.4 can be used suggest and analyze the following two-step iterative
method for solving the general nonconvex quasi-variational inequality (2.1).

Algorithm 3.7. For a given u0 ∈ H, find the approximate solution un+1 by the
iterative schemes

yn = (1− �n)un + �n{yn − ℎ(yn) + PKr(un)[un − �Tun]}
un+1 = (1− �n)un + �n{un − ℎ(un) + PKr(yn)[yn − �Tyn]}, n = 0, 1, 2, . . . ,

where �n, �n ∈ [0, 1], ∀n ≥ 0.
Clearly for �n = �n = 1, Algorithm 3.7 reduces to Algorithm 3.4. It is worth

mentioning that, if r = ∞, then the nonconvex set Kr(u) reduces to a convex-
valued set K(u). Consequently Algorithms 3.1- 3.7 collapse to the algorithms for
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solving the classical quasi variational inequalities (2.6). We would like to point that
Algorithm 3.4 appears to be a new one for solving the quasi variational inequalities.

We now consider the convergence analysis of Algorithm 3.1 and this is the main
motivation of our next result. In a similar way, one can consider the convergence
criteria of other Algorithms.

Theorem 3.2. Let PKr(u) be the Lipschitz continuous operator with constant
� = r

r−r′ . Let the operators T, ℎ : H −→ H be strongly monotone with constants

� > 0, � > 0 and Lipschitz continuous with constants with � > 0, � > 0, respec-
tively. If Assumption 3.1 and condition (3.3) hold with, �n,∈ [0, 1], ∀n ≥ 0 and∑∞

n=0 �n = ∞, then the approximate solution un obtained from Algorithm 3.1
converges to a solution u ∈ H satisfying the general nonconvex quasi variational
inequality (2.1).

Proof. Let u ∈ H : ℎ(u) ∈ Kr(u) be a solution of the general nonconvex quasi
variational inequality (2.1). Then, using Lemma 3.1, we have

u = (1− �n)u+ �n{u− ℎ(u) + PKr(u)[u− �Tu]}, (3.10)

where 0 ≤ �n ≤ 1 is a constant.
From (3.3) and (3.5)-(3.10) and using the Lipschitz continuity of the projection

PKr(u) with constant � and Assumption 3.1, we have

∣∣un+1 − u∣∣ = ∣∣(1− �n)(un − u) + �n{PKr(un)[un − �Tun]− PKr(u)[u− �Tu]}∣∣
+�n∥un − u− (ℎ(un)− ℎ(u))∥

≤ (1− �n)∥un − u∥+ �n∥PKr(un)[un − �Tun]− PKr(un)[u− �Tu]∥
+�nk∥un − u∥

≤ (1− �n)∥un − u∥+ �n�∥un − u+ �(Tun − Tu)∥+ �nk∥un − u∥
≤ (1− �n)∥un − u∥+ �n{k + �

√
1− 2��+ �2�2}∥un − u∥

= [1− �n(1− �)] ∥un − u∥

≤
n∏

i=0

[1− �i(1− �)] ∥u0 − u∥,

where,

� = k + �
√

1− 2��+ �2�2 < 1.

Since
∑∞

n=0 �n diverges and 1−� > 0, we have limn→∞ {
∏n

i=0[1− (1− �)�i]} = 0.
Consequently the sequence {un} convergences strongly to u. This completes the
proof. □

Using the technique of the updating the solution, one can rewrite the equation
(3.1) in the following form:

ℎ(y) = PKr(u)[u− �Tu]

ℎ(w) = PKr(y)[y − �Ty]

ℎ(u) = PKr(w)[w − �Tw],

which is another fixed point formulation. This fixed-point formulation is used to
suggest the following three-step iterative method for solving the general nonconvex
quasi variational inequality (2.1).
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Algorithm 3.8. For a given un ∈ H, find the approximate solution un+1 by the
iterative schemes:

yn = (1− 
n)un + 
n{yn − ℎ(yn) + PKr(un)[un − �Tun]}
wn = (1− �n)un + �n{wn − ℎ(wn) + PKr(yn)[yn − �Tyn]}

un+1 = (1− �n)un + �n{un − ℎ(un) + PKr(wn)[wn − �Twn]}, n = 0, 1, . . . ,

where �n, �n, 
n ∈ [0, 1] are some constants.

We would like to mention that three-step iterative methods are also known as
Noor iteration for solving the variational inequalities and equilibrium problems, see
the references. Note that for different and suitable choice of the constants �n, �n
and 
n, one can easily show that the Noor iterations include the Mann and Ishikawa
iterations as special cases. One can consider the convergence criteria of Algorithm
3.8 using the technique of this paper.
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