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SOME GLOBAL RESULTS ON HOLOMORPHIC LAGRANGIAN

FIBRATIONS

(COMMUNICATED BY KRISHAN L. DUGGAL)

CRISTIAN IDA

Abstract. The globalization of some local structures as the complex Liouville

vector field, complex Liouville 1-form, totally singular complex Hamiltonians
and complex nonlinear connection on holomorphic Lagrangian fibrations is

studied. Also, we give a new characterization of equivalence of two holomorphic

Lagrangian foliations. The notions are introduced here by analogy with the
real case, see [16, 17, 18].

1. Introduction

In the smooth category the cohomological obstructions for the globalization of
some local structures as Liouville vector fields or locally Lagrangians on Lagrangian
foliations was intensively studied in [16, 17]. Also, in [10] are given some extensions
of this results on affine complex foliated manifolds endowed with a complex tangent
structure.

The aim of this paper is to obtain similar results in the complex-analytic category
for some local structures on holomorphic Lagrangian fibrations. Firstly, following
[5, 6], we recall the notion of holomorphic symplectic fibrations, we present some
examples and by analogy with the real case [11], we consider affine holomorphic
symplectic fibrations. In the second section, with respect to the natural holomorphic
vertical foliation, we find the cohomological obstructions for the globalization of
the complex Liouville vector field and of the totally singular complex Hamiltonians
defined on a local chart and we give a new characterization of equivalence of two
holomorphic Lagrangian foliations. We also consider transversal distributions and
we find cohomological obstructions for the globalization of a complex nonlinear
connection and for the existence of an affine transversal distribution.

We work in the category of complex analytic sets. A complex manifold M of
dimension 2n equipped with a holomorphic symplectic form ω ∈ H0(M,Ω2(M))
is called a holomorphic symplectic manifold. A submanifold V of M is said to
be Lagrangian if V has dimension n and the restriction of ω on the smooth part
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of V is identically zero. Let (M, ω) be a holomorphic symplectic manifold and
M a complex manifold of dimension n. A proper surjective holomorphic map π :
(M, ω) → M is a holomorphic symplectic fibration. If the underlying submanifold
of every fiber of π is Lagrangian, then π : (M, ω) → M is called a holomorphic
Lagragian fibration.

Example 1.1. Let us consider the morphism π : C4 → C2 which is defined by
(x, y, z, w) → (xy, y). If we define a symplectic form on C4 by dx ∧ dz + dy ∧ dw,
then π is a holomorphic symplectic fibration.

Example 1.2. Let M := A×C3, where A is a three-dimensional torus. We define
the action of Z2 on M by

(x, y, z, u, v, w)→ (−x,−y, z + τ,−u,−v, w),

where (x, y, z) are global coordinates of A and τ is a 2-torsion element of A. If we
define a holomorphic symplectic form on M by dx ∧ du+ dy ∧ dv + dz ∧ dw, then
the morphism M/Z2 → C3/Z2 is a holomorphic symplectic fibration.

Example 1.3. Let M be an arbitrary n-dimensional complex manifold and π :
T

′∗M → M its holomorphic cotangent bundle. If (Uα, (z
i)), i = 1, . . . , n is a local

chart on M and ω = dzi ∧ dζi is the holomorphic symplectic 2-form, where (ζi)

should be regarded as the components of a point ζ ∈ T
′∗M with respect to the

canonical base {dzi}, then π : T
′∗M →M is a holomorphic symplectic fibration.

A morphism of two holomorphic symplectic fibrations π
′

: M′ → M
′

and
π : M → M is a couple (f0, f1), where f0 : M

′ → M and f1 : M′ → M are

holomorphic such that π ◦ f1 = f0 ◦ π
′
, i.e. f1 sends fibers to fibers; we also say

that f1 is a f0-morphism of holomorphic symplectic fibrations.

2. Affine holomorphic symplectic fibrations

Let (Uα, ϕα) be a local chart on M with the complex coordinates (zk), k =
1, . . . , n and (Vα, ψα) be a local chart on M with the complex coordinates u =
(zk, ζk), k = 1, . . . , n such that π(Vα) = Uα.

Definition 2.1. A holomorphic symplectic fibration π : M → M is said to be
affine if at local change maps (Vα, ψα) → (Vβ , ψβ) on M, the change rules of the
local complex coordinates have the form

z
′j = z

′j(zi) , ζ
′

j =
∂zi

∂z′j
ζi + ϕ

′

j(z
i), (2.1)

where z
′j and ϕ

′

j are holomorphic functions on (zi) variables and det(∂z
′j

∂zi ) 6= 0.

