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SIMULTANEOUS APPROXIMATION BY A LINEAR

COMBINATION OF BERNSTEIN-DURRMEYER TYPE

POLYNOMIALS

(COMMUNICATED BY TOUFIK MANSOUR)

KARUNESH KUMAR SINGH AND P. N. AGRAWAL

Abstract. The aim of the present paper is to study some direct results in
simultaneous approximation for a linear combination of Bernstein-Durrmeyer
type polynomials.

1. Introduction

For f ∈ LB [0, 1]
(
the space of bounded and Lebesgue integrable functions on

[0, 1]
)
, the modified Bernstein type polynomial operators

Pn(f ;x) = n
n∑

k=1

pn,k(x)

1∫
0

pn−1,k−1(t)f(t) dt+ (1− x)nf(0),

where

pn,k(x) =

(
n

k

)
xk(1− x)n−k, 0 6 x 6 1,

were introduced by Gupta and Maheshwari [8] wherein they studied the approx-
imation of functions of bounded variation by these operators. In [6], Gupta and
Ispir studied the pointwise convergence and Voronovskaja type asymptotic results
in simultaneous approximation. Gairola [5] derived direct, inverse and saturation
results for an iterative combination of these operators in ordinary approximation.
We [1] studied a direct theorem in the Lp− norm for these combinations of the
operator Pn.
The operators Pn(f ;x) can be expressed as
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SIMULTANEOUS APPROXIMATION 71

Pn(f ;x) =

1∫
0

Wn(t, x)f(t) dt,

where the kernel of the operators is given by

Wn(t, x) = n
n∑

k=1

pn,k(x) pn−1,k−1(t) + (1− x)nδ(t),

δ(t) being the Dirac-delta function.
It turns out that the order of approximation by these operators is at best O(n−1),

however smooth the function may be.
Following the technique of linear combination described in [3] to improve the order
of approximation, we define

Pn(f, k, x) =

k∑
j=0

C(j, k)Pdjn(f, x),

where

C(j, k) =
k∏

i=0,i̸=j

dj
dj − di

, k ̸= 0 and C(0, 0) = 1, (1.1)

d0, d1, ...dk being (k + 1) arbitrary but fixed distinct positive integers.
The object of the present paper is to investigate some direct results in the simul-

taneous approximation by the operators Pn(., k, x). First we establish a Voronovskaja
type asymptotic formula and then obtain an error estimate in terms of local mod-

ulus of continuity of the function involved for the operator P
(r)
n (., k, x).

2. Auxiliary Results

In the sequel we shall require the following results:

Lemma 2.1. [6] For the function un,m(x),m ∈ N0 (the set of non-negative inte-
gers) defined as

un,m(x) =
n∑

ν=0

pn,ν(x)
(ν
n
− x
)m

,

we have un,0(x) = 1 and un,1(x) = 0. Further, there holds the recurrence relation

nun,m+1(x) = x
[
u′n,m(x) +mun,m−1(x)

]
,m = 1, 2, 3, ...

Consequently,
(i) un,m(x) is a polynomial in x of degree [m/2], where [α] denotes the integral part
of α;
(ii) for every x ∈ [0, 1], un,m(x) = O

(
n−[(m+1)/2]

)
.

Remark 1. From the above lemma, we have

n∑
ν=0

pn,ν(x) (ν − nx)
2j

= O(nj) (2.1)
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For m ∈ N0 (the set of non-negative integers), the mth order moment for the
operators Pn is defined as

µn,m(x) = Pn ((t− x)m;x) .

Lemma 2.2. [1] For the function µn,m(x), we have µn,0(x) = 1, µn,1(x) =
(−x)
(n+1) ,

and there holds the recurrence relation

(n+m+1)µn,m+1(x) = x(1−x)
{
µ′
n,m(x) + 2mµn,m−1(x)

}
+(m(1−2x)−x)µn,m(x),

for m ≥ 1.
Consequently, we have

(i) µn,m(x) is a polynomial in x of degree m;

(ii) for every x ∈ [0, 1], µn,m(x) = O
(
n−[(m+1)/2]

)
.

Remark 2. From the above lemma, it follows that for each x ∈ (0, 1),

n

n∑
k=1

pn,k(x)

1∫
0

pn−1,k−1(t)(t− x)m dt = O
(
n−[(m+1)/2]

)
, m ∈ N0.

Lemma 2.3. If C(j, k), j = 0, 1, 2, ......., k is defined as in 1.1, then

k∑
j=0

C(j, k)d−m
j =

{
1, m = 0
0, m = 1, 2, 3, 4........

