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Abstract. In this paper, we consider mixed vector variational-like inequality

problems in the setting of topological vector spaces. We extend the concept
of upper sign continuity for vector-valued mappings. Further, by exploiting
KKM-Fan lemma, we establish some existence results for solutions of mixed
vector variational-like inequality problems and show that the solution sets of

these problems are compact.

1. Introduction

Variational inequalities were introduced and studied by Stampacchia [11] in early
sixties. It has been shown that a wide class of linear and nonlinear problems aris-
ing in various branches of mathematical and engineering sciences can be studied in
the unified and general framework of variational inequalities. Variational inequali-
ties have been generalized and extended in several directions using new techniques.
As a useful and important branch of variational inequality theory, vector varia-
tional inequalities were initially introduced and studied by Giannessi [5] in a finite-
dimensional Euclidean space in 1980. Since then it becomes a powerful tool in the
study of vector optimization and traffic equilibrium problems; (see Refs.[6, 9, 10].
Due to its wide range of applications, the vector variational inequality has been
generalized in different directions and the existence results and algorithms for a
number of classes of vector variational inequality problems have been established
under various conditions; For details, we refer to [3, 4, 5, 6, 8, 10, 12, 13, 14] and
references therein.

Recently, Fang and Huang [3, 8] considered generalized vector variational in-
equality problems for a fixed cone. They provided the existence of solutions of
these problems under different kinds of pseudomonotonicity and hemicontinuity
conditions. They have also provided applications of these problems to vector f -
complementarity problems.
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Inspired and motivated by the recent research activities going on in this direction,
we introduce the concept of Px-η-upper sign continuity which extend the previous
concept of upper sign continuity introduced by Hadjisavvas [7] and considered two
classes of generalized vector variational-like inequalities. We investigate the solv-
ability of vector variational-like inequalities by means of the KKM-Fan lemma under
Px-η-upper sign continuity with or without pseudomonotonicity assumptions. The
results presented in this paper generalize the results given in [3, 4, 7, 8, 13] and
enrich the theory of the vector variational inequality.

2. Preliminaries

Let X and Y be two topological vector spaces, K ⊂ X be a nonempty and
convex subset of X. Let P ⊂ Y be a closed convex and pointed cone with apex
at the origin and let P : K → 2Y be a set-valued mapping such that for each
x ∈ K, P (x) is a proper, closed, convex cone with int P (x) ̸= ∅, where intP (x)
denotes the interior of P (x). Let L(X,Y ) denote the space of all continuous linear
mappings from X into Y and ⟨t, x⟩ the evaluation of t ∈ L(X,Y ) at x ∈ X. Let
f : K ×K → Y and η : K ×K → X be two bi-mappings.

We consider the following mixed vector variational-like inequality problem (in
short, MVVLIP): Find x ∈ K such that

⟨Tx, η(y, x)⟩+ f(y, x) ̸∈ −intP (x), ∀y ∈ K. (2.1)

The set of solutions of MVVLIP is denoted by S1.
Another problem which is closely related to MVVLIP is the following Minty-type

mixed vector variational-like inequality problem (in short, MMVVLIP): Find x ∈ K
such that

⟨Ty, η(y, x)⟩+ f(y, x) ̸∈ −intP (x), ∀y ∈ K. (2.2)

We denote the set of solutions of MMVVLIP by S2.

Throughout the paper, unless otherwise specified, let P− =
∩

x∈K

P (x) is a proper,

closed, solid and convex cone in Y . Now, we recall the following concepts and results
which are needed in the sequel.

Definition 2.1. A mapping f : K → Y is said to be

(i) P−-convex, if f(tx+(1−t)y) ≤P− tf(x)+(1−t)f(y), ∀x, y ∈ K, t ∈ [0, 1];
(ii) P−-concave, if −f is P−-convex.

Definition 2.2. A mapping T : K → L(X,Y ) is said to be η-hemicontinuous, if
for any x, y ∈ K, the mapping t → ⟨T (x+ t(y − x)), η(y, x)⟩ is continuous at 0+.

Definition 2.3. A mapping T : K → L(X,Y ) is said to be Px-η-pseudomonotone
with respect to f , if for any x ∈ K

⟨Tx, η(y, x)⟩+ f(y, x) ̸∈ −intP (x) ⇒ ⟨Ty, η(y, x)⟩+ f(y, x) ̸∈ −intP (x), ∀y ∈ K.