Definition 2.2. An affine local section in the affine holomorphic symplectic fibra-
tion π : M → M is a holomorphic map s : Uα → M such that π ◦ s = Id|Uα and
its local components change according to the rule

s
′

j(z
′
) =

∂zi

∂z′j
si(z) + ϕ

′

j(z). (2.2)

The set of all affine sections ofM is denoted by Γ(M) and it is an affine module
over F(M), i.e. for every f1, . . . , fp ∈ F(M) such that f1 + . . . + fp = 1 and
s1, . . . , sp ∈ Γ(M) then f1s

1 + . . .+ fps
p ∈ Γ(M), where the affine combination is

taken at every point z ∈M . We notice that a partition of the unity can be smooth,
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but not holomorphic, see for instance [13] p. 7. Thus, using a smooth partition
of the unity on the base M it can easily proved that every affine holomorphic
symplectic fibration allows an affine section.

Let kerπ∗ := V
′M→M be the holomorphic vertical bundle ofM and Γ(V

′M)

be the module of its sections. The local complex coordinates on V
′M have the

form (zi, ζi, ηi) and the change rule of these coordinates are given by

z
′j = z

′j(z) , ζ
′

j =
∂zi

∂z′j
ζi + ϕ

′

j(z) , η
′

j =
∂zi

∂z′j
ηi. (2.3)

Definition 2.3. A Liouville type section is a vertical section S ∈ Γ(V
′M) which

has the local form

Si(z, ζ) = ζi + Ci(z). (2.4)

Proposition 2.1. Every Liouville type section in Γ(V
′M) defines an affine section

in Γ(M) and conversely.

Proof. Using (2.3) at local charts change, we have S
′

j = ∂zi

∂z′j
Si. Now, taking into

account the local forms of S
′

j and Si from (2.4), it follows ζ
′

j + C
′

j = ∂zi

∂z′j
(ζi + Ci).

Using (2.1), it follows

C
′

j =
∂zi

∂z′j
Ci − ϕ

′

j .

Thus, the local functions {−Ci(z)} are the local components of a global affine
section in Γ(M). Conversely, for a global affine section s ∈ Γ(M) having the local
components si(z), the local functions ζi− si onM verify the change rule (2.4). �

Note that inside of (2.1) we can take into account the particular case ϕ
′

j = 0,
whenM is identified with the holomorphic cotangent bundle of a complex manifold
M , namely M = T

′∗M . Fore more details about the geometry of T
′∗M complex

manifold see the Ch. VI from [8].
Throughout this paper we consider π : (M, ω)→M to be an affine holomorphic

symplectic fibration.
Let us consider V be the leafs of the vertical foliation (the foliation by fibers),

characterized by zi = const. and ω = dzi ∧ dζi the holomorphic symplectic (2, 0)-
form on M. Then ω|V = 0 and in this case we call (M, ω,V) a holomorphic
Lagrangian foliation.

Let J be the natural complex structure of the manifoldM and T
′M and T

′′M =

T ′M be its holomorphic and antiholomorphic subbundles, respectively. By TCM =
T

′M⊕T ′′M we denote the complexified tangent bundle of the real tangent bundle
TRM. From (2.1) it results the following changes for the natural local frames of

T
′

uM

∂

∂zi
=
∂z

′j

∂zi
∂

∂z′j
+ (

∂z
′k

∂zi
∂2zh

∂z′k∂z′j
ζh +

∂ϕ
′

j

∂zi
)
∂

∂ζ
′
j

;
∂

∂ζi
=

∂zi

∂z′j

∂

∂ζ
′
j

. (2.5)

By conjugation over all in (2.5) we obtain the change rules of the natural local

frames on T
′′

uM, and then, the behaviour of the J complex structures is

J(
∂

∂zk
) = i

∂

∂zk
; J(

∂

∂zk
) = −i ∂

∂zk
; J(

∂

∂ζk
) = i

∂

∂ζk
; J(

∂

∂ζk
) = −i ∂

∂ζk
. (2.6)
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The natural dual bases on T
′∗
u M change according to the rule

dz
′j =

∂z
′j

∂zk
dzk ; dζ

′

j = (
∂z

′k

∂zi
∂2zh

∂z′k∂z′j
ζh +

∂ϕ
′

j

∂zi
)dzi +

∂zi

∂z′j
dζi (2.7)

and by conjugation we obtain the change rules of the natural dual bases on T
′′∗
u M.