Lemma 2.4. For p ∈ N, Pn((t − x)p, k, x) = n−(k+1){Q(p, k, x) + o(1)} where
Q(p, k, x) are certain polynomials in x of degree at most p.

From Lemma 2.2 and Lemma 2.3 the above lemma easily follows hence the details
are omitted.

Throughout this paper, we assume 0 < a < b < 1, I = [a, b], 0 < a1 < a2 < b2 <
b1 < 1, Ii = [ai, bi], i = 1, 2, [a1, b1] ⊂ (a, b), ∥.∥C(I) the sup- norm on the interval
I and C a constant not necessarily the same at each occurrence.
Let f ∈ C[a, b]. Then, for a sufficiently small η > 0, the Steklov mean fη,m of m−th
order corresponding to f is defined as follows:

fη,m(t) = η−m

η/2∫
−η/2

· · ·
η/2∫

−η/2

(
f(t) + (−1)m−1∆m∑m

i=1 ti
f(t)

) m∏
i=1

dti, , t ∈ I1,

where ∆m
h is the m−th forward difference operator with step length h.

Lemma 2.5. Let f ∈ C[a, b]. Then, for the function fη,m, we have

(a) fη,m has derivatives up to order m over I1;

(b) ∥f (r)η,m∥C(I1) 6 Cr ωr(f, η, [a, b]), r = 1, 2, ...,m;

(c) ∥f − fη,m∥C(I1) 6 Cm+1 ωm(f, η, [a, b]);

(d) ∥fη,m∥C(I1) 6 Cm+2 η
−m∥f∥C[a,b];

(e) ∥f (r)η,m∥C(I1) 6 Cm+3 ∥f∥C[a,b],

where C ′
is are certain constants that depend on i but are independent of f and η.



SIMULTANEOUS APPROXIMATION 73

Following ([9], Theorem 18.17) or ([10], pp.163-165), the proof of the above lemma
easily follows hence the details are omitted.

Lemma 2.6. [1] For the function pn,k(x), there holds the result

xr(1− x)r
drpn,k(x)

dxr
=

∑
2i+j6r
i,j≥0

ni(k − nx)jqi,j,r(x)pn,k(x),

where qi,j,r(x) are certain polynomials in x independent of n and k.

Theorem 2.7. Let f ∈ LB [0, 1] admitting a derivative of order 2k + 2 at a point
x ∈ [0, 1] then we have

lim
n→∞

nk+1[Pn(f, k, x)− f(x)] =
2k+2∑
ν=1

f (ν)(x)

ν!
Q(ν, k, x) (2.2)

and

lim
n→∞

nk+1[Pn(f, k + 1, x)− f(x)] = 0, (2.3)

where Q(ν, k, x) are certain polynomials in x of degree ν. Further, the limits in (2.2)
and (2.3) hold uniformly in [a, b] if f (2k+2) is continuous on (a− η, b+ η) ⊂ (0, 1),
η > 0.

Proceeding along the lines of the proof of (Thm., [2]), the above theorem easily
follows. Hence the details are omitted.

3. Main Results

Theorem 3.1. Let f ∈ LB [0, 1] admitting a derivative of order 2k + r + 2 at a
point x ∈ (0, 1) then we have

lim
n→∞

nk+1[P (r)
n (f, k, x)− f (r)(x)] =

2k+r+2∑
ν=r

f (ν)(x)

ν!
Q1(ν, k, r, x) (3.1)

and

lim
n→∞

nk+1[P (r)
n (f, k + 1, x)− f (r)(x)] = 0, (3.2)

where Q1(ν, k, r, x) are certain polynomials in x. Further, the limits in (3.1) and
(3.2) hold uniformly in [a, b] if f (2k+r+2) is continuous on (a− η, b+ η) ⊂ (0, 1),
η > 0.

Proof. By a partial Taylor’s expansion of f , we have

f(t) =

2k+r+2∑
ν=0

f (ν)(x)

ν!
(t− x)ν + ϵ(t, x)(t− x)2k+r+2,

where ϵ(t, x) → 0 as t→ x. Thus, we can write
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nk+1[P (r)
n (f, k, x)− f (r)(x)] = nk+1

[ 2k+2+r∑
ν=0

f (ν)(x)

ν!
P (r)
n ((t− x)ν , k, x)− f (r)(x)

]

+ nk+1
k∑

j=0

C(j, k)P
(r)
djn

(ϵ(t, x)(t− x)2k+r+2;x)

= Σ1 +Σ2, say.

