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A FIXED POINT THEOREM VIA GENERALIZED W -DISTANCE

(COMMUNICATED BY DENNY H. LEUNG)

SUSHANTA KUMAR MOHANTA

Abstract. In this paper we first introduce the concept of generalized w-

distance in a metric space and prove a fixed point theorem which generalizes
Banach contraction theorem.

1. Introduction

In 1996, W. Takahashi et. al.[5] had introduced the concept of w-distance in
a metric space and proved some fixed point theorems in complete metric spaces.
In this paper we first introduce the concept of generalized w-distance in a metric
space. At the beginning of the paper an example is provided to show that the class
of generalized w-distance functions is strictly larger than the class of w-distance
functions. Finally we prove a fixed point theorem in a complete metric space by
using the concept of generalized w-distance. This theorem is a generalization of
Banach contraction theorem.

2. Definitions and Examples

Definition 2.1. [5] Let (X, d) be a metric space. Then a function p : X × X →
[0,∞) is called a w- distance on X if the following conditions are satisfied :
(i) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X;
(ii) for any x ∈ X, p(x, .) : X → [0,∞) is lower semicontinuous ;
(iii) for any ϵ > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply
d(x, y) ≤ ϵ.

Clearly every metric is a w-distance but the converse is not true. The following
example supports our contention.
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Example 2.1. [5] Let (X, d) be a metric space. A function p : X × X → [0,∞)
defined by p(x, y) = c for every x, y ∈ X is a w-distance on X, where c is a positive
real number. But p is not a metric since p(x, x) = c ̸= 0 for any x ∈ X.

Definition 2.2. Let (X, d) be a metric space and j ∈ N . A function p : X ×X →
[0,∞) is called a generalized w- distance of order j on X if for all x, z ∈ X and for
all distinct points xi ∈ X, i ∈ {1, 2, 3, · · ·, j}, each of them different from x and z,
the following conditions are satisfied:

(i) p(x, z) ≤
j∑

i=0

p(xi, xi+1), where x0 = x, xj+1 = z;

(ii) for any x ∈ X, p(x, .) : X → [0,∞) is lower semicontinuous;
(iii) for any ϵ > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ
imply d(x, y) ≤ ϵ.

From Definition 2.2 it follows that every w-distance is a generalized w-distance
of order 1.
Now we consider the following example to show that a generalized w-distance may
not be a w-distance.

Example 2.2. Let X = {1, 2, 3, 4} be a metric space with metric d(x, y) =| x− y |
for all x, y ∈ X. Let p : X ×X → [0,∞) be defined by

p(1, 2) = p(2, 1) = 3, p(1, 3) = p(3, 1) = p(2, 3) = p(3, 2) = 1,

p(1, 4) = p(4, 1) = p(2, 4) = p(4, 2) = p(3, 4) = p(4, 3) = 2

and p(x, x) = 0.6 for every x ∈ X.

Then p satisfies condition (i) of Definition 2.2 for j = 2. Also, condition (ii) of
Definition 2.2 is obvious. To show (iii), for any ϵ > 0, put δ = 1

2 . Then

p(z, x) ≤ δ and p(z, y) ≤ δ imply d(x, y) ≤ ϵ.

Thus p is a generalized w-distance of order 2 on X but it is not a w-distance on X
since it lacks the triangular property:

p(1, 2) = 3 > 1 + 1 = p(1, 3) + p(3, 2).

3. Main Result

In this section we prove a fixed point theorem in a complete metric space by
employing notion of generalized w-distance. The following Lemma is crucial in the
proof of the theorem.

Lemma 3.1. Let (X, d) be a metric space and let p be a generalized w-distance
of order j on X. Let {xn} and {yn} be sequences in X, let {αn} and {βn} be
sequences in [0,∞) converging to 0, and let x, y, z ∈ X. Then the following hold :
(i) If p(xn, y) ≤ αn and p(xn, z) ≤ βn for any n ∈ N , then y = z. In particular, if
p(x, y) = 0 and p(x, z) = 0, then y = z;
(ii) if p(xn, yn) ≤ αn and p(xn, z) ≤ βn for any n ∈ N , then {yn} converges to z;
(iii) if p(xn, xm) ≤ αn for any n,m ∈ N with m > n, then {xn} is a d-Cauchy
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sequence;
(iv) if p(y, xn) ≤ αn for any n ∈ N , then {xn} is a d-Cauchy sequence.

Proof. Proof is similar to that of Lemma 1 [5] and we left it. �

Theorem 3.1. Let (X, d) be a complete metric space, let p be a generalized w-
distance of order j on X and let T be a mapping from X into itself. Suppose that
there exists r ∈ [0, 1) such that

p(Tx, Ty) ≤ r p(x, y) (3.1)

for every x, y ∈ X. Then there exists z ∈ X such that z = Tz. Moreover, if v = Tv,
then p(v, v) = 0.

Proof. Let u be an arbitrary element of X. We consider the sequence {un} where
un = Tnu for any n ∈ N . We can suppose that Tnu ̸= Tmu for all distinct
n,m ∈ N . In fact, if Tnu = Tmu for some m,n ∈ N , m ̸= n then assuming m > n,
we have

Tm−n(Tnu) = Tnu

i.e., T ky = y where k = m− n > 0 and y = Tnu.

If k = 1, then Ty = y and y is a fixed point of T .

