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EXISTENCE OF SOLUTIONS OF MIXED VECTOR
VARIATIONAL-LIKE INEQUALITIES

(COMMUNICATED BY NASEER SHAHZAD)

SUHEL AHMAD KHAN, FARHAT SUHEL

ABSTRACT. In this paper, we consider mixed vector variational-like inequality
problems in the setting of topological vector spaces. We extend the concept
of upper sign continuity for vector-valued mappings. Further, by exploiting
KKM-Fan lemma, we establish some existence results for solutions of mixed
vector variational-like inequality problems and show that the solution sets of
these problems are compact.

1. INTRODUCTION

Variational inequalities were introduced and studied by Stampacchia [11] in early
sixties. It has been shown that a wide class of linear and nonlinear problems aris-
ing in various branches of mathematical and engineering sciences can be studied in
the unified and general framework of variational inequalities. Variational inequali-
ties have been generalized and extended in several directions using new techniques.
As a useful and important branch of variational inequality theory, vector varia-
tional inequalities were initially introduced and studied by Giannessi [5] in a finite-
dimensional Euclidean space in 1980. Since then it becomes a powerful tool in the
study of vector optimization and traffic equilibrium problems; (see Refs.[6, 9, 10].
Due to its wide range of applications, the vector variational inequality has been
generalized in different directions and the existence results and algorithms for a
number of classes of vector variational inequality problems have been established
under various conditions; For details, we refer to [3, 4, 5, 6, 8, 10, 12, 13, 14] and
references therein.

Recently, Fang and Huang [3, 8] considered generalized vector variational in-
equality problems for a fixed cone. They provided the existence of solutions of
these problems under different kinds of pseudomonotonicity and hemicontinuity
conditions. They have also provided applications of these problems to vector f-
complementarity problems.
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Inspired and motivated by the recent research activities going on in this direction,
we introduce the concept of P,-n-upper sign continuity which extend the previous
concept of upper sign continuity introduced by Hadjisavvas [7] and considered two
classes of generalized vector variational-like inequalities. We investigate the solv-
ability of vector variational-like inequalities by means of the KKM-Fan lemma under
P,-n-upper sign continuity with or without pseudomonotonicity assumptions. The
results presented in this paper generalize the results given in [3, 4, 7, 8, 13] and
enrich the theory of the vector variational inequality.

2. PRELIMINARIES

Let X and Y be two topological vector spaces, K C X be a nonempty and
convex subset of X. Let P C Y be a closed convex and pointed cone with apex
at the origin and let P : K — 2¥ be a set-valued mapping such that for each
x € K, P(z) is a proper, closed, convex cone with int P(z) # (), where int P(x)
denotes the interior of P(z). Let L(X,Y’) denote the space of all continuous linear
mappings from X into Y and (¢, z) the evaluation of ¢t € L(X,Y) at € X. Let
fiKxK—=Y and n: K x K — X be two bi-mappings.

We consider the following mized vector variational-like inequality problem (in
short, MVVLIP): Find z € K such that

(Tx,n(y,z)) + f(y,z) € —int P(z), Vy € K. (2.1)

The set of solutions of MVVLIP is denoted by Sj.

Another problem which is closely related to MVVLIP is the following Minty-type
mized vector variational-like inequality problem (in short, MMVVLIP): Find x € K
such that

(Ty,n(y,x)) + fy,x) ¢ —int P(z), Vy € K. (2.2)
We denote the set of solutions of MMVVLIP by Ss.

Throughout the paper, unless otherwise specified, let P_ = (| P(z) is a proper,
zeEK
closed, solid and convex cone in Y. Now, we recall the following concepts and results

which are needed in the sequel.

Definition 2.1. A mapping f: K — Y 1is said to be

() P -conver, if f(tz+(1-t)y) <p_ t£(x)+(1—1)f(3), Yoy € K, t € [0,1];
(ii) P_-concave, if —f is P_-convex.

Definition 2.2. A mapping T : K — L(X,Y) is said to be n-hemicontinuous, if
for any x,y € K, the mapping t — (T(x + t(y — z)),n(y, z)) is continuous at 0F.

Definition 2.3. A mapping T : K — L(X,Y) is said to be P,-n-pseudomonotone
with respect to f, if for any x € K

(Tx,n(y, ) + fly,x) & —int P(x) = (Ty,n(y,x)) + f(y,x) € —int P(x), Yy € K.

