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A COMMON FIXED POINT OF ISHIKAWA ITERATION WITH

ERRORS FOR TWO QUASI-NONEXPANSIVE MULTI-VALUED

MAPS IN BANACH SPACES

(COMMUNICATED BY TAKEAKI YAMAZAKI)

WATCHARAPORN CHOLAMJIAK, SUTHEP SUANTAI

Abstract. In this paper, we introduce a new two-step iterative scheme with

errors for finding a common fixed points of two quasi-nonexpansive multi-
valued maps in Banach spaces. We prove a strong convergence theorem of the
purposed algorithm under some control conditions. The results obtained in
this paper improve and extend the corresponding one announced by Shahzad

and Zegeye [N. Shahzad, H. Zegeye, On Mann and Ishikawa iteration schemes
for multi-valued maps in Banach spaces, Nonlinear Analysis 71 (2009) 838-
844.].

1. Introduction

Let D be a nonempty convex subset of a Banach space E. The set D is called
proximinal if for each x ∈ E, there exists an element y ∈ D such that ∥x − y∥ =
d(x,D), where d(x,D) = inf{∥x−z∥ : z ∈ D}. Let CB(D),K(D) and P (D) denote
the families of nonempty closed bounded subsets, nonempty compact subsets, and
nonempty proximinal bounded subsets of D, respectively. The Hausdorff metric on
CB(D) is defined by

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
for A,B ∈ CB(D). A single-valued map T : D → D is called nonexpansive if
∥Tx − Ty∥ ≤ ∥x − y∥ for all x, y ∈ D. A multi-valued map T : D → CB(D)
is said to be nonexpansive if H(Tx, Ty) ≤ ∥x − y∥ for all x, y ∈ D. An element
p ∈ D is called a fixed point of T : D → D (respectively, T : D → CB(D)) if
p = Tp (respectively, p ∈ Tp). The set of fixed points of T is denoted by F (T ).
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The mapping T : D → CB(D) is called
(i) quasi-nonexpansive[13] if F (T ) ̸= ∅ and H(Tx, Tp) ≤ ∥x− p∥ for all x ∈ D and
all p ∈ F (T );
(ii) L-Lipschitzian if there exists a constant L > 0 such that H(Tx, Ty) ≤ L∥x−y∥
for all x, y ∈ D;
(iii) hemicompact if, for any sequence {xn} in D such that d(xn, Txn) → 0 as
n → ∞, there exists a subsequence {xnk

} of {xn} such that xnk
→ p ∈ D. We

note that if D is compact, then every multi-valued mapping T : D → CB(D) is
hemicompact.

It is clear that every nonexpansive multi-valued map T with F (T ) ̸= ∅ is quasi-
nonexpansive. But there exist quasi-nonexpansive mappings that are not nonex-
pansive, see [12]. It is known that if T is a quasi-nonexpansive multi-valued map,
then F (T ) is closed.

A multi-valued map T : D → CB(D) is said to satisfy Condition (I) if there is a
nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0 for r ∈ (0,∞)
such that d(x, Tx) ≥ f(d(x, F (T ))) for all x ∈ D.

Two multi-valued maps S, T : D → CB(D) are said to satisfy Condition (II)
if there is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0
for r ∈ (0,∞) such that either d(x, Sx) ≥ f(d(x, F (S) ∩ F (T ))) or d(x, Tx) ≥
f(d(x, F (S) ∩ F (T ))) for all x ∈ D.

In 1953, Mann [6] introduced the following iterative procedure to approximate
a fixed point of a nonexpansive mapping T in a Hilbert space H:

xn+1 = αnxn + (1− αn)Txn, ∀n ∈ N, (1.1)

where the initial point x0 is taken in C arbitrarily and {αn} is a sequence in [0,1].
However, we note that Mann’s iteration process (1.1) has only weak convergence,

in general; for instance, see [1, 3, 9].
In 2005, Sastry and Babu [10] proved that the Mann and Ishikawa iteration

schemes for multi-valued map T with a fixed point p converge to a fixed point q
of T under certain conditions. They also claimed that the fixed point q may be
different from p. More precisely, they proved the following result for nonexpansive
multi-valued map with compact domain.

