SUBORDINATION RESULTS FOR CERTAIN CLASSES OF ANALYTIC FUNCTIONS DEFINED BY CONVOLUTION WITH COMPLEX ORDER

(COMMUNICATED BY INDRAJIT LAHIRI)
M. K. AOUF ${ }^{1}$, A. SHAMANDY ${ }^{2}$, A. O. MOSTAFA ${ }^{3}$ AND E. A. ADWAN ${ }^{4}$

AbStract. In this paper, we drive several interesting subordination results of certain classes of analytic functions defined by convolution with complex order.

1. Introduction

Let A denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit $\operatorname{disc} U=\{z \in \mathbb{C}:|z|<1\}$. We also denote by K the class of functions $f(z) \in A$ which are convex in U.

For functions f given by (1.1) and $g \in A$ given by

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n} \quad\left(c_{n} \geq 0\right) \tag{1.2}
\end{equation*}
$$

the Hadamard product (or convolution) of f and g is defined by

$$
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} c_{n} z^{n}=(g * f)(z)
$$

If f and g are analytic functions in U, we say that f is subordinate to g, written $f \prec g$ if there exists a Schwarz function w, which (by definition) is analytic in U with $w(0)=0$ and $|w(z)|<1$ for all $z \in U$, such that $f(z)=g(w(z)), z \in$ U. Furthermore, if the function g is univalent in U, then we have the following equivalence (cf., e.g., [5] and [14]):

[^0]$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(U) \subset g(U)
$$
(Subordinating Factor Sequence) [21]. A sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ of complex numbers is said to be a subordinating factor sequence if, whenever f of the form (1.1) is analytic, univalent and convex in U, we have the subordination given by
\[

$$
\begin{equation*}
\sum_{n=1}^{\infty} b_{n} a_{n} z^{n} \prec f(z) \quad\left(z \in U ; a_{1}=1\right) . \tag{1.3}
\end{equation*}
$$

\]

For $\lambda \geq 0,0 \leq \alpha<1, b \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ and for all $z \in U$, let $S(f, g ; \lambda, \alpha, b)$ denote the subclass of A consisting of functions $f(z)$ of the form (1.1) and $g(z)$ of the form (1.2) and satisfying the analytic criterion:

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{b}\left[(1-\lambda) \frac{(f * g)(z)}{z}+\lambda(f * g)^{\prime}(z)-1\right]\right\}>\alpha \tag{1.4}
\end{equation*}
$$

and for $\lambda \geq 0, \beta>1, b \in \mathbb{C}^{*}$ and for all $z \in U$, let $M(f, g ; \lambda, \beta, b)$ denote the subclass of A consisting of functions $f(z)$ of the form (1.1) and $g(z)$ of the form (1.2) and satisfying the analytic criterion:

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{b}\left[(1-\lambda) \frac{(f * g)(z)}{z}+\lambda(f * g)^{\prime}(z)-1\right]\right\}<\beta \tag{1.5}
\end{equation*}
$$

We note that for suitable choices of g, λ, α and β, we obtain the following subclasses.
(1) If $g(z)=z+\sum_{n=2}^{\infty} \Psi_{n}\left(\alpha_{1}\right) z^{n}$ (or $\left.c_{n}=\Psi_{n}\left(\alpha_{1}\right)\right)$, where

$$
\begin{equation*}
\Psi_{n}\left(\alpha_{1}\right)=\frac{\left(\alpha_{1}\right)_{n-1} \cdots \cdots \cdots \cdots\left(\alpha_{q}\right)_{n-1}}{\left(\beta_{1}\right)_{n-1} \cdots \cdots\left(\beta_{s}\right)_{n-1}(n-1)!} \tag{1.6}
\end{equation*}
$$

$$
\left(\alpha_{i}>0, i=1, \ldots . ., q ; \beta_{j}>0, j=1, \ldots ., s ; q \leq s+1 ; q, s \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right.
$$