Example 2.4. Let X=R, K=R,, Y=R? P(z)=R%, n(y,z) = y — z, for all
z,y € K and

T(:L‘):< 1.5+Osi” ) and f(y,x)z( z:i ) Va,y € K.
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Now

(T n(y,z)) + [(y.2) =< (2.5 + stn ) (y — @) ) ¢ —int P(x),

we have y > x. It follows that

(Ty,n(y,z)) + f(y, ) :< (25 +Sli’n_yf§(y 2 ) ¢ —int P(z).

So, T' is Py-n-pseudomonotone with respect to f.

Definition 2.5. A mapping T : K — L(X,Y) is said to be P,-n-upper sign con-
tinuous with respect to f, if for any x,y € K and t €]0,1]

(T(x+t(y — ), n(y, x)) + fy, x) ¢ —int P(z), vt €]0,1]
= (Tz,n(y, =) + f(y,x) & —int P(x).

Remark.

(i) It is remarked that the concept of upper sign continuity for set-valued vector
valued mappings is extended and used in proving the existence of solutions
to some generalized classes of vector variational-like Inequalities ; See for
details [4].

(ii) For f = 0, it is easy to see that the n-hemicontinuity of T implies P,-
n-upper sign continuity of T. If X=Y =R, K=P(z)=[0,00) and f = 0,
n(y,z)=y — x, for all x,y € K, then any positive mapping T : K —
L(X,Y) = R is P,-n-upper sign continuous while it is not hemicontin-
wous. In this case, the concept of P,-n-upper sign continuity reduces to
upper sign continuity introduced by Hadjisavvas [7].

Definition 2.6. [14]. Let K be a nonempty subset of a topological space X. A
set-valued mapping I : K — 2% is said to be transfer closed-valued on K, if for all
x € K,y & I'(x) implies that there exists a point ' € K such that y & clxT(z'),
where clgT'(x) denotes the closure of I'(x) C K. It is clear that this definition is

equivalent to:
ﬂ cdgl(x) = ﬂ ().
zeK zeK

Definition 2.7. Let X and Y be two topological vector spaces. A set-valued map-
ping T : X — 2Y is said to be:
(i) upper semi-continuous at x € X, if for each open set V containing T(x),
there is an open set U containing x such that for oll t € U, T(t) € V and
T is said to be upper semi-continuous on X, if it is upper semi-continuous
at every point x € X;
(ii) closed, if the graph G, (T) ={(z,y) e X xY :z € X, yeT(x)} of T is a
closed set;
(iii) compact, if the closure of range T, that is, cIT(X) is compact, where
TX)= U T(z).
zeX
Definition 2.8. Let Ky be a nonempty subset of K. A set-valued mapping T" :

Ko — 25 s said to be a KKM mapping, if coA C |J T'(z) for very finite subset A
T€EA
of Ky, where co denotes the convex hull.
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Lemma 2.9. [3]. Let K be a nonempty subset of a topological vector space X and
I': K — 2% be a KKM mapping with closed values. Assume that there exist a
nonempty compact convex subset D C K such that B = () T'(z) is compact. Then

N T() £ 0. =

zeK
3. EXISTENCE OF SOLUTIONS OF MVVLIP

In order to establish existence results for the solutions of MVVLIP, we prove the
following lemma.

Lemma 3.1. Let K C X be a nonempty and convex subset of X. Let f: K x K —
Y andn: K x K — X be two bi-mappings. Suppose following conditions hold:
(i) f: Kx K =Y is P_-convez in first argument with the condition f(x,x) =
0, Vx € K;
(ii) n: K x K — X is an affine mapping in first argument with the condition
n(z,xz) =0, Vo € K;
(iii) T : K — L(X,Y) is Py-n-upper sign continuous and P,-n-pseudomonotone
mapping with respect to f.
Then, the solution sets of MV VLIP and MMVVLIP are equivalent.

Proof. By P,-n-pseudomonotonicity of T' with respect to f, every solution of MVVLIP
is a solution of MMVLIP.