Example 2.4. Let X=R, K=R+, Y=R2, P (x)=R2
+, η(y, x) = y − x, for all

x, y ∈ K and

T (x) =

(
0

1.5 + sin x

)
and f(y, x) =

(
y − x
y − x

)
∀x, y ∈ K.
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Now

⟨Tx, η(y, x)⟩+ f(y, x) =

(
y − x

(2.5 + sin x)(y − x)

)
̸∈ −intP (x),

we have y ≥ x. It follows that

⟨Ty, η(y, x)⟩+ f(y, x) =

(
y − x

(2.5 + sin y)(y − x)

)
̸∈ −intP (x).

So, T is Px-η-pseudomonotone with respect to f .

Definition 2.5. A mapping T : K → L(X,Y ) is said to be Px-η-upper sign con-
tinuous with respect to f , if for any x, y ∈ K and t ∈]0, 1[

⟨T (x+ t(y − x)), η(y, x)⟩+ f(y, x) ̸∈ −intP (x), ∀t ∈]0, 1[
⇒ ⟨Tx, η(y, x)⟩+ f(y, x) ̸∈ −intP (x).

Remark.

(i) It is remarked that the concept of upper sign continuity for set-valued vector
valued mappings is extended and used in proving the existence of solutions
to some generalized classes of vector variational-like Inequalities ; See for
details [4].

(ii) For f ≡ 0, it is easy to see that the η-hemicontinuity of T implies Px-
η-upper sign continuity of T . If X=Y=R, K=P (x)=[0,∞) and f ≡ 0,
η(y, x)=y − x, for all x, y ∈ K, then any positive mapping T : K →
L(X,Y ) = R is Px-η-upper sign continuous while it is not hemicontin-
uous. In this case, the concept of Px-η-upper sign continuity reduces to
upper sign continuity introduced by Hadjisavvas [7].

Definition 2.6. [14]. Let K be a nonempty subset of a topological space X. A
set-valued mapping Γ : K → 2K is said to be transfer closed-valued on K, if for all
x ∈ K, y ̸∈ Γ(x) implies that there exists a point x′ ∈ K such that y ̸∈ clKΓ(x′),
where clKΓ(x) denotes the closure of Γ(x) ⊂ K. It is clear that this definition is
equivalent to: ∩

x∈K

clKΓ(x) =
∩
x∈K

Γ(x).

Definition 2.7. Let X and Y be two topological vector spaces. A set-valued map-
ping T : X → 2Y is said to be:

(i) upper semi-continuous at x ∈ X, if for each open set V containing T (x),
there is an open set U containing x such that for all t ∈ U, T (t) ∈ V and
T is said to be upper semi-continuous on X, if it is upper semi-continuous
at every point x ∈ X;

(ii) closed, if the graph Gr(T ) = {(x, y) ∈ X × Y : x ∈ X, y ∈ T (x)} of T is a
closed set;

(iii) compact, if the closure of range T , that is, clT (X) is compact, where
T (X) =

∪
x∈X

T (x).

Definition 2.8. Let K0 be a nonempty subset of K. A set-valued mapping Γ :
K0 → 2K is said to be a KKM mapping, if coA ⊆

∪
x∈A

Γ(x) for very finite subset A

of K0, where co denotes the convex hull.



MIXED VECTOR VARIATIONAL-LIKE INEQUALITIES 105

Lemma 2.9. [3]. Let K be a nonempty subset of a topological vector space X and
Γ : K → 2X be a KKM mapping with closed values. Assume that there exist a
nonempty compact convex subset D ⊆ K such that B =

∩
x∈D

Γ(x) is compact. Then∩
x∈K

Γ(x) ̸= ∅.

3. Existence of Solutions of MVVLIP

In order to establish existence results for the solutions of MVVLIP, we prove the
following lemma.

Lemma 3.1. Let K ⊂ X be a nonempty and convex subset of X. Let f : K×K →
Y and η : K ×K → X be two bi-mappings. Suppose following conditions hold:

(i) f : K×K → Y is P−-convex in first argument with the condition f(x, x) =
0, ∀x ∈ K;

(ii) η : K ×K → X is an affine mapping in first argument with the condition
η(x, x) = 0, ∀x ∈ K;

(iii) T : K → L(X,Y ) is Px-η-upper sign continuous and Px-η-pseudomonotone
mapping with respect to f .