Thus, the coordinates of the vectors Z = Zi ∂
∂zi +Zi

∂
∂ζi
∈ T ′M have the following

change rules

Z
′j =

∂z
′j

∂zi
Zi ; Z

′

j = (
∂z

′k

∂zi
∂2zh

∂z′k∂z′j
ζh +

∂ϕ
′

j

∂zi
)Zi +

∂zi

∂z′j
Zi, (2.8)

and the coordinates of the co-vectors θ = θidz
i + θidζi ∈ T

′∗M change according
to the rules

θ
′

j =
∂zi

∂z′j
θi + (

∂z
′k

∂zi
∂2zh

∂z′k∂z′j
ζh +

∂ϕ
′

j

∂zi
)θi ; θ

′j =
∂z

′j

∂zi
θi. (2.9)

By conjugation over all in (2.8) and (2.9) we get the change rules of the coordi-

nates of the vectors from T
′′M and of the co-vectors from T

′′∗M, respectively.

3. Global results

In this section, by analogy with the real case, [16], [17], [18], we find some
cohomological obstructions for the globalization of the complex Liouville vector
field, the complex Liouville 1-form, the totally singular complex Hamiltonians and of
a complex nonlinear connection onM. Also, using the relative cohomology, we give
in the second subsection a new characterization of equivalence of two holomorphic
Lagrangian foliations.

3.1. Complex Liouville vector field. The tangent vectors of the leaves V define
the structural subbundle T

′V of T
′M with local bases { ∂

∂ζi
} and with the transition

functions ( ∂z
i

∂z′j
) called vertical distribution which in view of (2.5) is an integrable

and holomorphic one.
For the holomorphic vertical foliation V, we denote by Ω0

pr(M) the sheaf of germs

of holomorphic projectable (foliated) functions on M and by A0
pr(M,V) the sheaf

of germs of affine leafwise holomorphic vertical functions, locally given by

f = ai(z)ζi + b(z), (3.1)

where ai , b ∈ Ω0
pr(M).

For the sheaf of corresponding germs we have the following exact sequence

0→ Ω0
pr(M)

i→ A0
pr(M,V)

p
′

→ Ω0
pr(M)⊗ T

′∗V → 0, (3.2)

explicitly given by b
i→ aiζi + b

p
′

→ aidζi.
Now, let us consider the complex Liouville vector field on M, locally given in

the chart (Vα, ψα) by

Γα = ζi
∂

∂ζi
. (3.3)

Then, on the intersection Vα ∩ Vβ 6= φ, by (2.1) and (2.5) we have

Γβ − Γα = ζ
′

j

∂

∂ζ
′
j

− ζi
∂

∂ζi
= ϕ

′

j(z)
∂

∂ζ
′
j

(3.4)
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and we see that the right-hand side of (3.4) defines a vertical complex vector field
with coefficients in Ω0

pr(M). Thus, the difference Γαβ = Γβ − Γα yields a cocycle
(δΓ)αβγ = Γβγ − Γαγ + Γαβ = 0. This cocycle defines a Cèch cohomology class

[Γα] ∈ H1(M,Ω0
pr(M)⊗ T

′
V), (3.5)

which will be called complex linear obstruction of V, and its vanish leads to Γα is
globally defined. By the same considerations as in [17], we have

Proposition 3.1. The affine holomorphic symplectic fibration π : (M, ω)→M is
equivalent to the holomorphic cotangent bundle of M , if and only if [Γα] = 0.

Proof. The necessity is obvious. Conversely, if [Γα] = 0 then, there is an adapted
atlas where

ϕ
′

j

∂

∂ζ
′
j

= ψ
′

j(z)
∂

∂ζ
′
j

− ψi(z)
∂

∂ζi
(3.6)

with ψi holomorphic functions on z. Then, in the new coordinates z̃i = zi ; ζ̃i =
ζi − ψi we obtain ϕ

′

j(z̃) = 0. �

We notice that we can make the same considerations for the globalization of the
complex Liouville 1-form locally defined by τα = ζidz

i.

3.2. Equivalence of holomorphic Lagrangian foliations. Let (Ma, ωa,Va), a
= 1, 2, be two general holomorphic Lagrangian foliations and F : (M1, ω1,V1) →
(M2, ω2,V2) be a morphism of the holomorphic symplectic fibrations π1 : M1 →
M1 and π2 :M2 →M2. Thus, F sends every leaf V1 of V1 into a leaf V2 of V2 such
that the restriction map F : V1 → V2 is holomorphic.