Conversely, let z € K be the solution of MMVVLIP. For any given y € K, we
know that y, = ty + (1 —t)xz € K, Vt €]0,1], as K is convex. Since z € K is a
solution of MMVVLIP, so for each z € K, it follows that

(Tye, n(ys ) + f(ye, x) ¢ —int P(x). (3.1)
Since f is P_-convex in first argument and f(z,z) = 0, Vo € K, therefore
flyr, ) <p_ tf(y,z) + (1 —t)f(z,x) =tf(y,x). (3.2)

From assumption (ii) on 7, we have
(Tye, n(ye, x)) = (Tye,n(ty + (1 = )z, )).
= t(Tys, n(y,x)) + (1 = )(Tys, n(x, x))
= t{Tye,n(y, ). (3.3)
From inclusions (3.1)-(3.3), we have
t{Tys,n(y,z)) + tf(y,x) & —int P(x).
Since Y\{—int P(z)} is closed, therefore V¢ €]0, 1], we have
(Tye,n(y, x)) + f(y, ) ¢ —int P(x).
From P,-n-upper sign continuity of T" with respect to f, we get
(Tx,n(y,x)) + fly,z) & —int P(z), Yy € K.
Therefore, x € K is solution of MVVLIP. This completes the proof. (]

We now establish an existence result for MVVLIP under P,-n-upper sign conti-
nuity.

Theorem 3.2. Let K C X be a nonempty and convex subset of X. Let f : KxK —
Y andn: K x K — X be two bi-mappings. Suppose following conditions hold:
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(i) f: KxK —Y is P_-convex in first argument with the condition f(x,x) =
0, Vx € K;

(ii) n: K x K — X is an affine mapping in first argument with the condition
n(z,z) =0, Vo € K;

(i) The set-valued mapping y +— {z € K : (Ty,n(y,z)) + f(y,x) &€ —int P(z)}
is transfer closed-valued on K ;

(iv) T : K — L(X,Y) is Py-n-upper sign continuous and P,-n-pseudomonotone
mapping with respect to f.

(v) There exist compact subset B C K and compact convex subset D C K such
that Vo € K\B,3 y € D such that (Ty,n(y,x)) + f(y,x) € —int P(x).

Then, the solution set Sy of MVVLIP is nonempty and compact.
Proof. Define a set-valued mapping I' : K — 2K as follows:
I'(y) ={z € K: (Ty.n(y,x)) + f(y,x) € —int P()}, Vy € K.

We claim that I' is a KKM mapping. If this is not true, then there exist a finite set
{y1, .-, yn} C K and z € co({y1, ..., yn}) such that z & |J I'(y;). Then
i=1

<T(yl)’n(yl72)> + f(ylaz) € —int P(Z)a 1= ]-7 w0

Since T is P,-n-pseudomonotone with respect to f, we have

(Tz,n(yi,2)) + flys,2) € —int P(2), i =1,...,n. (3.4)
n
For each i = 1,...,n, let ¢; €]0, 1] with > ¢; = 1. Multiplying inclusion (3.4) by ¢;
i=1
and summing, we obtain
i=1 i=1

From assumptions (i) and (ii), inclusion (3.5) becomes
(Tz,n(D>_tiyin2) + O tiysr 2) € —int P(2),
i=1 i=1

and thus, 0 = (T'z,n(z, 2)) + f(z, 2) € —int P(z), which leads a contradiction to our
assumption that P(z) # Y. Thus our claim is verified. So I' is a KKM mapping.

From the assumption (v),
clx( ﬂ I'(y)) € B.
yeD

Consequently, set-valued mapping cll' : K — 2K satisfies all the conditions of
Lemma 2.9 and so

() T(x) # 0.
reK
By condition (iii), we get

S1 = m cl(z) = ﬂ I(x),

zeK zeK
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which implies that the solution set Sy of MMV VLIP is nonempty. Moreover, since
T is P,-n-upper sign continuous with respect to f and f(.,y) is P_-convex, by using
Lemma 3.1, we get

Si= (T = ({o € K : (Ta,n(y.2)) + f(y, ) ¢ —int P(x)}.

yeK yeK
This and conditions (iii) and (v) imply that the solution set of MVVLIP is a
nonempty and compact set of B. This completes the proof. (I