Then, the solution sets of MVVLIP and MMVVLIP are equivalent.

Proof. By Px-η-pseudomonotonicity of T with respect to f , every solution of MVVLIP
is a solution of MMVLIP.

Conversely, let x ∈ K be the solution of MMVVLIP. For any given y ∈ K, we
know that yt = ty + (1− t)x ∈ K, ∀t ∈]0, 1[, as K is convex. Since x ∈ K is a
solution of MMVVLIP, so for each x ∈ K, it follows that

⟨Tyt, η(yt, x)⟩+ f(yt, x) ̸∈ −intP (x). (3.1)

Since f is P−-convex in first argument and f(x, x) = 0, ∀x ∈ K, therefore

f(yt, x) ≤P− tf(y, x) + (1− t)f(x, x) = tf(y, x). (3.2)

From assumption (ii) on η, we have

⟨Tyt, η(yt, x)⟩ = ⟨Tyt, η(ty + (1− t)x, x)⟩.
= t⟨Tyt, η(y, x)⟩+ (1− t)⟨Tyt, η(x, x)⟩

= t⟨Tyt, η(y, x)⟩. (3.3)

From inclusions (3.1)-(3.3), we have

t⟨Tyt, η(y, x)⟩+ tf(y, x) ̸∈ −intP (x).

Since Y \{−int P (x)} is closed, therefore ∀t ∈]0, 1], we have

⟨Tyt, η(y, x)⟩+ f(y, x) ̸∈ −intP (x).

From Px-η-upper sign continuity of T with respect to f , we get

⟨Tx, η(y, x)⟩ + f(y, x) ̸∈ −intP (x), ∀y ∈ K.

Therefore, x ∈ K is solution of MVVLIP. This completes the proof. �

We now establish an existence result for MVVLIP under Px-η-upper sign conti-
nuity.

Theorem 3.2. Let K ⊂ X be a nonempty and convex subset of X. Let f : K×K →
Y and η : K ×K → X be two bi-mappings. Suppose following conditions hold:
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(i) f : K×K → Y is P−-convex in first argument with the condition f(x, x) =
0, ∀x ∈ K;

(ii) η : K ×K → X is an affine mapping in first argument with the condition
η(x, x) = 0, ∀x ∈ K;

(iii) The set-valued mapping y 7→ {x ∈ K : ⟨Ty, η(y, x)⟩+ f(y, x) ̸∈ −intP (x)}
is transfer closed-valued on K;

(iv) T : K → L(X,Y ) is Px-η-upper sign continuous and Px-η-pseudomonotone
mapping with respect to f .

(v) There exist compact subset B ⊆ K and compact convex subset D ⊆ K such
that ∀x ∈ K\B,∃ y ∈ D such that ⟨Ty, η(y, x)⟩+ f(y, x) ∈ −intP (x).

Then, the solution set S1 of MVVLIP is nonempty and compact.

Proof. Define a set-valued mapping Γ : K → 2K as follows:

Γ(y) = {x ∈ K : ⟨Ty, η(y, x)⟩+ f(y, x) ̸∈ −intP (x)}, ∀y ∈ K.

We claim that Γ is a KKM mapping. If this is not true, then there exist a finite set

{y1, ..., yn} ⊂ K and z ∈ co({y1, ..., yn}) such that z ̸∈
n∪

i=1

Γ(yi). Then

⟨T (yi), η(yi, z)⟩+ f(yi, z) ∈ −intP (z), i = 1, ..., n.

Since T is Px-η-pseudomonotone with respect to f , we have

⟨Tz, η(yi, z)⟩+ f(yi, z) ∈ −intP (z), i = 1, ..., n. (3.4)

For each i = 1, ..., n, let ti ∈]0, 1[ with
n∑

i=1

ti = 1. Multiplying inclusion (3.4) by ti

and summing, we obtain

n∑
i=1

ti⟨Tz, η(yi, z)⟩+
n∑

i=1

tif(yi, z) ∈ −intP (z), i = 1, ..., n. (3.5)

From assumptions (i) and (ii), inclusion (3.5) becomes

⟨Tz, η(
n∑

i=1

tiyi, z)⟩+ f(
n∑

i=1

tiyi, z) ∈ −intP (z),

and thus, 0 = ⟨Tz, η(z, z)⟩+f(z, z) ∈ −intP (z), which leads a contradiction to our
assumption that P (z) ̸= Y . Thus our claim is verified. So Γ is a KKM mapping.