$\mathbb{N}=\{1,2, \ldots\})$, then the class $S\left(f, z+\sum_{n=2}^{\infty} \Psi_{n}\left(\alpha_{1}\right) z^{n} ; \lambda, \alpha, b\right)$ reduces to the class $S_{q, s}\left(\left[\alpha_{1}\right] ; \lambda, \alpha, b\right)$

$$
\begin{aligned}
& =\left\{f \in A: \operatorname{Re}\left\{1+\frac{1}{b}\left[(1-\lambda) \frac{H_{q, s}\left(\alpha_{1}\right) f(z)}{z}+\lambda\left(H_{q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}-1\right]\right\}>\alpha\right. \\
& \left.\lambda \geq 0,0 \leq \alpha<1, b \in \mathbb{C}^{*}, z \in U\right\}
\end{aligned}
$$

and the class $M\left(f, z+\sum_{n=2}^{\infty} \Psi_{n}\left(\alpha_{1}\right) z^{n} ; \lambda, \beta, b\right)$ reduces to the class $M_{q, s}\left(\left[\alpha_{1}\right] ; \lambda, \beta, b\right)$

$$
\begin{aligned}
& =\left\{f \in A: \operatorname{Re}\left\{1+\frac{1}{b}\left[(1-\lambda) \frac{H_{q, s}\left(\alpha_{1}\right) f(z)}{z}+\lambda\left(H_{q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}-1\right]\right\}<\beta\right. \\
& \left.\lambda \geq 0, \beta>1, b \in \mathbb{C}^{*}, z \in U\right\}
\end{aligned}
$$

where $H_{q, s}\left(\alpha_{1}\right)$ is the Dziok-Srivastava operator (see [10] and [11]) which contains well known operators such as Carlson-Shaffer linear operator (see [6]), the Bernardi-Libera-Livingston operator (see [4], [12] and [13]), Srivastava - Owa fractional derivative operator (see [16]), the Choi-Saigo-Srivastava operator (see [9]), the Cho-Kwon-Srivastava operator (see [8]), the Ruscheweyh derivative operator (see [17]) and the Noor integral operator (see [15]);
(2) If $g(z)=z+\sum_{n=2}^{\infty}\left(\frac{1+\gamma(n-1)+l}{1+l}\right)^{m} z^{n}\left(\right.$ or $\left.c_{n}=\left(\frac{1+\gamma(n-1)+l}{1+l}\right)^{m}, \gamma \geq 0, l \geq 0, m \in \mathbb{N}_{0}\right)$, then the class $S\left(f, z+\sum_{n=2}^{\infty}\left(\frac{1+\gamma(n-1)+l}{1+l}\right)^{m} z^{n} ; \lambda, \alpha, b\right)$ reduces to the class $S(\gamma, l, m ; \lambda, \alpha, b)$

$$
\begin{aligned}
& =\left\{f \in A: \operatorname{Re}\left\{1+\frac{1}{b}\left[(1-\lambda) \frac{I^{m}(\gamma, l) f(z)}{z}+\lambda\left(I^{m}(\gamma, l) f(z)\right)^{\prime}-1\right]\right\}>\alpha\right. \\
& \left.\lambda \geq 0,0 \leq \alpha<1, \gamma \geq 0, l \geq 0, m \in \mathbb{N}_{0}, b \in \mathbb{C}^{*}, z \in U\right\}
\end{aligned}
$$

the class $S(\gamma, l, m ; \lambda, 0, b)$ reduces to the class $G^{m}(\gamma, l ; \lambda, b)$

$$
\begin{aligned}
& =\left\{f \in A: \operatorname{Re}\left\{1+\frac{1}{b}\left[(1-\lambda) \frac{\left(I^{m}(\gamma, l) f(z)\right)}{z}+\lambda\left(I^{m}(\gamma, l) f(z)\right)^{\prime}-1\right]\right\}>0\right. \\
& \left.\lambda \geq 0,, \gamma \geq 0, l \geq 0, m \in \mathbb{N}_{0}, b \in \mathbb{C}^{*}, z \in U\right\} \quad(\text { see }[2])
\end{aligned}
$$

and the class $M\left(f, z+\sum_{n=2}^{\infty}\left(\frac{1+\gamma(n-1)+l}{1+l}\right)^{m} z^{n} ; \lambda, \beta, b\right)$ reduces to the class $M(\gamma, l, m ; \lambda, \beta, b)$

