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SOME CONVERGENCE RESULTS FOR SEQUENCES OF

OPERATORS IN BANACH SPACES

(COMMUNICATED BY EBERHARD MALKOWSKY)

MEMUDU OLAPOSI OLATINWO

Abstract. In this paper, we establish some fixed point theorems in connection

with sequences of operators in the Banach space setting for Mann and Ishikawa
iterative processes. Our results extend some of the results of Berinde, Bonsall,

Nadler and Rus from complete metric space to the Banach space setting.

1. Introduction

In this paper, we establish some fixed point theorems in connection with se-
quences of operators in the Banach space settings for Mann and Ishikawa iterative
processes. Our results extend some of the results of Berinde [1, 2], Bonsall [3],
Nadler [6] and Rus [8, 9] from complete metric space to the Banach space setting.

Let (E, ∣∣.∣∣) be a Banach space and T : E → E a selfmap of E. Suppose that
FT = { p ∈ E ∣ Tp = p } is the set of fixed points of T.
In the Banach space setting, we state the following well-known iterative processes
which have been employed to approximate the fixed points of various operators over
the years:
Define the sequence {xn}∞n=0 by

xn+1 = (1− �)xn + �Txn, n = 0, 1, ⋅ ⋅ ⋅ , x0 ∈ E, (1)

where � ∈ [0, 1]. Then, Eqn, (1) is called the Schaefer iterative process (see Schaefer
[10]).
For x0 ∈ E, the sequence {xn}∞n=0 defined by

xn+1 = (1− �n)xn + �nTxn, n = 0, 1, ⋅ ⋅ ⋅ , (2)

where {�n}∞n=0 ⊂ [0, 1], is called the Mann iteration process (see Mann [5]).
For x0 ∈ E, the sequence {xn}∞n=0 defined by

xn+1 = (1− �n)xn + �nTzn
zn = (1− �n)xn + �nTxn

}
, n = 0, 1, ⋅ ⋅ ⋅ , (3)
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where {�n}∞n=0 and {�n}∞n=0 are sequences in [0, 1], is called the Ishikawa iteration
process (see Ishikawa [4]).
Remark 1.1: If � = 1 in (1), or, �n = 1 in (2), then we obtain

xn+1 = Txn, n = 0, 1, ⋅ ⋅ ⋅ , x0 ∈ E, (4)

which is called the Picard iteration. See [1, 2, 8, 9] for Picard iteration.
Definition 1.1 [1, 2, 8]: (a) A function  : IR+ → IR+ is called a comparison
function if it satisfies the following conditions:
(i)  is monotone increasing; (ii) lim

n→∞
 n(t))→ 0, ∀ t ≥ 0.

(b) A comparison function satisfying t −  (t) → ∞ as t → ∞ is called a strict
comparison function.
Remark 1.2: Every comparison function satisfies  (0) = 0 and  (t) < t, ∀ t ∈ IR+.
We shall employ the following contractive conditons:
(i) For a selfmapping T : E → E, there exist real numbers L ≥ 0 and a ∈ [0, 1),
such that

∣∣Tx− Ty∣∣ ≤ �(∣∣x− Tx∣∣) + a∣∣x− y∣∣
1 + L∣∣x− Tx∣∣

, ∀ x, y ∈ E, (5)

where � : IR+ → IR+ is a monotone increasing function such that �(0) = 0.
(ii) For a selfmapping T : E → E, there exist a strict comparison function  : IR+ →
IR+ and a monotone increasing function � : IR+ → IR+, with �(0) = 0, such that

∣∣Tx− Ty∣∣ ≤ �(∣∣x− Tx∣∣) +  (∣∣x− y∣∣), ∀ x, y ∈ E. (6)

2. Main Results

Theorem 2.1. Let (E, ∣∣.∣∣) be a Banach space and {Tn}∞n=0 a sequence of operators
Tn : E → E such that FTn = {x∗n} for each n ∈ IN. For x0 ∈ E, let {xn}∞n=0 be
the Mann iterative process defined by (2), �n ∈ [0, 1]. Suppose that the sequence
{Tn}∞n=0 converges uniformly to a mapping T : E → E satisfying (5), with FT =

{x∗} , where � : IR+ → IR+ is a monotone increasing function such that �(0) = 0.
Then, x∗n → x∗ as n→∞.