On an application of Lemma 2.2 and Theorem 2.7 we obtain

Σ1 = nk+1

[
2k+r+2∑

ν=0

f (ν)(x)

ν!
P (r)
n ((t− x)ν , k, x)− f (r)(x)

]

= nk+1

[
2k+r+2∑

ν=r

f (ν)(x)

ν!

ν∑
i=0

(
ν

i

)
(−x)ν−iP (r)

n (ti, k, x)− f (r)(x)

]

= nk+1

[
2k+r+2∑

ν=r

f (ν)(x)

ν!

ν∑
i=0

(
ν

i

)
(−x)ν−i ×Drxi + n−(k+1)

[ 2k+2∑
j=1

Dr

(
Djxi

j!
Q(j, k, x)

)
+ o(1)

]− f (r)(x)

]

= nk+1

[ 2k+r+2∑
ν=r

f (ν)(x)

ν!
r!

ν∑
i=0

(
ν

i

)(
i

r

)
(−1)ν−i(x)ν−r − f (r)(x)

]

+
2k+r+2∑

ν=r

Q1(ν, k, r, x)f
(ν)(x) + o(1),

where we have used the identity

i∑
l=0

(−1)l
(
i

l

)(
l

r

)
=

{
0, i > r
(−1)r, i = r.

Thus, we get

Σ1 =
2k+r+2∑

ν=r

Q1(ν, k, r, x)f
(ν)(x) + o(1)

In order to prove the assertion 3.1, it is sufficient to show that

nk+1P (r)
n (ϵ(t, x)(t− x)2k+r+2;x) → 0 as n→ ∞.

Σ ≡ P (r)
n (ϵ(t, x)(t− x)2k+r+2;x)

= n

n∑
k=1

p
(r)
n,k(x)

1∫
0

pn−1,k−1(t)ϵ(t, x)(t− x)2k+r+2 dt

+ (−1)r
n!

(n− r)!
(1− x)n−rϵ(0, x)(−x)2k+r+2.
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Therefore, by using Lemma 2.6 we have

|Σ| ≤ n
∑

2i+j≤r
i,j≥0

ni
|qi,j,r(x)|
xr(1− x)r

n∑
k=1

|k − nx|j pn,k(x)×

1∫
0

pn−1,k−1(t)|ϵ(t, x)||t− x|2k+2+r dt

+
n!

(n− r)!
(1− x)n−r|ϵ(0, x)|x2k+r+2

= J1 + J2, say.

Since ϵ(t, x) → 0 as t → x, for a given ϵ′ > 0 we can find a δ > 0 such that
|ϵ(t, x)| < ϵ′ whenever 0 < |t − x| < δ and for |t − x| ≥ δ, |ϵ(t, x)| ≤ K for some
K > 0. Hence

|J1| ≤ nC1

∑
2i+j≤r
i,j≥0

ni
n∑

k=1

|k − nx|j pn,k(x)×

[
ϵ′

∫
|t−x|<δ

pn−1,k−1(t)|t− x|2k+2+r dt+

1

δ2

∫
|t−x|≥δ

pn−1,k−1(t)K|t− x|2k+4+r dt

]
= J3 + J4, say,

where C1 = sup 2i+j≤r
i,j≥0

|qi,j,r(x)|/xr(1− x)r.

Applying Schwarz inequality for integration and then summation and Lemma 2.2,
2.1 we have

|J3| ≤ C1ϵ
′n1/2

∑
2i+j≤r
i,j≥0

ni

(
n∑

k=1

(k − nx)2j pn,k(x)

)1/2

×
(∫ 1

0

pn−1,k−1(t)dt

)1/2

n n∑
k=1

pn,k(x)

1∫
0

pn−1,k−1(t)(t− x)4k+4+2r dt

1/2

≤ C1ϵ
′
∑

2i+j≤r
i,j≥0

niO(nj/2)O(n−(2k+2+r)/2), ( in view of Remark 2),

= ϵ′O(n−(k+1)).

Next, again Applying Schwarz inequality for integration and then summation and
Lemma 2.2, 2.1 we have
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|J4| ≤ C1

δ2
n1/2

∑
2i+j≤r
i,j≥0

ni

(
n∑

k=1

(k − nx)2j pn,k(x)

)1/2

×

(
n

n∑
k=1

pn,k(x)

∫ 1

0

pn−1,k−1(t)(t− x)4k+8+2rdt

)1/2

×

(∫ 1

0

pn−1,k−1(t)dt

)1/2

≤ C1

δ2

∑
2i+j≤r
i,j≥0

niO(nj/2)O(n−(2k+4+r)/2)

= C2O(n−(k+2)).