$$
\begin{aligned}
& =\left\{f \in A: \operatorname{Re}\left\{1+\frac{1}{b}\left[(1-\lambda) \frac{I^{m}(\gamma, l) f(z)}{z}+\lambda\left(I^{m}(\gamma, l) f(z)\right)^{\prime}-1\right]\right\}<\beta\right. \\
& \left.\lambda \geq 0, \beta>1, \gamma \geq 0, l \geq 0, m \in \mathbb{N}_{0}, b \in \mathbb{C}^{*}, z \in U\right\}
\end{aligned}
$$

where $I^{m}(\gamma, l) f(z)$ is the extended multiplier transformation (see [7]);
(3) If $g(z)=z+\sum_{n=2}^{\infty} n^{k} z^{n}\left(\right.$ or $\left.c_{n}=n^{k}, k \in \mathbb{N}_{0}\right)$, then the class $S\left(f, z+\sum_{n=2}^{\infty} n^{k} z^{n} ; \lambda, \beta, b\right)$ reduces to the class $S \Im(k ; \lambda, \alpha, b)$

$$
\begin{aligned}
& =\left\{f \in A: \operatorname{Re}\left\{1+\frac{1}{b}\left[(1-\lambda) \frac{D^{k} f(z)}{z}+\lambda\left(D^{k} f(z)\right)^{\prime}-1\right]\right\}>\alpha, \lambda \geq 0\right. \\
& \left.0 \leq \alpha<1, k \in \mathbb{N}_{0}, b \in \mathbb{C}^{*}, z \in U\right\}
\end{aligned}
$$

the class $S \Im(k ; \lambda, 0)=G_{k}(\lambda, b)$

$$
\begin{aligned}
& =\left\{f \in A: \operatorname{Re}\left\{1+\frac{1}{b}\left[(1-\lambda) \frac{D^{k} f(z)}{z}+\lambda\left(D^{k} f(z)\right)^{\prime}-1\right]\right\}>0, \lambda \geq 0\right. \\
& \left.\left.k \in \mathbb{N}_{0}, b \in \mathbb{C}^{*}, z \in U\right\} \text { (see }[1]\right)
\end{aligned}
$$

and the class $M\left(f, z+\sum_{n=2}^{\infty} n^{k} z^{n} ; \lambda, \beta, b\right)$ reduces to the class $M \Im(k ; \lambda, \beta, b)$

$$
\begin{aligned}
& =\left\{f \in A: \operatorname{Re}\left\{1+\frac{1}{b}\left[(1-\lambda) \frac{D^{k} f(z)}{z}+\lambda\left(D^{k} f(z)\right)^{\prime}-1\right]\right\}<\beta\right. \\
& \left.\lambda \geq 0, \beta>1, k \in \mathbb{N}_{0}, b \in \mathbb{C}^{*}, z \in U\right\}
\end{aligned}
$$

where D^{k} is the Sălăgean differential operator (see [18]);

2. Main Results

Unless otherwise mentioned, we shall assume in the reminder of this paper that, $\lambda \geq 0,0 \leq \alpha<1, \beta>1, n \geq 2, z \in U, b \in \mathbb{C}^{*}$ and $g(z)$ is defined by (1.2). To prove our main results we need the following lemmas.

Lemma 2.1. [20]. The sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ is a subordinating factor sequence if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+2 \sum_{n=1}^{\infty} b_{n} z^{n}\right\}>0, \quad(z \in U) \tag{2.1}
\end{equation*}
$$

Lemma 2.2. Let the function f defined by (1.1) satisfy the following condition:

$$
\begin{equation*}
\sum_{n=2}^{\infty}[1+\lambda(n-1)] c_{n}\left|a_{n}\right| \leq(1-\alpha)|b| \tag{2.2}
\end{equation*}
$$