Proof. Let � > 0 and choose a natural number N such that for n ≥ N, we have
∣∣Tnx− Tx∣∣ < (1− a)�, for all x ∈ E. Then, for n ≥ N we have

∣∣x∗n − x∗∣∣ ≤ (1− �n)∣∣x∗n − x∗∣∣+ �n∣∣Tx∗ − Tnx∗n∣∣
≤ (1− �n)∣∣x∗n − x∗∣∣+ �n[∣∣Tx∗ − Tx∗n∣∣+ ∣∣Tx∗n − Tnx∗n∣∣]
≤ (1− �n)∣∣x∗n − x∗∣∣+ �n[

'(∣∣x∗−Tx∗∣∣)+a∣∣x∗−x∗
n∣∣

1+L∣∣x∗−Tx∗∣∣ + ∣∣Tx∗n − Tnx∗n∣∣]
< (1− �n)∣∣x∗n − x∗∣∣+ a�n∣∣x∗ − x∗n∣∣+ �n(1− a)�,

from which we have ∣∣x∗n − x∗∣∣ < �,
Also, since � > 0 is arbitrary, then x∗n → x∗ as n→∞.

□

Proof. The proof of this result is more direct and similar to that of Theorem
2.1.
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Theorem 2.2. Let (E, ∣∣.∣∣) be a Banach space and {Tn}∞n=0 a sequence of operators
Tn : E → E such that FTn

= {x∗n} for each n ∈ IN. For x0 ∈ E, let {xn}∞n=0 be
the Mann iterative process defined by (2), �n ∈ [0, 1]. Suppose that the sequence
{Tn}∞n=0 converges uniformly to a mapping T : E → E satisfying (6), with FT =

{x∗} , where � : IR+ → IR+ is a monotone increasing function such that �(0) = 0
and  : IR+ → IR+ is a strict comparison function. Then, x∗n → x∗ as n→∞.

Proof. Let � > 0 and choose a natural number N such that for n ≥ N, we have
∣∣Tnx− Tx∣∣ < �, for all x ∈ E. Then, for n ≥ N we have

∣∣x∗n − x∗∣∣ ≤ (1− �n)∣∣x∗n − x∗∣∣+ �n∣∣Tx∗ − Tnx∗n∣∣
≤ (1− �n)∣∣x∗n − x∗∣∣+ �n[∣∣Tx∗ − Tx∗n∣∣+ ∣∣Tx∗n − Tnx∗n∣∣]
≤ (1− �n)∣∣x∗n − x∗∣∣+ �n['(∣∣x∗ − Tx∗∣∣) +  (∣∣x∗ − x∗n∣∣) + ∣∣Tx∗n − Tnx∗n∣∣]
< (1− �n)∣∣x∗n − x∗∣∣+ �n (∣∣x∗ − x∗n∣∣) + �n�,

from which we have ∣∣x∗n − x∗∣∣ −  (∣∣x∗ − x∗n∣∣) < �,
leading to ∣∣x∗n − x∗∣∣ < �, ∀ n ≥ N,
since  is a strict comparison function. Also, since � > 0 is arbitrary, then x∗n →
x∗ as n→∞.

□

Theorem 2.3. Let (E, ∣∣.∣∣) be a Banach space and {Tn}∞n=0 a sequence of opera-
tors Tn : E → E such that FTn

= {x∗n} , for each n ∈ IN. For x0 ∈ E, let {xn}∞n=0

be the Ishikawa iterative process defined by (3), �n, �n ∈ [0, 1]. Suppose that the
sequence {Tn}∞n=0 converges uniformly to a mapping T : E → E satisfying (6),
with FT = {x∗} , where  : IR+ → IR+ is a sublinear, strict comparison function
and � : IR+ → IR+ is a monotone increasing function such that �(0) = 0. Then,
x∗n → x∗ as n→∞.

Proof. Let � > 0 and choose a natural number N such that for n ≥ N, we have
∣∣Tnx− Tx∣∣ < �

2�n
, �n > 0, for all x ∈ E and ∣∣Tnz − Tz∣∣ < �

2 , for all z ∈ E,

z∗ = (1− �n)x∗ + �nTx
∗, z∗n = (1− �n)x∗n + �nTnx

∗
n.

