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MODIFIED VARIATIONAL ITERATION METHOD FOR HEAT

EQUATION USING HE’S POLYNOMIALS

(COMMUNICATED BY I.P.STAVROULAKIS)

M. MATINFAR, M. SAEIDY, Z. RAEISI

Abstract. In this paper, we apply the modified variational iteration method
(MVIM) for solving heat transfer problems. The proposed modification is

made by introducing He’s polynomials in the correction functional. The sug-

gested algorithm is quite efficient and is practically well suited for use in these
problems. The proposed iterative scheme finds the solution without any dis-

cretization, linearization, or restrictive assumptions. Several examples are

given to verify the reliability and efficiency of the method. The fact that the
proposed technique solves nonlinear problems without using the Adomian’s

polynomials can be considered as a clear advantage of this algorithm over the

decomposition method.

1. Introduction

This paper is devoted to the study of heat transfer problems which are known
to arise in a variety of physical phenomenon and applied sciences [1, 4]. He [5-20]
developed the variational iteration and homotopy perturbation methods for solving
linear, nonlinear, initial and boundary value problems. Moreover, He realized the
physical significance of the variational iteration method, its compatibility with the
physical problems and applied this promising technique to a wide class of linear
and nonlinear, ordinary, partial, deterministic or stochastic differential equation
[5-8,23]. The homotopy perturbation method was also developed by He by merg-
ing two techniques, the standard homotopy and the perturbation. The homotopy
perturbation method was formulated by taking full advantage of the standard ho-
motopy and perturbation methods. In these methods the solution is given in an
infinite series usually converging to an accurate solution. In a later work Ghorbani
et al. [2, 3] split the nonlinear term into a series of polynomials calling them as
the He’s polynomials. Most recently, Noor and Mohyud-Din used this concept for
solving nonlinear boundary value problems [24-28]. The basic motivation of this
paper is the extension of the Modified Variational Iteration Method (MVIM) which
is formulated by the coupling of variational iteration method and He’s polynomials
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for solving the heat transfer problems. The general heat equation with variable
coefficient, with the indicated initial condition has the form [4]

∂u

∂t
= A(x, y, z, t)

∂2u

∂x2
+B(x, y, z, t)

∂2u

∂y2
+ C(x, y, z, t)

∂2u

∂z2
+D(x, y, z, t)

u(x, y, z, 0) = f(x, y, z). (1.1)

The proposed MVIM provides the solution in a rapid convergent series which may
lead the solution to a closed form. In this technique, the correction functional is
developed [5-8] and the Lagrange multipliers are calculated optimally via varia-
tional theory. The use of Lagrange multipliers reduces the successive application of
the integral operator and the cumbersome of huge computational work while still
maintaining a very high level of accuracy. Finally, He’s polynomials are introduced
in the correction functional and the comparison of like powers of p gives solutions
of various orders. The proposed iterative scheme takes full advantage of variational
iteration and the homotopy perturbation methods and absorbs all the positive fea-
tures of the coupled techniques. It is worth mentioning that the suggested method
is applied without any discretization, restrictive assumption or transformation and
is free from round off errors.

2. Variational iteration method

For the purpose of illustration of the methodology to the proposed method, using
variational iteration method, we begin by considering a differential equation in the
formal form,

L[u(x, t)] +N [u(x, t)] = g(x, t), (2.1)

where L is a linear operator, N a nonlinear operator and g(x, t) is the source inho-
mogeneous term. According to the variational iteration method, we can construct
a correction functional for (2.1) as follows;

un+1(x, t) = un(x, t) +

∫ t

0

λ {Lun(x, τ) +Nũn(x, τ)− g(x, τ)} dτ, n ≥ 0,

where λ is a general Lagrangian multiplier [21], which can be identified optimally
via the variational theory, the subscript n denotes the nth order approximation,
and ũn is considered as a restricted variation [7, 21] i.e., δũn = 0. Therefore, we first
determine the Lagrange multiplier λ that will be identified optimally via integration
by parts. The successive approximations un(x, t), n ≥ 0 of the solution u(x, t) will
be readily obtained upon using the obtained Lagrange multiplier and by using any
selective function u0. Consequently, the exact solution may be obtained by using

u(x, t) = lim
n→∞

un(x, t).