Then $f \in S(f, g ; \lambda, \alpha, b)$.
Proof. Assume that the inequality (2.2) holds true. Then we find that

$$
\begin{align*}
& \quad\left|(1-\lambda) \frac{(f * g)(z)}{z}+\lambda(f * g)^{\prime}(z)-1\right| \\
& -\left|(1-\lambda) \frac{(f * g)(z)}{z}+\lambda(f * g)^{\prime}(z)+2(1-\alpha) b-1\right| \\
& =\left|\sum_{n=2}^{\infty}[1+\lambda(n-1)] c_{n} a_{n} z^{n-1}\right|-\left|2(1-\alpha) b+\sum_{n=2}^{\infty}[1+\lambda(n-1)] c_{n} a_{n} z^{n-1}\right| \\
& \leq \sum_{n=2}^{\infty}[1+\lambda(n-1)] c_{n}\left|a_{n}\right|\left|z^{n-1}\right|-\left\{2(1-\alpha)|b|-\sum_{n=2}^{\infty}[1+\lambda(n-1)] c_{n}\left|a_{n}\right|\left|z^{n-1}\right|\right\} \\
& \leq \sum_{n=2}^{\infty}[1+\lambda(n-1)] c_{n}\left|a_{n}\right| \leq(1-\alpha)|b| \tag{2.3}
\end{align*}
$$

This completes the proof of Lemma 2.2.
Let the function $f(z)$ defined by (1.1) be in the class $S(f, g ; \lambda, \alpha, b)$, then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{(1-\alpha)|b|}{[1+\lambda(n-1)] c_{n}}(n \geq 2) \tag{2.4}
\end{equation*}
$$

The result is sharp for the function

$$
\begin{equation*}
f(z)=z+\frac{(1-\alpha)|b|}{[1+\lambda(n-1)] c_{n}} z^{n}(n \geq 2) \tag{2.5}
\end{equation*}
$$

Lemma 2.3. Let the function f defined by (1.1) satisfy the following condition:

$$
\begin{equation*}
\sum_{n=2}^{\infty}[1+\lambda(n-1)] c_{n}\left|a_{n}\right| \leq(\beta-1)|b| \tag{2.6}
\end{equation*}
$$

Then $f \in M(f, g ; \lambda, \beta, b)$.
Proof. Assume that the inequality (2.6) holds true. Then we find that

$$
\begin{aligned}
& \left|(1-\lambda) \frac{(f * g)(z)}{z}+\lambda(f * g)^{\prime}(z)-1\right| \\
& \leq\left|(1-\lambda) \frac{(f * g)(z)}{z}+\lambda(f * g)^{\prime}(z)-[2(\beta-1) b+1]\right|
\end{aligned}
$$

that is, that

$$
\left|\sum_{n=2}^{\infty}[1+\lambda(n-1)] c_{n} a_{n} z^{n-1}\right| \leq\left|2(\beta-1) b+\sum_{n=2}^{\infty}[1+\lambda(n-1)] c_{n} a_{n} z^{n-1}\right|
$$

The last expression is bounded above by 1 if

$$
\sum_{n=2}^{\infty}[1+\lambda(n-1)] c_{n}\left|a_{n}\right| \leq 2(\beta-1)|b|-\sum_{n=2}^{\infty}[1+\lambda(n-1)] c_{n}\left|a_{n}\right|
$$

Then $f \in M(f, g ; \lambda, \beta, b)$. This completes the proof of Lemma 2.3.

Corollary 2.4. Let the function $f(z)$ defined by (1.1) be in the class $M(f, g ; \lambda, \beta, b)$, then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{(\beta-1)|b|}{[1+\lambda(n-1)] c_{n}}(n \geq 2) \tag{2.7}
\end{equation*}
$$

The result is sharp for the function

$$
\begin{equation*}
f(z)=z+\frac{(\beta-1)|b|}{[1+\lambda(n-1)] c_{n}} z^{n} \quad(n \geq 2) \tag{2.8}
\end{equation*}
$$

Let $S^{*}(f, g ; \lambda, \alpha, b)$ denote the class of functions $f(z) \in A$ whose coefficients satisfy the condition (2.2). We note that $S^{*}(f, g ; \lambda, \alpha, b) \subseteq S(f, g ; \lambda, \alpha, b)$ and let $M^{*}(f, g ; \lambda, \beta, b)$ denote the class of functions $f(z) \in A$ whose coefficients satisfy the condition (2.6). We note that $M^{*}(f, g ; \lambda, \beta, b) \subseteq M(f, g ; \lambda, \beta, b)$.