Therefore, we have by using (6) and the fact that  (t) < t ∀ t ∈ IR+ that

∣∣x∗n − x∗∣∣ ≤ (1− �n)∣∣x∗n − x∗∣∣+ �n[∣∣Tz∗ − Tz∗n∣∣+ ∣∣Tz∗n − Tnz∗n∣∣]
≤ (1− �n)∣∣x∗n − x∗∣∣+ �n['(∣∣z∗ − Tz∗∣∣) +  (∣∣z∗ − z∗n∣∣) + ∣∣Tx∗n − Tnx∗n∣∣]
= (1− �n)∣∣x∗n − x∗∣∣+ �n (∣∣z∗n − z∗∣∣) + �n∣∣Tz∗n − Tnz∗n∣∣
≤ (1− �n)∣∣x∗n − x∗∣∣+ �n(1− �n) (∣∣x∗ − x∗n∣∣)
+�n�n 

2(∣∣x∗ − x∗n∣∣) + �n�n (∣∣Tx∗n − Tnx∗n∣∣ ) + �n∣∣Tz∗n − Tnz∗n∣∣
≤ (1− �n)∣∣x∗n − x∗∣∣+ �n(1− �n) (∣∣x∗ − x∗n∣∣)
+�n�n (∣∣x∗ − x∗n∣∣) + �n�n (∣∣Tx∗n − Tnx∗n∣∣ ) + �n∣∣Tz∗n − Tnz∗n∣∣

= (1− �n)∣∣x∗n − x∗∣∣+ �n (∣∣x∗n − x∗∣∣) + �n�n (∣∣Tx∗n − Tnx∗n∣∣)
+�n∣∣Tz∗n − Tnz∗n∣∣

from which we have

�n[ ∣∣x∗n − x∗∣∣ −  (∣∣x∗n − x∗∣∣) ] ≤ �n�n (∣∣Tx∗n − Tnx∗n∣∣) + �n∣∣Tz∗n − Tnz∗n∣∣,

so that

∣∣x∗n − x∗∣∣ −  (∣∣x∗n − x∗∣∣) ≤ �n (∣∣Tx∗n − Tnx∗n∣∣) + ∣∣Tz∗n − Tnz∗n∣∣
< �n∣∣Tx∗n − Tnx∗n∣∣+ ∣∣Tz∗n − Tnz∗n∣∣
< �n

�
2�n

+ �
2 = �,
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 being a strict comparison function leads to ∣∣x∗n − x∗∣∣ < �, ∀ n ≥ N. Since � > 0
is arbitrary, then x∗n → x∗ as n→∞.

□

Theorem 2.4. Let (E, ∣∣.∣∣) be a Banach space and {Tn}∞n=0 a sequence of opera-
tors Tn : E → E such that FTn

= {x∗n} , for each n ∈ IN. For x0 ∈ E, let {xn}∞n=0

be the Ishikawa iterative process defined by (3), �n, �n ∈ [0, 1]. Suppose that the
sequence {Tn}∞n=0 converges uniformly to a mapping T : E → E satisfying (5) with

FT = {x∗} , where � : IR+ → IR+ is a monotone increasing function such that
�(0) = 0. Then, x∗n → x∗ as n→∞.

Proof. Let � > 0 and choose a natural number N such that for n ≥ N, we have

∣∣Tnx − Tx∣∣ < (1−a)(1+a�n)
2a�n

�, a > 0, �n > 0, for all x ∈ E and ∣∣Tnz − Tz∣∣ <
(1−a)(1+a�n)

2 �, for all z ∈ E,
z∗ = (1− �n)x∗ + �nTx

∗, z∗n = (1− �n)x∗n + �nTnx
∗
n.

Therefore, we have by using (5) that

∣∣x∗n − x∗∣∣ ≤ (1− �n)∣∣x∗n − x∗∣∣+ �n∣∣Tz∗ − Tnz∗n∣∣
≤ (1− �n)∣∣x∗n − x∗∣∣+ �n[∣∣Tz∗ − Tz∗n∣∣+ ∣∣Tz∗n − Tnz∗n∣∣]
≤ (1− �n)∣∣x∗n − x∗∣∣+ �n['(∣∣z∗ − Tz∗∣∣) + a∣∣z∗ − z∗n∣∣+ ∣∣Tx∗n − Tnx∗n∣∣]
= (1− �n)∣∣x∗n − x∗∣∣+ a�n∣∣z∗n − z∗∣∣+ �n∣∣Tz∗n − Tnz∗n∣∣
≤ (1− �n + a�n − a�n�n)∣∣x∗ − x∗n∣∣+ a�n�n[ '(∣∣x∗ − Tx∗∣∣)
+a∣∣x∗ − x∗n∣∣+ ∣∣Tx∗n − Tnx∗n∣∣ ] + �n∣∣Tz∗n − Tnz∗n∣∣