3. Homotopy perturbation method

In this section to illustrate the basic ideas of this method, we consider the fol-
lowing equation :

L[u(x, t)] +N [u(x, t)] = g(x, t), r ∈ Ω, (3.1)

with the boundary condition of:

B(u,
∂u

∂n
) = 0, r ∈ Γ, (3.2)
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where L is a linear operator, N a nonlinear operator and g(x, t) is the source
inhomogeneous term, B is a boundary operator and Γ is the boundary of the
domain Ω. Homotopy perturbation structure is shown as follows:

H(v, p) = (1− p) ∗ [L(v)− L(u0)] + p [L(u) +N(u)− g(x, t)] = 0, (3.3)

In Eq.(3.3), p ∈ [0, 1] is an embedding parameter and is the first approximation
that satisfies the boundary conditions. We can assume that the solution of Eq.
(3.3) can be written as a power series in p, as following:

v = v0 + p v1 + p2v2 + . . . , (3.4)

The comparisons of like powers of p give solutions of various orders and the best
approximation is:

u = lim
p−→1

v = v0 + v1 + v2 + . . . . (3.5)

The convergence of series (3.5) is discussed in [19]. The method considers the

nonlinear term N [u] as

N [u] =

+∞∑
i=0

piHi = H0 + pH1 + p2H2 + · · ·

where Hn’s are the so-called He’s polynomials [2], which can be calculated by using
the formula

Hn(u0, u1, · · · , un) =
1

n!

∂n

∂pn

(
N

(
n∑
i=0

piui

))
p=0

, n = 0, 1, 2, · · ·

4. Modified Variational Iteration Method (MVIM)

To illustrate the basic idea of the MVIM, we consider the following general
differential equation:

L[u(x, t)] +N [u(x, t)] = g(x, t), (4.1)

where L is a linear operator, N a nonlinear operator and g(x, t) is the source
inhomogeneous term. According to section (2) we can construct a correct functional
as follows:

un+1(x, t) = un(x, t) +

∫ t

0

λ {Lun(x, τ) +Nũn(x, τ)− g(x, τ)} dτ, n ≥ 0, (4.2)

Now, we apply the homotopy perturbation method,

∞∑
n=0

pnvn(x, t) = u0(x, t) + p

∫ t

0

λ

[ ∞∑
n=0

pn (L(vn(x, τ) +N(vn(x, τ))− g(x, τ)

]
dτ.

which is the modified variational iteration method (MVIM) and is formulated by
the coupling of variational iteration method and He’s polynomials. The comparison
of like powers of p gives solutions of various orders.
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5. MVIM for Heat equation

In order to assess the advantages and the accuracy of MVIM for solving linear
equations, we will consider the following three examples.

Example 1: Consider the following heat equation with the indicated initial con-
ditions:

∂u

∂t
= A

∂2u

∂x2
+B

∂2u

∂y2
+ C

∂2u

∂z2
+D, (5.1)

with the initial condition

u(x, y, z, 0) = a1x+ a2x
2 + b1y + b2y

2 + c1z + c2z
2,

where A,B,C and D are constants. To solve Eq. (5.1) By means of MVIM, we
choose

L(u) = ut, N(u) = −Auxx −Buyy − Cuzz,

where L is a linear and N is a nonlinear operators. The correction functional for
the above problem is given by

un+1 = un +

∫ t

0

λ(τ)(unτ −Aũnxx −Bũnyy − Cũnzz −D)dτ,

Making the correction functional stationary, the Lagrange multiplier can be iden-
tified as λ(τ) = −1, consequently

un+1 = un −
∫ t

0

(unτ −Aunxx −Bunyy − Cunzz −D)dτ.

Applying the modified variational iteration method, we have

u0 + pu1 + p2u2 + · · · = u(x, y, z, 0) +p

∫ t

0

A(u0xx + pu1xx + p2u2xx + ...)dτ

+p

∫ t

0

B(u0yy + pu1yy + p2u2yy + ...)dτ

+p

∫ t

0

C(u0zz + pu1zz + p2u2zz + ...)dτ

+

∫ t

0

Ddτ.

Comparing the coefficient of like powers of p

p(0) : u0(x, y, z, t) = u(x, y, z, 0) +

∫ t

0

Ddτ,

p(1) : u1(x, y, z, t) =

∫ t

0

(Au0xx +Bu0yy + Cu0zz )dτ,

p(2) : u2(x, y, z, t) =

∫ t

0

(Au1xx +Bu1yy + Cu1zz )dτ,

...
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Therefore

u0(x, y, z, t) = a1x+ a2x
2 + b1y + b2y

2 + c1z + c2z
2 +Dt,

u1(x, y, z, t) = 2Aa2t+ 2Bb2t+ 2Cc2t,

un(x, y, z, t) = 0, n ≥ 2

In the same manner the rest of the components of the iteration formula can be
obtained, which is the exact solution.

Example 2: Let us solve the following partial differential equation:

∂u

∂t
=

1

6
(x2

∂2u

∂x2
+ y2

∂2u

∂y2
+ z2

∂2u

∂z2
), (5.2)

with the initial condition

u(x, y, z, 0) = x2y2z2.

The correction functional for the above problem is given by

un+1 = un +

∫ t

0

λ(τ)(unτ −
1

6
x2ũnxx −

1

6
y2ũnyy −

1

6
z2ũnzz )dτ.