Employing the technique used earlier by Attiya [3] and Srivastava and Attiya [19], we prove:

Theorem 2.5. Let $f \in S^{*}(f, g ; \lambda, \alpha, b), c_{n} \geq c_{2}>0(n \geq 2)$. Then for every function $\psi \in K$, we have

$$
\begin{equation*}
\frac{(1+\lambda) c_{2}}{2\left[(1+\lambda) c_{2}+(1-\alpha)|b|\right]}(f * \psi)(z) \prec \psi(z) \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\{f(z)\}>-\frac{(1+\lambda) c_{2}+(1-\alpha)|b|}{(1+\lambda) c_{2}} \tag{2.10}
\end{equation*}
$$

The constant $\frac{(1+\lambda) c_{2}}{2\left[(1+\lambda) c_{2}+(1-\alpha)|b|\right]}$ is the best estimate.
Proof. Let $f \in S^{*}(f, g ; \lambda, \alpha, b)$ and let $\psi(z)=z+\sum_{n=2}^{\infty} d_{n} z^{n} \in K$. Then we have

$$
\begin{align*}
& \frac{(1+\lambda) c_{2}}{2\left[(1+\lambda) c_{2}+(1-\alpha)|b|\right]}(f * \psi)(z) \\
& =\frac{(1+\lambda) c_{2}}{2\left[(1+\lambda) c_{2}+(1-\alpha)|b|\right]}\left(z+\sum_{n=2}^{\infty} a_{n} d_{n} z^{n}\right) \tag{2.11}
\end{align*}
$$

Thus, by Definition 1, the subordination result (2.9) will hold true if the sequence

$$
\begin{equation*}
\left\{\frac{(1+\lambda) c_{2}}{2\left[(1+\lambda) c_{2}+(1-\alpha)|b|\right]} a_{n}\right\}_{n=1}^{\infty} \tag{2.12}
\end{equation*}
$$

is a subordinating factor sequence, with $a_{1}=1$. In view of Lemma 2.1, this is equivalent to the following inequality:

$$
\begin{equation*}
\operatorname{Re}\left\{1+\sum_{n=1}^{\infty} \frac{(1+\lambda) c_{2}}{(1+\lambda) c_{2}+(1-\alpha)|b|} a_{n} z^{n}\right\}>0 \tag{2.13}
\end{equation*}
$$

Now, since

$$
\left\{[1+\lambda(n-1)] c_{n}\right\}
$$

is an increasing function of $n(n \geq 2)$, we have

$$
\begin{gathered}
\operatorname{Re}\left\{1+\sum_{n=1}^{\infty} \frac{(1+\lambda) c_{2}}{(1+\lambda) c_{2}+(1-\alpha)|b|} a_{n} z^{n}\right\} \\
=\operatorname{Re}\left\{1+\frac{(1+\lambda) c_{2}}{(1+\lambda) c_{2}+(1-\alpha)|b|} z+\frac{1}{(1+\lambda) c_{2}+(1-\alpha)|b|} \sum_{n=2}^{\infty}(1+\lambda) c_{2} a_{n} z^{n}\right\} \\
\geq 1-\frac{(1+\lambda) c_{2}}{(1+\lambda) c_{2}+(1-\alpha)|b|} r-\left(\frac{1}{(1+\lambda) c_{2}+(1-\alpha)|b|} \sum_{n=2}^{\infty}[1+\lambda(n-1)] c_{n}\left|a_{n}\right| r^{n}\right) \\
>1-\frac{(1+\lambda) c_{2}}{(1+\lambda) c_{2}+(1-\alpha)|b|} r-\frac{(1-\alpha)|b|}{(1+\lambda) c_{2}+(1-\alpha)|b|} r \\
=1-r>0(|z|=r<1)
\end{gathered}
$$

where we have used assertion (2.2) of Lemma 2.2. Thus (2.13) holds true in U. This proves the inequality (2.9). The inequality (2.10) follows from (2.9) by taking the convex function $\psi(z)=\frac{z}{1-z}=z+\sum_{n=2}^{\infty} z^{n} \in K$.
To prove the sharpness of the constant $\frac{(1+\lambda) c_{2}}{2\left[(1+\lambda) c_{2}+(1-\alpha)|b|\right]}$, we consider the function $f_{0}(z) \in S^{*}(f, g ; \lambda, \alpha, b)$ given by

$$
\begin{equation*}
f_{0}(z)=z-\frac{(1-\alpha)|b|}{(1+\lambda) c_{2}} z^{2} \tag{2.14}
\end{equation*}
$$