Again if k > 1, then

p(y, Ty) = p(T ky, T k+1y) ≤ rk p(y, Ty)

and being r < 1 one has p(y, Ty) = 0.
Also,

p(y, y) = p(T ky, T ky) ≤ rk p(y, y)

and being r < 1 one has p(y, y) = 0.
Since p(y, Ty) = 0 and p(y, y) = 0, by using Lemma 3.1(i), we get Ty = y i.e., y is
a fixed point of T .
Thus in the sequel of the proof we can suppose that Tnu ̸= Tmu for all distinct
n,m ∈ N .

Let us now prove that for all n,m ∈ N , one has

p(Tnu, Tn+mu) ≤ rn

1− r
max

{
p(u, T iu) : i = 1, 2, · · ·, j

}
. (3.2)

By using (3.1), we have

p(Tnu, Tn+mu) ≤ rnp(u, Tmu). (3.3)

If m ≤ j, then

p(u, Tmu) ≤ (1 + r + r2 + · · ·) p(u, Tmu)

≤ 1

1− r
max

{
p(u, T iu) : i = 1, 2, · · ·, j

}
.
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If m > j, then there exists s ∈ N such that m = sj + t, where 0 ≤ t < j.
If t = 0, then by using (3.1)

p(u, Tmu) ≤ p(u, Tu) + p(Tu, T 2u) + · · ·+ p(T j−1u, T ju) + p(T ju, Tmu)

≤ p(u, Tu) + rp(u, Tu) + · · ·+ rj−1p(u, Tu) + rjp(u, Tm−ju)

=

j−1∑
q=0

rqp(u, Tu) + rjp(u, Tm−ju). (3.4)

By repeated application of (3.4), we obtain at (s− 1)-th step that

p(u, Tmu) ≤
(s−1)j−1∑

q=0

rqp(u, Tu) + r(s−1)jp(u, T ju)

≤ (1 + r + r2 + · · ·+ r(s−1)j)max
{
p(u, T iu) : i = 1, 2, · · ·, j

}
≤ 1

1− r
max

{
p(u, T iu) : i = 1, 2, · · ·, j

}
.

If t ̸= 0, then by (3.1)

p(u, Tmu) ≤ p(u, Tu) + p(Tu, T 2u) + · · ·+ p(T j−1u, T ju) + p(T ju, Tmu)

≤ p(u, Tu) + rp(u, Tu) + · · ·+ rj−1p(u, Tu) + rjp(u, Tm−ju)

=

j−1∑
q=0

rqp(u, Tu) + rjp(u, Tm−ju). (3.5)

By repeated application of (3.5), we obtain at s-th step that

p(u, Tmu) ≤
sj−1∑
q=0

rqp(u, Tu) + rsjp(u, T tu)

≤ (1 + r + r2 + · · ·+ rsj)max
{
p(u, T iu) : i = 1, 2, · · ·, j

}
≤ 1

1− r
max

{
p(u, T iu) : i = 1, 2, · · ·, j

}
.

So, if m > j then it must be the case that

p(u, Tmu) ≤ 1

1− r
max

{
p(u, T iu) : i = 1, 2, · · ·, j

}
.

Now, using (3.3) we have for all n,m ∈ N ,

p(Tnu, Tn+mu) ≤ rn

1− r
max

{
p(u, T iu) : i = 1, 2, · · ·, j

}
.

By Lemma 3.1(iii), {un} is a Cauchy sequence in (X, d) which is a complete
metric space. So there exists a point z ∈ X such that z = lim

n
un.

Let n ∈ N be fixed. Since {um} converges to z and p(un, .) is lower semi continuous,
one obtains

p(un, z) ≤ lim
m→∞

inf p(un, um) ≤ rn

1− r
max

{
p(u, Tu), p(u, T 2u)

}
,

which implies that, p(un, z) → 0 as n → ∞.
Again, from (3.1)

p(un+1, T z) = p(Tun, T z) ≤ r p(un, z) → as n → ∞.
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Thus, by Lemma 3.1(i), p(un+1, T z) → 0 and p(un+1, z) → 0 imply that Tz = z.
Therefore, z becomes a fixed point of T .
If v = Tv, then

p(v, v) = p(Tv, Tv) ≤ r p(v, v)

and hence p(v, v) = 0.
�

Corollary 3.1. (Banach Contraction Theorem) Let (X, d) be a complete metric
space and T : X → X be a mapping such that

d(Tx, Ty) ≤ αd(x, y) (3.6)

for all x, y ∈ X and 0 < α < 1.Then T has a unique fixed point in X.

Proof. We see that d is a generalized w-distance of order 1. So, by Theorem 3.1
there exists z ∈ X such that Tz = z. Uniqueness follows from condition (3.6).

�

We now furnish an example which shows that the condition (3.1) in Theorem
3.1 can neither be relaxed.

Example 3.1. Take X = [2,∞) ∪ {0, 1}, which is a complete metric space with
usual metric d of reals. Define T : X → X where

Tx = 0 for x ∈ (X \ {0})
= 1 for x = 0.

Clearly, T possesses no fixed point in X.
In fact, for x = 0 and y = Tx = T0 in X, we find that

d(Tx, Ty) = 1 > r d(x, Tx)

for any r ∈ [0, 1).
Hence condition (3.1) fails and Theorem 3.1 does not hold.

Note: In example above we treat d as a generalized w-distance of order 1 in X
in reference to Theorem 3.1.
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