Example 3.3. Let X =R, K=[0,1], Y =R? and P(z)=P={(u,v) € R? : u > 0,v >
0} for all x € K, be a fized closed conver cone in Y. Let us define T(x)(t) =
(T(x),t) = t(z,2?), n(y,x) =y —x, Vo,y € K and f =0, for all x € K and
te X. Then, f is P_-conver and T is P,-n-pseudomonotone and P,-n-upper sign
continuous with respect to f and (T(x),n(y,x)) + f(y,z) = (y — x)(x,2%) = ((y —
x)x, (y—x)a?). It is easy to see that the set {x € K : (T'(y),n(y,x) € —int P(z)} =
[0,y] is closed and so the mapping y — {z € K : (T(y),n(y,x)) € —int P(x)} is
transfer closed valued on K. Since K is compact, condition (v) of Theorem 3.2
trivially holds. Therefore, T satisfies all the assumptions of Theorem 3.2 and so
the solution set of MVVLIP is nonempty and compact. It is clear that only x =0
satisfies the following relation

Similarly, only x = 0 satisfies the following relation

(T(y),n(y,x)) & —int P(x), Vy € K.

Hence the solution sets of MVVLIP and MMV VLIP are equal to the singleton set
{0}.

Remark.

(a) If X is a real reflexive Banach space and K is a nonempty, bounded, closed
and conver subset of X, then K is weakly compact. In this case, condition
(v) of Theorem 3.2 can be removed.

(b) It is obvious that if f(y,.) is continuous and the set-valued mapping W (z) =
Y\(—int P(z)) for all x € K, is closed, then condition (iii) of Theorem 3.2
trivially holds.

Now we prove the existence of a solutions of MVVLIP without any kind of
pseudomonotonicty assumption.

Theorem 3.4. Let K, X, Y and P be the same as in Theorem 3.2 and let f :
KxK—=Y andn: Kx K — X are two bi-mappings with the conditions f(x,xz) =
0, n(z,r) =0, Vo € K. Assume that the set-valued mapping T : K — 2K satisfies
the following conditions:
(i) for ally € K, the set {v € K : (Tz,n(y,x)) + f(y,x) € —intP(z)} is
P_-conver;
(ii) The set-valued mapping y — {x € K : (Tz,n(y,z)) + f(y,z) € —int P(x)}
1s transfer closed-valued on K ;
(iii) There exist compact subset B C K and compact convex subset D C K such

that Vo € K\B,3 y € D such that {Tz,n(y,z)) + f(y,z) € —int P(x).
Then the solution set S1 of MVVLIP is nonempty and compact.
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Proof. For all y € K, define I' : K — 25 as
I'(y) ={z € K+ (T(2),n(y,2)) + f(y, %) ¢ —int P(x)}.

By the same argument as in the proof of Theorem 3.2, it is easy to see that clxT,

satisfies all the conditions of Lemma 2.9, hence () clg['(z) # 0. Since S; =
reK

() T'(x), condition (ii) implies that S; is nonempty and again by conditions (ii)

zeK

and (iii), Sy is compact. O

Remark. Condition (i) of Theorem 3.4 holds when f(y,.) is continuous and the
mapping W (z) = Y\(—int P(x)) is closed.

Example 3.5. Let X=Y =R, K = [0,1], and P(z)=[0,00), for all x € K. Also
n(y,z) =y—u, forallxz,y € K and f(y,x) =y —x, for allz,y € K. Let us define
T:K— L(X,Y)=R by

1, if z rational,
T(x) =
0, if x irrational.

It is easy to see that T is P,-n-upper sign continuous with respect to f (note that
T is a non-negative mapping and f is continuous) while T is not upper semicon-
tinuous (if x s an rrational number and {x,} is a sequence of rational numbers
in [0,1], then the relation lim supT(x,) < T(x) does not hold). For ally € K we
have

{e e K:(T(x),n(y,x) + f(y, ) ¢ —int P(x)} = [0, ]

is closed and convex. Then T satisfies all the conditions of Theorem 3.4 and so the
solution set of MVVLIP is nonempty and compact. We claim that the solution set
of MVVLIP is the singleton set {0}.

If x is a rational number belongs to [0,1] and a solution, then the following relation
does not hold.

(Tx,n(y,x)) + f(y,2) = fly,x) =y —x & —int P(x), Yy € K =[0,1].

Similarly, if © €]0,1] is a rational number then the previous relation also does not
hold. Finally, if © = 0, then

(Tx,n(y,x)) + f(y,x) = 2y € —int P(z), for all y € K = [0, 1] holds.
Similarly, we can easily see that the solution set of MMV VLIP is the singleton set

{0}.
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