Combining the estimates of J3 and J4, we get J1 = ϵ′O(n−(k+1)). Clearly, J2 =
o(n−(k+1)). Combining the estimates J1 and J2, due to the arbitrariness of ϵ′ > 0,
it follows that nk+1Σ → 0 as n→ ∞. This completes the proof of the assertion 3.1.
The assertion 3.2 can be proved along similar lines by noting that

Mn((t− x)i, k + 1, x) = O(n−(k+2)), i = 1, 2, 3 ...

which follows from Lemma 2.4.
Uniformity assertion follows easily from the fact that δ(ϵ) in the above proof can
be chosen to be independent of x ∈ [a, b] and all the other estimates hold uniformly
on [a, b]. �

In the following theorem, we study an error estimate for P
(r)
n (f, k, x).

Theorem 3.2. Let p ∈ N, 1 ≤ p ≤ 2k + 2 and f ∈ LB [0, 1]. If f (p+r) exists and is
continuous on (a− η, b+ η) ⊂ [0, 1], η > 0 then

∥∥P (r)
n (f, k, .)− f (r)

∥∥ ≤ max
{
C1n

−p/2ω
(
f (p+r), n−1/2

)
, C2n

−(k+1)
}
, (3.3)

where C1 = C1(k, p, r), C2 = C2(k, p, r, f) and ω
(
f (p+r), δ

)
is the modulus of con-

tinuity of f (p+r) on (a− η, b+ η).

Proof. By our hypothesis, we may write for all t ∈ [0, 1] and x ∈ [a, b]

f(t) =

p+r∑
ν=0

f (ν)(x)

ν!
(t− x)ν +

f (p+r)(ξ)− f (p+r)(x)

(p+ r)!
(t− x)p+rχ(t)

+F (t, x)(1− χ(t)), (3.4)

where χ(t) is the characteristic function of (a−η, b+η), ξ lies between t and x and
F (t, x) is defined as

F (t, x) = f(t)−
p+r∑
ν=0

f (ν)(x)

ν!
(t− x)ν , ∀ t ∈ [0, 1] \ (a− η, b+ η) and x ∈ [a, b].
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Now operating by P
(r)
n (., k, x) on both sides of (3.4) and breaking the right hand

side into three parts I1, I2 and I3 say, corresponding to the three terms on the right
hand side of (3.4), we get

P (r)
n (f, k, x)− f (r)(x) = I1 + I2 + I3.

To estimate

I1 =

p+r∑
ν=0

f (ν)(x)

ν!
P (r)
n ((t− x)ν , k, x),

proceeding as in the estimate of Σ1 of Theorem 3.1, we obtain

I1 = O(n−(k+1)),

uniformly in x ∈ [a, b].
For every δ > 0, we have

|f (p+r)(ξ)−f (p+r)(x)| ≤ ωf(p+r)(|ξ−x|) ≤ ωf(p+r)(|t−x|) ≤
(
1 +

|t− x|
δ

)
ωf(p+r)(δ).

Consequently,

|I2| ≤
ω
(
f (p+r), δ

)
(p+ r)!

k∑
j=0

|C(j, k)|
[
djn

djn∑
ν=1

|p(r)djn,ν
(x)|

×
1∫

0

pdjn−1,ν−1(t)|t− x|p+r(1 + |t− x|δ−1)dt

+
djn!

(djn− r)!
(1− x)djn−r

(
|x|p+r + δ−1|x|p+r+1

) ]
= I4 + I5, say.

In order to estimate I2, we proceed as follows:
Using Lemma 2.6 and Schwarz inequality for integration and then for summation
we have

n
n∑

ν=1

|p(r)n,ν(x)|
∫ 1

0

pn−1,ν−1(t)|t− x|s dt

≤ n
n∑

ν=1

∑
2i+j≤r
i,j≥0

ni|ν − nx|j |qi,j,r(x)|
xr(1− x)r

pn,ν(x)

∫ 1

0

pn−1,ν−1(t)|t− x|s dt

≤ K
∑

2i+j≤p
i,j≥0

ni

[
n

n∑
ν=1

pn,ν(x)|ν − nx|j
∫ 1

0

pn−1,ν−1(t)|t− x|s dt

]

=
∑

2i+j≤r
i,j≥0

niO(n(j−s)/2) = O(n(r−s)/2), (3.5)

uniformly in x ∈ [a, b], where K = sup 2i+j≤r
i,j≥0

supx∈[a,b]
|qi,j,r(x)|
xr(1−x)r .