Definition 3.1. The holomorphic Lagrangian foliations (Ma, ωa,Va), a = 1, 2, are
equivalent if

F ∗V2 = V1 and F ∗ω2 = ω1, (3.7)

where F ∗V2 is the holomorphic foliation of M1 whose leaves are inverse images
under F of leaves of V2.

In the real case it is known a characterization of equivalence of two Lagrangian
foliations, see Theorem 2.2. from [17].

Here, we purpose a new approach of equivalence of two general (holomorphic)
Lagrangian foliations, using the relative cohomology introduced in [1] p. 78.

Let us consider Ωp(M1) and Ωp(M2) be the sets of all differential p-forms on
M1 and M2, respectively. Define the differential complex

0 −→ Ω0(F )
d̃−→ Ω1(F )

d̃−→ . . . ,

where Ωp(F ) = Ωp(M2)⊕ Ωp−1(M1) and

d̃(ϕ,ψ) = (d2ϕ, F
∗ϕ− d1ψ) for any ϕ ∈ Ωp(M2) and ψ ∈ Ωp−1(M1), (3.8)

where d1 and d2 denotes the exterior derivatives on M1 and M2, respectively.
Taking into acount d21 = d22 = 0 and the known relation d1F

∗ = F ∗d2, it is easy

to see that d̃2 = 0. Denote the cohomology groups of this complex by Hp(F ) which
are called the relative de Rham cohomology groups associated to the map F . We

notice that the operator d̃ satisfy a Poincaré type Lemma, easily obtained by using
the classical Poincaré Lemma for the operators d1 and d2.
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Now we consider that M1 and M2 satisfy Proposition 3.1. In this case the
complex Liouville 1-forms locally given by τα1 = ζ1i dz

i
1 and τα2 = ζ2i dz

i
2 glue up to

some global 1-forms τ1 and τ2, respectively.
For (ω2, τ1) ∈ Ω2(F ) it results

d̃(ω2, τ1) = (d2ω2, F
∗ω2 − d1τ1) = (0, F ∗ω2 − ω1). (3.9)

We have

Theorem 3.2. If (Ma, ωa,Va), a = 1, 2, are equivalent to the holomorphic cotan-
gent bundles of M1 and M2, respectively, then F : (M1, ω1,V1) → (M2, ω2,V2) is

a foliation equivalence iff d̃(ω2, τ1) = (0, 0). In this case the relative cohomology
class [(ω2, τ1)] ∈ H2(F ) will be called obstruction to the existence of a equivalence
of two (holomorphic) Lagrangian foliations.

Proof. If F : (M1, ω1,V1) → (M2, ω2,V2) is a foliation equivalence of two (holo-

morphic) Lagrangian foliations then by (3.9) it follows that d̃(ω2, τ1) = (0, 0). Con-

versely, from d̃(ω2, τ1) = (0, 0) it follows that there exists (ϕ,ψ) ∈ Ω1(F ) such
that

(ω2, τ1) = d̃(ϕ,ψ) = (d2ϕ, F
∗ϕ− d1ψ).

By the above relation we get ω2 = d2ϕ and by applying the Poincaré Lemma for
operator d2 it follows that there exists a function µ ∈ F(M2) such that ϕ = τ2−d2µ.
Now we replace it in the relation τ1 = F ∗ϕ− d1ψ and we obtain

τ1 = F ∗(τ2 − d2µ)− d1ψ = F ∗τ2 − d1(F ∗µ+ ψ).

Applying d1 in the above relation it results ω1 = F ∗ω2, so (M1, ω1,V1) and
(M2, ω2,V2) are equivalent. �

3.3. Totally singular complex Hamiltonians. As in the real case [12], we can
consider the totally singular Hamiltonian notion on the affine holomorphic sym-
plectic fibration π : (M, ω) → M , that it is a real-valued function H : M → R
which is affine in the fibers coordinates, or equivalently it has a null vertical com-
plex hessian. A such complex Hamiltonian is locally given in the chart (Vα, ψα)
by

Hα(z, ζ) = αi(z)(ζi + ζi) + β(z), (3.10)

where α = αi(z)dζi ∈ Γ(T
′∗V) and αi(z), β(z) ∈ ΩR

pr(M), where ΩR
pr(M) is the

sheaf of germs of real-valued projectable functions on M.
If we denote by AR

pr(M,V ⊕ V) the sheaf of germs of functions locally given by
(3.10), then similarly to (3.2) we can construct the following exact sequence