= (1− �n + a�n − a�n�n + a2�n�n)∣∣x∗ − x∗n∣∣+ a�n�n∣∣Tx∗n − Tnx∗n∣∣
+�n∣∣Tz∗n − Tnz∗n∣∣,

from which we have

�n(1− a)(1 + a�n)∣∣x∗n − x∗∣∣ ≤ a�n�n∣∣Tx∗n − Tnx∗n∣∣+ �n∣∣Tz∗n − Tnz∗n∣∣,
leading to

∣∣x∗n − x∗∣∣ ≤
a�n

(1−a)(1+a�n)
∣∣Tx∗n − Tnx∗n∣∣+ 1

(1−a)(1+a�n)
∣∣Tz∗n − Tnz∗n∣∣,

< a�n

(1−a)(1+a�n)
(1−a)(1+a�n)

2a�n
�+ 1

(1−a)(1+a�n)
(1−a)(1+a�n)

2 �

= �
2 + �

2 = �,

leading to ∣∣x∗n−x∗∣∣ < �, ∀ n ≥ N. Since � > 0 is arbitrary, then x∗n → x∗ as n→∞.
□

Remark 2.1: Theorem 2.1 - Theorem 2.4 are extensions of both Theorem 3.2
and Theorem 3.6 of Rus [9]. Theorem 3.2 of Rus [9] is itself Theorem 1 of Nadler
[6] and Theorem 7.8 of Berinde [1, 2].

We state the following results for pointwise convergence cases for the iterative
processes:

Theorem 2.5. Let (E, ∣∣.∣∣) be a Banach space and {Tn}∞n=0 a sequence of opera-
tors Tn : E → E such that FTn = {x∗n} , for each n ∈ IN. For x0 ∈ E, let {xn}∞n=0

be the Ishikawa iterative process defined by (3), �n, �n ∈ [0, 1]. Suppose that the
sequence {Tn}∞n=0 converges pointwise to a mapping T : E → E satisfying (5) with

FT = {x∗} , where � : IR+ → IR+ is a monotone increasing function such that
�(0) = 0. Then, x∗n → x∗ as n→∞.
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Proof. We shall use the contractive condition (5) and the pointwise convergence of
Tn to T, where z∗ = (1− �n)x∗ + �nTx

∗, z∗n = (1− �n)x∗n + �nTnx
∗
n.

Therefore we have

∣∣x∗n − x∗∣∣ ≤ (1− �n)∣∣x∗n − x∗∣∣+ �n∣∣Tz∗ − Tnz∗n∣∣
≤ (1− �n)∣∣x∗n − x∗∣∣+ �n['(∣∣z∗ − Tz∗∣∣) + a∣∣z∗ − z∗n∣∣+ ∣∣Tx∗n − Tnx∗n∣∣]
= (1− �n)∣∣x∗n − x∗∣∣+ a�n∣∣z∗n − z∗∣∣+ �n∣∣Tz∗n − Tnz∗n∣∣
≤ (1− �n + a�n − a�n�n)∣∣x∗ − x∗n∣∣+ a�n�n[ ∣∣Tx∗ − Tx∗n∣∣
+∣∣Tx∗n − Tnx∗n∣∣ ] + �n∣∣Tz∗n − Tnz∗n∣∣
≤ (1− �n + a�n − a�n�n)∣∣x∗ − x∗n∣∣+ a�n�n[ '(∣∣x∗ − Tx∗∣∣)
+a∣∣x∗ − x∗n∣∣+ ∣∣Tx∗n − Tnx∗n∣∣ ] + �n∣∣Tz∗n − Tnz∗n∣∣
= (1− �n + a�n − a�n�n + a2�n�n)∣∣x∗ − x∗n∣∣+ a�n�n∣∣Tx∗n − Tnx∗n∣∣
+�n∣∣Tz∗n − Tnz∗n∣∣,

from which we have

�n(1− a)(1 + a�n)∣∣x∗n − x∗∣∣ ≤ a�n�n∣∣Tx∗n − Tnx∗n∣∣+ �n∣∣Tz∗n − Tnz∗n∣∣,

leading to

∣∣x∗n−x∗∣∣ ≤ [(1− a)(1 + a�n)]
−1

[ a�n∣∣Tx∗n−Tnx∗n∣∣+∣∣Tz∗n−Tnz∗n∣∣ ]→ 0 as n→∞,

since Tn converges pointwise to T. Hence, we have that ∣∣x∗n − x∗∣∣ → 0 as n→∞.
□