Choosing δ = n−1/2 and using 3.5 we are lead to,
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|I4| ≤
ω
(
f (p+r), n−1/2

)
(p+ r)!

[
O
(
n−p/2

)
+ n1/2O

(
n−(p+1)/2

)]
= ω

(
f (p+r), n−1/2

)
O
(
n−p/2

)
, uniformly for all x ∈ [a, b].

Now, I5 = O (n−s) , for any s > 0, uniformly for all x ∈ [a, b]. Choosing s > k + 1,
I5 = o

(
n−(k+1)

)
, uniformly for all x ∈ [a, b].

To estimate I3, we note that t ∈ [0, 1] \ (a− η, b+ η), we can choose δ > 0 in such
a way that |t− x| ≥ δ for all x ∈ [a, b].
Thus, by Lemma 2.6, we obtain

|I3| ≤
k∑

j=0

|C(j, k)|
[
djn

djn∑
ν=1

|p(r)djn,ν
(x)|

×
∫

|t−x|≥δ

pdjn−1,ν−1(t)|F (t, x)| dt+
djn!

(djn− r)!
(1− x)n−r|F (0, x)|

]

For |t − x| ≥ δ, we can find a constant C > 0 such that |F (t, x)| ≤ C, therefore
using 3.5 it easily follows that I3 = O (n−s) for any s > 0, uniformly on [a, b].
Choosing s > k+1 we obtain I3 = o(n−(k+1)) , uniformly on [a, b]. Now combining
the estimates of I1, I2, I3, the required result is immediate.
This completes the proof. �

In the following theorem, we study an error estimate for P
(r)
n (f, k, x) in terms of

higher order modulus of continuity in simultaneous approximation.

Theorem 3.3. Let f ∈ LB [0, 1]. If f (r) exists and is continuous on I1, then for
sufficiently large n,∥∥P (r)

n (f, k, .)− f (r)(.)
∥∥
C(I2)

6 C
{
n−k∥f∥LB [0,1] + ω2k+2

(
f (r);n−1/2; I1)

}
,

where C is independent of f and n.

Proof. We can write

I =
∥∥P (r)

n (f, k, .)− f (r)
∥∥
C(I2)

6
∥∥P (r)

n (f − fη,2k+2, k, .)
∥∥
C(I2)

+
∥∥P (r)

n (fη,2k+2, k, .)− f
(r)
η,2k+2

∥∥
C(I2)

+
∥∥f (r)(x)− f

(r)
η,2k+2(x)

∥∥
C(I2)

:= E1 + E2 + E3, say.

Since f
(r)
η,2k+2 =

(
f (r)

)
η,2k+2

, by property (c) of the Steklov mean we get

E3 6 C ω2k+2

(
f (r), η, I1

)
.

Next, applying Theorem 3.1 and the interpolation property [7], for each m = r, r+
1, ..., 2k + 2 + r, it follows that
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E2 6 C n−(k+1)
2k+2+r∑
m=r

∥∥∥f (m)
η,2k+2

∥∥∥
C(I2)

6 C n−(k+1)

(∥∥∥fη,2k+2

∥∥∥
C(I2)

+
∥∥∥f (2k+2+r)

η,2k+2

∥∥∥
C(I2)

)
6 C n−(k+1)

(∥∥∥fη,2k+2

∥∥∥
C(I2)

+
∥∥∥(f (r))2k+2

η,2k+2

∥∥∥
C(I2)

)
.

Hence, by property (b) and (d) of the Steklov mean, we have

E2 6 C n−(k+1)
{
∥f∥C(I1) + η−(2k+2)ω2k+2

(
f (r), η, I1

)}
.

Let f − fη,2k = F . By our hypothesis, we can write

F(t) =
r∑

m=0

F (m)(x)

m!
(t− x)m +

F (r)(ξ)−F (r)(x)

r!
(t− x)rψ(t)

+ h(t, x) (1− ψ(t)) ,

where ξ lies between t and x, and ψ is the characteristic function of the interval I1.
For t ∈ I1 and x ∈ I2, we get

F(t) =
r∑

m=0

F (m)(x)

m!
(t− x)m +

F (r)(ξ)−F (r)(x)

r!
(t− x)r,

and for t ∈ [0, 1] \ [a1, b1], x ∈ I2 we define

h(t, x) = F(t)−
r∑

m=0

F (m)(x)

m!
(t− x)m.