0→ ΩR
pr(M)

i→ AR
pr(M,V ⊕ V)

p̃→ ΩR
pr(M)⊗ (T

′∗V ⊕ T
′′∗V)→ 0, (3.11)

explicitly given by β
i→ αi(ζi + ζi) + β

p̃→ αi(dζi + dζi).
Then, on the intersection Vα ∩ Vβ 6= φ, from (2.1) and (2.9) we have

Hαβ := Hβ −Hα = α
′j(ϕ

′

j + ϕ
′
j), (3.12)

which yields a cocycle (δH)αβγ = Hβγ − Hαγ + Hαβ = 0. This cocycle defines a
Cèch cohomology class

[Hα] ∈ H1(M,ΩR
pr(M)). (3.13)

Thus, we obtain

Proposition 3.3. [Hα] = 0 yields Hα is globally defined.
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3.4. Complex nonlinear connections. Let N
′V = T

′M/T
′V be the normal

bundle of V with the holomorphic projection p : T
′M→ N

′V which has the local
bases defined by the equivalence classes p( ∂

∂zi ) = [ ∂
∂zi ] with the transition functions

(∂z
′j

∂zi ).
As in the real case for vector (affine) bundles [2, 7] or the general case of holo-

morphic foliations [15], we can consider the following exact sequence of holomorphic
vector bundles over M

0→ T
′
V i→ T

′
M p→ N

′
V → 0, (3.14)

where i and p are the canonical injection and the canonical projection, respectively.
A normalization of the vertical distribution T

′V is a distribution T
′H on M

which is supplementary to T
′V in T

′M. The distribution T
′H is called horizontal

distribution (or complex nonlinear connection onM, briefly c.n.c.). We denote also

by T
′H the horizontal subbundle. A such normalization can be defined by a right

spliting of the exact sequence (3.14), i.e. by a map σ : N
′V → T

′M which satisfies
the conditions that σ is aM-morphism of holomorphic fibrations and p◦σ = Id|N ′V .

Denoting as T
′H = σ(N

′V), it is a subbundle of T
′M which is supplementary to

T
′V, thus we obtain a normalization of T

′V with T
′H suitable horizontal bundle.

In local coordinates, we can consider

σ(p(
∂

∂zi
)) =

∂

∂zi
+Nki

∂

∂ζk
=:

δ

δzi
, (3.15)

and { δ
δzi } is a local basis of the sections of T

′H. The local functions Nki(z, ζ) on
M are called the coefficients of the c.n.c.

The change rule on Vα ∩ Vβ 6= 0 is given by

δ

δzi
=
∂z

′j

∂zi
δ

δz′j
. (3.16)

It follows that the change rule for the coefficients Nki of the c.n.c. is

N
′

jk =
∂zi

∂z′j

∂zh

∂z′k
Nih +

∂2zi

∂z′j∂z′k
ζi +

∂zi

∂z′k

∂ϕ
′

j

∂zi
. (3.17)

Conversely, if we assume that on the domain of every local chart (Vα, ψα) on
M adapted to the foliated structure on M, the local functions Nki(z, ζ) are given
such that the change rule (3.17) on the intersection of two domains holds, then

the map σ given by (3.15) is a normalization of T
′V. The normalization σ gives

an embedding of N
′V in T

′M and a decomposition of T
′M in the direct sum,

T
′M = T

′H⊕ T ′V.
By conjugation we obtain a decomposition of the complexified tangent bundle of

M, namely TCM = T
′H⊕T ′V ⊕T ′′H⊕T ′′V where T

′′H = span{ δ
δzi
} and T

′′V =

span{ ∂
∂ζi
}. The dual adapted basis are given by {dzi} , {δζi = dζi−Nikdzk} , {dzi}

and {δζi = dζi −Ni kdz
k}.

We notice that as in the case of holomorphic cotangent bundle T
′∗M , see [9], a

normalization of T
′V can be derived from a regular complex Hamiltonian on M,

that it is a real valued function H :M→ R such that hji = ∂2H/∂ζi∂ζj defines a
hermitian metric tensor on the fibers of the vertical bundle. If we denote by (hij)
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the inverse of (hji), then by using (2.5), we obtain that the following local functions

CH

Njk= −hjm
∂2H

∂zk∂ζm
(3.18)

verify the change rule (3.17) and we call this normalization the Chern-Hamilton
c.n.c. on the affine holomorphic symplectic fibration π : (M, ω)→M .