Theorem 2.6. Let (E, ∣∣.∣∣) be a Banach space and {Tn}∞n=0 a sequence of operators
Tn : E → E such that FTn = {x∗n} for each n ∈ N. For x0 ∈ E, let {xn}∞n=0 be
the Mann iterative process defined by (2), �n ∈ [0, 1]. Suppose that the sequence
{Tn}∞n=0 converges pointwise to a mapping T : E → E satisfying (5), with FT =

{x∗} , where � : IR+ → IR+ is a monotone increasing function such that �(0) = 0.
Then, x∗n → x∗ as n→∞.

Proof. We shall use (2), the contractive condition (5) and the pointwise convergence
of Tn to T. Therefore we have that

∣∣x∗n − x∗∣∣ ≤ (1− a)−1∣∣Tx∗n − Tnx∗n∣∣ → 0 as n→∞,

since Tn converges pointwise to T.
□

Theorem 2.7. Let (E, ∣∣.∣∣) be a Banach space and {Tn}∞n=0 a sequence of op-
erators Tn : E → E such that FTn = {x∗n} for each n ∈ N. For x0 ∈ E, let
{xn}∞n=0 be the Mann iterative process defined by (2), �n ∈ [0, 1]. Suppose that the
sequence {Tn}∞n=0 converges pointwise to a mapping T : E → E satisfying (6), with

FT = {x∗} , where  : IR+ → IR+ is a strict comparison function and � : IR+ → IR+

is a monotone increasing function such that �(0) = 0. Then, x∗n → x∗ as n→∞.

Proof. By using (2), the contractive condition (6) and the pointwise convergence
of Tn to T, we have that

∣∣x∗n − x∗∣∣ −  (∣∣x∗n − x∗∣∣) ≤ ∣∣Tx∗n − Tnx∗n∣∣ → 0 as n→∞,

since Tn converges pointwise to T. It follows that ∣∣x∗n − x∗∣∣ → 0 as n→∞, since
 is a strict comparison function.

□
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Theorem 2.8. Let (E, ∣∣.∣∣) be a Banach space and {Tn}∞n=0 a sequence of operators
Tn : E → E such that FTn

= {x∗n} for each n ∈ N. For x0 ∈ E, let {xn}∞n=0 be the
Mann iterative process defined by (2), where �n ∈ [0, 1]. Suppose that the sequence
{Tn}∞n=0 converges pointwise to a mapping T : E → E satisfying

∣∣Tx− Ty∣∣ ≤ L∣∣x− Tx∣∣+  (∣∣x− y∣∣), ∀ x, y ∈ E, L ≥ 0, (7)

with FT = {x∗} , where  : IR+ → IR+ is a strict comparison function. Then,
x∗n → x∗ as n→∞.

Proof. The proof of this result is similar to that of Theorem 2.7.
□

Theorem 2.9. Let (E, ∣∣.∣∣) be a Banach space and {Tn}∞n=0 a sequence of operators
Tn : E → E such that FTn = {x∗n} for each n ∈ N. For x0 ∈ E, let {xn}∞n=0 be
the Ishikawa iterative process defined by (3), where �n, �n ∈ [0, 1]. Suppose that
the sequence {Tn}∞n=0 converges pointwise to a mapping T : E → E satisfying (6),

with FT = {x∗} , where  : IR+ → IR+ is a sublinear, strict comparison function
and � : IR+ → IR+ is a monotone increasing function such that �(0) = 0. Then,
x∗n → x∗ as n→∞.

Proof. The proof of this result is similar to that of Theorem 2.7.
□

Remark 2.2: Theorem 2.5 - Theorem 2.9 extend a result of Bonsall [3] (which is
Theorem 3.1 of Rus [9]). Theorem 2.7 - Theorem 2.9 are also extensions of Theorem
7.2.1 of Rus [8] (which is Theorem 7.9 of Berinde [1, 2]).
Remark 2.3: Corresponding results can also be deduced from our results for the
Schaefer’s iterative process defined in (1). See [7].
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