Now,

P (r)
n

(
F(t), k, x

)
=

r∑
m=0

F (m)(x)

m!
P (r)
n

(
(t− x)m, k, x

)
+ P (r)

n

(
F (r)(ξ)−F (r)(x)

r!
(t− x)rψ(t), k, x

)
+ P (r)

n

(
h(t, x) (1− ψ(t)) , k, x

)
:= J1 + J2 + J3, say.

In order to estimate J1, in view of Lemma 2.2 we note that

r∑
m=0

F (m)(x)

m!
P (r)
n

(
(t− x)m, x

)
=

F (r)(x)

r!
P (r)
n

(
tr, x

)
=

F (r)(x)

r!

[
r!

nr

Πr
j=1(n+ j)

]
.

By using Lemma 2.2, we get
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J1 =
r∑

m=0

F (m)(x)

m!
P (r)
n

(
(t− x)m, k, x

)
=

r∑
m=0

F (m)(x)

m!

m∑
l=0

(
m

l

)
(−x)m−lP (r)

n

(
tl, k, x

)
→ (n+ r − 1)!

nr(n− 1)!
F (r)(x).

Hence, for sufficiently large n, we have

|J1| 6 C ∥f (r) − f
(r)
η,2k+2∥C(I2)

Next, applying Schwarz inequality for integration and then for summation and using
Remarks 1-2, we get

J2 6 2

r!
∥f (r) − f

(r)
η,2k+2∥C(I2)P

(r)
n

(
ψ(t)|t− x|r, k, x

)
6 2

r!
∥f (r) − f

(r)
η,2k+2∥C(I2)

k∑
j=0

|C(j, k)|
∑

2i+j6r
i,j>0

(djn)
i |qi,j,r(x)|
xr(1− x)r

djn×

×
djn∑
ν=1

pdjn,ν(x)|ν − djnx|j
1∫

0

pdjn−1,ν−1(t)ψ(t)|t− x|r dt

6 2

r!
∥f (r) − f

(r)
η,2k+2∥C(I2)

k∑
j=0

|C(j, k)|
∑

2i+j6r
i,j>0

(djn)
i+1 |qi,j,r(x)|

xr(1− x)r
×

×
djn∑
ν=1

pdjn,ν(x)|ν − djnx|j
( 1∫

0

pdjn−1,ν−1(t) dt

)1/2
×

×

( 1∫
0

pdjn−1,ν−1(t)(t− x)2r dt

)1/2

6 C ∥f (r) − f
(r)
η,2k+2∥C(I2)

k∑
j=0

|C(j, k)| ×

×
∑

2i+j6r
i,j>0

(djn)
i

(
djn∑
ν=1

pdjn,ν(x)(ν − djnx)
2j

)1/2
×

×

(
djn

djn∑
ν=1

pdjn,ν(x)

1∫
0

pdjn−1,ν−1(t)(t− x)2r

)1/2

6 C ∥f (r) − f
(r)
η,2k+2∥C(I2)

k∑
j=0

|C(j, k)|
∑

2i+j6r
i,j>0

(djn)
iO
(
nj/2

)
O
(
n−r/2

)
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or
J2 6 C ′ ∥f (r) − f

(r)
η,2k+2∥C(I2).

Since t ∈ [0, 1] \ I1, we can choose a δ > 0 in such a way that |t − x| > δ for all
x ∈ I2. Thus, by Lemma 2.2, we obtain

|J3| 6
k∑

j=0

|C(j, k)|
∑

2i+j6r
i,j>0

(djn)
i |qi,j,r(x)|
xr(1− x)r

djn

djn∑
ν=1

pdjn,ν(x)|ν − djnx|j ×

∫
|t−x|>δ

pdjn−1,ν−1(t)|h(t, x)| dt+
djn!

(djn− r)!
(1− x)djn−r|h(0, x)|

For |t − x| > δ, we can find a constant C > 0 such that |h(t, x)| 6 C. Hence,
proceeding as a manner similar to the estimate of J2, it follows that J3 = O

(
n−s

)
for any s > 0.
Combining the estimates of J1 − J3, we obtain

E1 6 C ∥f (r) − f
(r)
η,2k+2∥C(I2)

6 C ω2k+2

(
f (r), η, I1

)
(in view of (c) of Steklov mean).

Therefore, with η = n−1/2 the theorem follows. �
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