Now, we can consider the complex tensor field locally given in the chart (Vα, ψα)
by

Nα = Njk
∂

∂ζj
⊗ [dzk] ∈ Γ(T

′
V ⊗N

′∗V).

Then, on the intersection Vα ∩ Vβ 6= φ, from (2.5), (2.7) and (3.17) we have

Nβ −Nα =
∂z

′j

∂zl
(
∂z

′k

∂zi
∂2zh

∂z′k∂z′j
ζh −

∂ϕ
′

j

∂zi
)
∂

∂ζl
⊗ [dzi] (3.19)

and we see that the right-hand side of (3.19) defines a complex tensor field with
coefficients in A0

pr(M,V). Thus, the difference Nαβ := Nβ − Nα yields a cocycle
(δN)αβγ = Nβγ −Nαγ +Nαβ = 0. This cocycle defines a Cèch cohomology class

[Nα] ∈ H1(M,A0
pr(M,V)⊗ T

′
V ⊗N

′∗V), (3.20)

which will be called obstruction to globalization of a c.n.c.

Proposition 3.4. [Nα] = 0 yields Nα is globally defined.

However, T
′H is smoothly isomorphic to N

′V which is holomorphic as T
′V, gen-

erally T
′H is not holomorphic subbundle of T

′M. The existence of a holomorphic
supplementary distribution T

′H is characterized in the general case of holomor-
phic foliations, see [15], by the vanishing of a certain cohomological obstruction, as
follows:

By the change rule (3.17), the following 1-form

Φki = d
′′
Nki (3.21)

defines a global 1 -form Φ onM with values in Hom(N
′V, T ′V), which is d

′′
-closed,

hence it gives a cohomological class [Φ] ∈ H1(M,Hom(N
′V, T ′V)), (in view of the

Dolbeault-Serre theorem). Thus, we have

Theorem 3.5. ([15]) The foliation V admits a supplementary holomorphic distri-
bution if and only if [Φ] = 0.

Finally, following [16, 17], we give the main obstructions for the existence of an
affine transversal distribution of the holomorphic vertical foliation V.

Definition 3.2. We say that T
′H is an affine transversal distribution of T

′V if
the local functions Njk are locally given by

Njk(z, ζ) = Γijk(z)ζi + βjk(z), (3.22)

where Γijk(z) and βjk(z) are projectable functions on M, not necessarily holomor-
phic.

The relations (3.17) and (2.1) show that θ = dV(∂Njk/∂ζi) glue up to a global
dV -closed form which yields a cohomology class

[θ] ∈ H1(M, T
′
V ⊗ T

′∗V ⊗ T
′∗H), (3.23)
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where E denotes the sheaf of germs of foliated sections of a foliated complex bundle
E and dV is the exterior derivative along the leaves of foliation V.

By the same considerations as in the real case [16], we notice that [θ] does not
depend on the choice of the affine transversal distribution from (3.22). Indeed, if

we chose another affine transversal distribution T
′H̃ with the local coefficients Ñjk,

then Pjk = Ñjk −Njk defines a global section of T
′V ⊗ T ′∗H. Clearly, if an affine

transversal distribution exists, then [θ] = 0. Conversely, if [θ] = 0, we have

dV(∂Njk/∂ζi) = −dV(γijk) ; γijk ∈ Γ(T
′
V ⊗ T

′∗V ⊗ T
′∗H). (3.24)

The local forms γijkδζi are dV -closed, and provide some

[γ] ∈ H1(M, T
′
V ⊗ T

′∗H), (3.25)

which does not depend on the choice of γijk. Finally, if [γ] = 0, we shall obtain

Pjk ∈ Γ(T
′V ⊗ T ′∗H) such that γijk = ∂Pjk/∂ζi, and

δ̃ζi = dζi − (Nik + Pik)dzk = 0

defines an affine transversal distribution T
′H̃. Hence, we have

Proposition 3.6. The holomorphic vertical distribution T
′V has an affine transver-

sal distribution if and only if [θ] = 0 and [γ] = 0.

Example 3.1. If M = T
′∗M is the holomorphic cotangent bundle of a com-

plex Cartan space (M,C) where the complex Cartan structure C is purely her-

mitian [8], with the fundamental metric tensor hji(z) = ∂2C2/∂ζi∂ζj and Γijk(z) =

−hjl∂hli/∂zk the local coefficients of the Chern-Cartan linear connection on T
′∗M ,

then the Chern-Cartan c.n.c.
CC

Njk= Γijk(z)ζi = 0 defines an affine transversal dis-

tribution on T
′∗M .
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