Making the correction functional stationary, the Lagrange multiplier can be iden-
tified as λ(τ) = −1, consequently

un+1 = un −
∫ t

0

(unτ −
1

6
x2unxx −

1

6
y2unyy −

1

6
z2unzz )dτ.

Applying the modified variational iteration method, we have

u0 + pu1 + p2u2 + · · · = u(x, y, z, 0) +p

∫ t

0

1

6
x2(u0xx + pu1xx + p2u2xx + ...)dτ

+p

∫ t

0

1

6
y2(u0yy + pu1yy + p2u2yy + ...)dτ

+p

∫ t

0

1

6
z2(u0zz + pu1zz + p2u2zz + ...)dτ.

Comparing the coefficient of like powers of p, we have:

p(0) : u0(x, y, z, t) = u(x, y, z, 0),

p(1) : u1(x, y, z, t) =

∫ t

0

1

6
(x2u0xx + y2u0yy + z2u0zz )dτ,

p(2) : u2(x, y, z, t) =

∫ t

0

1

6
(x2u1xx + y2u1yy + z2u1zz )dτ,

...
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Therefore

u0(x, y, z, t) = x2y2z2,

u1(x, y, z, t) = x2y2z2t,

u2(x, y, z, t) = x2y2z2
t2

2!
,

u3(x, y, z, t) = x2y2z2
t3

3!
,

...

and so on. Thus the series solution is given by

u(x, y, z, t) = x2y2z2
(

1 + t+
t2

2!
+
t3

3!
+ · · ·

)
= x2y2z2et,

which is the exact solution [1].

Example 3: Consider the following partial differential equation, with specified
initial conditions:

∂u

∂t
− e(−xt) ∂

2u

∂x2
− e(−yt) ∂

2u

∂y2
− e(−zt) ∂

2u

∂z2
= 0, (5.3)

with the initial condition

u(x, y, z, 0) = x2y2z2.

The correction functional for the above problem is given by

un+1 = un +

∫ t

0

λ(τ)(unτ − e(−xτ)ũnxx − e(−yτ)ũnyy − e(−zτ)ũnzz )dτ.

Making the correction functional stationary, the Lagrange multiplier can be iden-
tified as λ(τ) = −1, consequently

un+1 = un −
∫ t

0

(unτ − e(−xτ)unxx − e(−yτ)unyy − e(−zτ)unzz )dτ.

Applying the modified variational iteration method, we have

u0 + pu1 + p2u2 + · · · = u(x, y, z, 0) +p

∫ t

0

e(−xτ)(u0xx + pu1xx + p2u2xx + ...)dτ

+p

∫ t

0

e(−yτ)(u0yy + pu1yy + p2u2yy + ...)dτ

+p

∫ t

0

e(−zτ)(u0zz + pu1zz + p2u2zz + ...)dτ.

Comparing the coefficient of like powers of p, we have:

p(0) : u0(x, y, z, t) = u(x, y, z, 0),

p(1) : u1(x, y, z, t) =

∫ t

0

(e(−xτ)u0xx + e(−yτ)u0yy + e(−zτ)u0zz )dτ,

p(2) : u2(x, y, z, t) =

∫ t

0

(e(−xτ)u1xx + e(−yτ)u1yy + e(−zτ)u1zz )dτ,

...
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Therefore

u0(x, y, z, t) = x2y2z2,

u1(x, y, z, t) =
1

xyz
(2y3z3 + 2x3z3 + 2x3y3 − 2e(−xt)y3z3 − 2e(−yt)x3z3

− 2e(−zt)x3y3),

u2(x, y, z, t) =
−4z2e(−xt)

yx
− 4y2e(−xt)

zx
− 4z2y2e(−xt)

x4
+

7z2y2e(−2xt)

2x4

− 4x2e(−yt)

zy
− 4z2x2e(−yt)

y4
+

7z2x2e(−2yt)

2y4
− 4z2e(−yt)

yx

− 4x2e(−zt)

zy
− 4y2x2e(−zt)

z4
+

7y2x2e(−2zt)

2z4
− 4y2e(−zt)

zx

+
z2y2t2e(−2xt)

x2
+

3z2x2te(−2yt)

y3
+
x2y2t2e(−2zt)

z2
+

4y2

zx

+
z2x2t2e(−2yt)

y2
+

4z2e−(x+y)t

yx
+

4z2

yx
+

4x2

zy
+

3y2x2te(−2zt)

z3

+
y2z2

2x4
+
y2x2

2z4
+

4y2e−(x+z)t

zx
+

4x2e−(y+z)t

zy
+
z2x2

2y4

+
3y2z2te(−2xt)

x3
,

...

which is in full agreement with [1].

6. Conclusions

In this paper, we develop the modified variational iteration method for solving
linear problems. We used the modified variational iteration method for solving
the heat transfer problems with variable coefficient. The method is applied in a
direct way without using linearization, transformation, discretization or restrictive
assumptions. The proposed method is successfully implemented by using the initial
conditions only.
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