From the assumption (v),

clK(
∩
y∈D

Γ(y)) ⊆ B.

Consequently, set-valued mapping clΓ : K → 2K satisfies all the conditions of
Lemma 2.9 and so ∩

x∈K

Γ(x) ̸= ∅.

By condition (iii), we get

S1 =
∩
x∈K

clΓ(x) =
∩
x∈K

Γ(x),
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which implies that the solution set S2 of MMVVLIP is nonempty. Moreover, since
T is Px-η-upper sign continuous with respect to f and f(., y) is P−-convex, by using
Lemma 3.1, we get

S1 =
∩
y∈K

Γ(y) =
∩
y∈K

{x ∈ K : ⟨Tx, η(y, x)⟩+ f(y, x) ̸∈ −intP (x)}.

This and conditions (iii) and (v) imply that the solution set of MVVLIP is a
nonempty and compact set of B. This completes the proof. �

Example 3.3. Let X=R, K=[0, 1], Y=R2 and P (x)=P={(u, v) ∈ R2 : u ≥ 0, v ≥
0} for all x ∈ K, be a fixed closed convex cone in Y . Let us define T (x)(t) =
⟨T (x), t⟩ = t(x, x2), η(y, x) = y − x, ∀x, y ∈ K and f ≡ 0, for all x ∈ K and
t ∈ X. Then, f is P−-convex and T is Px-η-pseudomonotone and Px-η-upper sign
continuous with respect to f and ⟨T (x), η(y, x)⟩+ f(y, x) = (y − x)(x, x2) = ((y −
x)x, (y−x)x2). It is easy to see that the set {x ∈ K : ⟨T (y), η(y, x) ̸∈ −intP (x)} =
[0, y] is closed and so the mapping y 7→ {x ∈ K : ⟨T (y), η(y, x)⟩ ̸∈ −intP (x)} is
transfer closed valued on K. Since K is compact, condition (v) of Theorem 3.2
trivially holds. Therefore, T satisfies all the assumptions of Theorem 3.2 and so
the solution set of MVVLIP is nonempty and compact. It is clear that only x = 0
satisfies the following relation

⟨T (x), η(y, x)⟩ ̸∈ −intP (x), ∀y ∈ K.

Similarly, only x = 0 satisfies the following relation

⟨T (y), η(y, x)⟩ ̸∈ −intP (x), ∀y ∈ K.

Hence the solution sets of MVVLIP and MMVVLIP are equal to the singleton set
{0}.

Remark.

(a) If X is a real reflexive Banach space and K is a nonempty, bounded, closed
and convex subset of X, then K is weakly compact. In this case, condition
(v) of Theorem 3.2 can be removed.

(b) It is obvious that if f(y, .) is continuous and the set-valued mapping W (x) =
Y \(−intP (x)) for all x ∈ K, is closed, then condition (iii) of Theorem 3.2
trivially holds.

Now we prove the existence of a solutions of MVVLIP without any kind of
pseudomonotonicty assumption.

Theorem 3.4. Let K, X, Y and P be the same as in Theorem 3.2 and let f :
K×K → Y and η : K×K → X are two bi-mappings with the conditions f(x, x) =
0 , η(x, x) = 0, ∀x ∈ K. Assume that the set-valued mapping T : K → 2K satisfies
the following conditions:

(i) for all y ∈ K, the set {x ∈ K : ⟨Tx, η(y, x)⟩ + f(y, x) ̸∈ −intP (x)} is
P−-convex;

(ii) The set-valued mapping y 7→ {x ∈ K : ⟨Tx, η(y, x)⟩+ f(y, x) ̸∈ −intP (x)}
is transfer closed-valued on K;

(iii) There exist compact subset B ⊆ K and compact convex subset D ⊆ K such
that ∀x ∈ K\B,∃ y ∈ D such that ⟨Tx, η(y, x)⟩+ f(y, x) ∈ −intP (x).