Thus from (2.9), we have

$$
\begin{equation*}
\frac{(1+\lambda) c_{2}}{2\left[(1+\lambda) c_{2}+(1-\alpha)|b|\right]} f_{0}(z) \prec \frac{z}{1-z} . \tag{2.15}
\end{equation*}
$$

Moreover, it can be verified for the function $f_{0}(z)$ given by (2.14) that

$$
\begin{equation*}
\min _{|z| \leq r}\left\{\operatorname{Re} \frac{(1+\lambda) c_{2}}{2\left[(1+\lambda) c_{2}+(1-\alpha)|b|\right]} f_{0}(z)\right\}=-\frac{1}{2} \tag{2.16}
\end{equation*}
$$

This show that the constant $\frac{(1+\lambda) c_{2}}{2\left[(1+\lambda) c_{2}+(1-\alpha)|b|\right]}$ is the best possible. This completes the proof of Theorem 2.5.

Putting $g(z)=z+\sum_{n=2}^{\infty} \Psi_{n} z^{n}$ (or $c_{n}=\Psi_{n}$), where Ψ_{n} is defined by (1.6) in Lemma 2.2 and Theorem 2.5, we obtain the following corollary:

Corollary 2.6. Let f defined by (1.1) be in the class $S_{q, s}^{*}\left(\left[\alpha_{1}\right] ; \lambda, \alpha, b\right)$ and satisfy the condition

$$
\sum_{n=2}^{\infty}[1+\lambda(n-1)] \Psi_{n}\left(\alpha_{1}\right)\left|a_{n}\right| \leq(1-\alpha)|b|
$$

Then for every function $\psi \in K$, we have

$$
\frac{(1+\lambda) \Psi_{2}\left(\alpha_{1}\right)}{2\left[(1+\lambda) \Psi_{2}\left(\alpha_{1}\right)+(1-\alpha)|b|\right]}(f * \psi)(z) \prec \psi(z)
$$

and

$$
\operatorname{Re}\{f(z)\}>-\frac{(1+\lambda) \Psi_{2}+(1-\alpha)|b|}{(1+\lambda) \Psi_{2}}
$$

The constant $\frac{(1+\lambda) \Psi_{2}\left(\alpha_{1}\right)}{2\left[(1+\lambda) \Psi_{2}\left(\alpha_{1}\right)+(1-\alpha)|b|\right]}$ is the best estimate.
Remark. (1) Putting $c_{n}=n^{k}\left(k \in \mathbb{N}_{0}\right)$ and $\alpha=0$ in Lemma 2.2 and Theorem 2.5, we obtain the result obtained by Aouf [1, Theorem 1];
(2) Putting $c_{n}=\left(\frac{1+\gamma(n-1)+l}{1+l}\right)^{m}\left(\gamma \geq 0, l \geq 0, m \in \mathbb{N}_{0}\right)$ and $\alpha=0$ in Lemma 2.2 and Theorem 2.5, we obtain the result obtained by Aouf and Hidan [2, Theorem 3].

Similarly, we can prove the following theorem.
Theorem 2.7. Let $f \in M^{*}(f, g ; \lambda, \beta, b), c_{n} \geq c_{2}>0(n \geq 2)$. Then for every function $\psi \in K$, we have

$$
\begin{equation*}
\frac{(1+\lambda) c_{2}}{2\left[(1+\lambda) c_{2}+(\beta-1)|b|\right]}(f * \psi)(z) \prec \psi(z) \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\{f(z)\}>-\frac{(1+\lambda) c_{2}+(\beta-1)|b|}{(1+\lambda) c_{2}} \tag{2.18}
\end{equation*}
$$