Then the solution set S1 of MVVLIP is nonempty and compact.
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Proof. For all y ∈ K, define Γ : K → 2K as

Γ(y) = {x ∈ K : ⟨T (x), η(y, x)⟩+ f(y, x) ̸∈ −intP (x)}.

By the same argument as in the proof of Theorem 3.2, it is easy to see that clKΓ,
satisfies all the conditions of Lemma 2.9, hence

∩
x∈K

clKΓ(x) ̸= ∅. Since S1 =∩
x∈K

Γ(x), condition (ii) implies that S1 is nonempty and again by conditions (ii)

and (iii), S1 is compact. �

Remark. Condition (ii) of Theorem 3.4 holds when f(y, .) is continuous and the
mapping W (x) = Y \(−intP (x)) is closed.

Example 3.5. Let X=Y=R, K = [0, 1], and P (x)=[0,∞), for all x ∈ K. Also
η(y, x) = y−x, for all x, y ∈ K and f(y, x) = y−x, for all x, y ∈ K. Let us define
T : K → L(X,Y ) = R by

T (x) =

 1, if x rational,

0, if x irrational.

It is easy to see that T is Px-η-upper sign continuous with respect to f (note that
T is a non-negative mapping and f is continuous) while T is not upper semicon-
tinuous (if x is an irrational number and {xn} is a sequence of rational numbers
in [0,1], then the relation lim supT (xn) ≤ T (x) does not hold). For all y ∈ K we
have

{x ∈ K : ⟨T (x), η(y, x) + f(y, x) ̸∈ −intP (x)} = [0, y]

is closed and convex. Then T satisfies all the conditions of Theorem 3.4 and so the
solution set of MVVLIP is nonempty and compact. We claim that the solution set
of MVVLIP is the singleton set {0}.
If x is a rational number belongs to [0,1] and a solution, then the following relation
does not hold.

⟨Tx, η(y, x)⟩+ f(y, x) = f(y, x) = y − x ̸∈ −intP (x), ∀y ∈ K = [0, 1].

Similarly, if x ∈]0, 1] is a rational number then the previous relation also does not
hold. Finally, if x = 0, then

⟨Tx, η(y, x)⟩+ f(y, x) = 2y ̸∈ −intP (x), for all y ∈ K = [0, 1] holds.

Similarly, we can easily see that the solution set of MMVVLIP is the singleton set
{0}.

Acknowledgments. The authors would like to thank the anonymous referee for
his/her comments that helped us improve this article.

References

[1] T.Dobrowolski, Fixed-point theorem for convex-valued mappings, Preprint (2005).
[2] K.Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266(1984),

519–537.
[3] Y.P.Fang and N.J.Huang, The vector F -complementarity problems with demipseudomono-

tone mappings in Banach spaces, Appl. Math. Lett. 16(2003), 1019–1024.

[4] A.P. Farajzadeh, A. Amini-Harandi and K.R. Kazmi, Existence of solutions to generalized
vector variational-like inequalities, J. Optim. Theory Appl. 146 (2010), 95–104.



MIXED VECTOR VARIATIONAL-LIKE INEQUALITIES 109

[5] F.Giannessi, Theorems of alternative, quadratic programs and complementarity problems,

In: Cottle, R.W., Giannessi, F. and Lions J.L. (Eds.),Variational Inequalities and Comple-
mentarity Problems, John Wiley and Sons, New York, pp. 151–186, 1980.

[6] F.Giannessi, Vector Variational Inequalities and Vector Equilibrium, Kluwer Academic
Press, 1999.

[7] N.Hadjisavvas, Continuity and maximality properties of pseudomonotone operators, J. Con-
vex Anal. 10(2003), 459–469.

[8] N.J.Huang and Y.P.Fang, Strong vector F -complementary problem and least element prob-
lem of feasible set, Nonlin. Anal. 61(2005), 901–918.

[9] I.V.Konnov and J.C.Yao, On the generalized variational inequality problem, J. Math. Anal.
Appl. 206(1997), 42–58.

[10] K.L.Lin, D.P.Yang and J.C.Yao, Generalized vector variational inequalities, J. Optim. The-
ory Appl. 92(1997), 117–126.
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