The constant $\frac{(1+\lambda) c_{2}}{2\left[(1+\lambda) c_{2}+(\beta-1)|b|\right]}$ is the best estimate.
Putting $g(z)=z+\sum_{n=2}^{\infty} \Psi_{n}\left(\alpha_{1}\right) z^{n} \quad$ (or $\left.c_{n}=\Psi_{n}\left(\alpha_{1}\right)\right)$, where $\Psi_{n}\left(\alpha_{1}\right)$ is defined by(1.6) in Lemma 2.3 and Theorem 2.7, we obtain the following corollary:
Corollary 2.8. Let f defined by (1.1) be in the class $M_{q, s}^{*}\left(\left[\alpha_{1}\right] ; \lambda, \beta, b\right)$ and satisfy the condition

$$
\sum_{n=2}^{\infty}[1+\lambda(n-1)] \Psi_{n}\left(\alpha_{1}\right)\left|a_{n}\right| \leq(\beta-1)|b|
$$

Then for every function $\psi \in K$, we have

$$
\frac{(1+\lambda) \Psi_{2}\left(\alpha_{1}\right)}{2\left[(1+\lambda) \Psi_{2}\left(\alpha_{1}\right)+(\beta-1)|b|\right]}(f * \psi)(z) \prec \psi(z)
$$

and

$$
\operatorname{Re}\{f(z)\}>-\frac{(1+\lambda) \Psi_{2}\left(\alpha_{1}\right)+(\beta-1)|b|}{(1+\lambda) \Psi_{2}\left(\alpha_{1}\right)}
$$

The constant $\frac{(1+\lambda) \Psi_{2}\left(\alpha_{1}\right)}{2\left[(1+\lambda) \Psi_{2}\left(\alpha_{1}\right)+(\beta-1)|b|\right]}$ is the best estimate.

Remark. Specializing g, λ and β, in Lemma 2.3 and Theorem 2.7, we obtain the corresponding results for the corresponding operators (1-3) defined in the introduction.
2.1. Acknowledgments. The authors would like to thank the referees of the paper for their helpful suggestions.

References

[1] M. K. Aouf, Subordination properties for certain class of analytic functions defined by Salagean operator, Appl. Math. Lett., 22 (2009), 1581-1585.
[2] M. K. Aouf and M. M. Hidan, Subordination properties for certain class of analytic functions defined by an extended multiplier transformation, Acta Univ. Apul., 22 (2010), 23-32.
[3] A. A. Attiya, On some application of a sumordination theorems, J. Math. Anal. Appl., 311 (2005), 489-494.
[4] S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429-449.
[5] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
[6] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, J. Math. Anal. Appl., 15 (1984), 737-745.
[7] A. Catas, A note on a certain subclass of analytic functions defined by multiplier transformations, in Proceedings of the Internat. Symposium on Geometric function theory and Applications, Istanbul, Turkey, August 2007.
[8] N. E. Cho, O. S. Kwon and H. M. Srivastava, Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl., 292 (2004), 470-483.
[9] J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl., 276 (2002), 432-445.
[10] J. Dziok and H.M. Srivastava, Classes of analytic functions with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), 1-13.
[11] J. Dziok and H.M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform. Spec. Funct., 14 (2003), 7-18.
[12] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1969), 755-758.
[13] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 17 (1966), 352-357.
[14] S.S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications, in: Series on Monographs and Textbooks in Pure and Appl. Math., 255, Marcel Dekker, Inc, New York, 2000.
[15] K. I. Noor, On new classes of integral operators, J. Natur. Geom., 16 (1999), 71-80.
[16] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39 (1987), 1057-1077.
[17] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109-115.
[18] G.S. Sălăgean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981), Lecture Notes in Math. (Springer-Verlag), 1013, 362-372.
[19] H. M. Srivastava and A .A . Attiya, Some subordination results associated with certain subclasses of analytic functions, J. Inequal. Pure Appl. Math., 54 (2004), Art.82, 1-14.
[20] H.S. Wilf, Subordinating factor sequence for convex maps of the unit circle, Proc. Amer. Math. Soc., 12 (1961), 689-693.

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, EGYPT, ${ }^{1}$ MKAOUF127@YAHOO.COM, ${ }^{2}$ SHAMANDY16@HOTMAIL.COM, ${ }^{3}$ ADELAEG254@YAHOO.COM,
${ }^{4}$ EMAN.A2009@YAHOO.COM

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Analytic functions, Hadamard products, subordination, factor sequence.
 © 2011 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted December 5, 2010. Published February 2, 2011.