In 2007, Panyanak [8] extended the above result of Sastry and Babu [10] to
uniformly convex Banach spaces but the domain of T remains compact.

Later, Song and Wang [14] noted that there was a gap in the proofs of Theorem
3.1(see [8]) and Theorem 5 (see [12]). They further solved/revised the gap and also
gave the affirmative answer to Panyanak [8] question using the following Ishikawa
iteration scheme. In the main results, domain of T is still compact, which is a strong
condition (see [14], Theorem 1) and T satisfies condition(I) (see [14], Theorem 1).

In 2009, Shahzad and Zegeye [10] extended and improved the results of Panyanak
[8], Sastry and Babu [12] and Song and Wang [14] to quasi-nonexpansive multi-
valued maps. They also relaxed compactness of the domain of T and constructed
an iteration scheme which removes the restriction of T namely Tp = {p} for any
p ∈ F (T ). The results provided an affirmative answer to Panyanak [8] question in
a more general setting. They introduced a new iteration as follows:
Let D be a nonempty convex subset of a Banach space E and αn, α

′
n ∈ [0, 1]. The
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sequence of Ishikawa iterates is defined by x0 ∈ D,

yn = α′
nz

′
n + (1− α′

n)xn, n ≥ 0,

xn+1 = αnzn + (1− αn)xn, n ≥ 0,

where T is a quasi-nonexpansive multi-valued map, z′n ∈ Txn and zn ∈ Tyn.
Since 2003, the iterative schemes with errors for a single-valued map in Banach

spaces have been studied by many authors, see [2, 4, 5, 7].
Question: How can we modify Mann and Ishikawa iterative schemes with errors

to obtain convergence theorems for finding a common fixed point of two multi-
valued nonexpansive maps ?

Motivated by Shahzad and Zegeye [12], we purpose a new two-step iterative
scheme for two multi-valued quasi-nonexpansive maps in Banach spaces and prove
strong convergence theorems of the purposed iteration.

2. Main results

We use the following iteration scheme:
Let D be a nonempty convex subset of a Banach space E, αn, βn, α

′
n, β

′
n ∈ [0, 1]

and {un}, {vn} are bounded sequences in D.
Let T1, T2 be two quasi-nonexpansive multi-valued maps from D into CB(D). Let
{xn} be the sequence defined by x0 ∈ D,

yn = α′
nz

′
n + β′

nxn + (1− α′
n − β′

n)un, n ≥ 0,

xn+1 = αnzn + βnxn + (1− αn − βn)vn, n ≥ 0, (2.1)

where z′n ∈ T1xn and zn ∈ T2yn;

We shall make use of the following results.

Lemma 2.1. [15] Let {sn}, {tn} be two nonnegative sequences satisfying

sn+1 ≤ sn + tn, ∀n ≥ 1.

If
∑∞

n=1 tn < ∞ then limn→∞ sn exists.

Lemma 2.2. [11] Suppose that E is a uniformly convex Banach space and 0 <
p ≤ tn ≤ q < 1 for all positive integers n. Also suppose that {xn} and {yn} are
two sequences of E such that lim supn→∞ ∥xn∥ ≤ r, lim supn→∞ ∥yn∥ ≤ r and
limn→∞ ∥tnxn+(1− tn)yn∥ = r hold for some r ≥ 0. Then limn→∞ ∥xn−yn∥ = 0.

Theorem 2.3. Let E be a uniformly convex Banach space, D a nonempty, closed
and convex subset of E. Let T1 be a quasi-nonexpansive multi-valued map and T2 a
quasi-nonexpansive and L-Lipschitzian multi-valued map from D into CB(D) with
F (T1) ∩ F (T2) ̸= ∅ and T1p = {p} = T2p for all p ∈ F (T1) ∩ F (T2). Assume that
(i) {T1, T2} satisfies condition (II);
(ii)

∑∞
n=1(1− αn − βn) < ∞ and

∑∞
n=1(1− α′

n − β′
n) < ∞;

(iii) 0 < ℓ ≤ αn, α
′
n ≤ k < 1.

Then the sequence {xn} generated by (2.1) converges strongly to an element of
F (T1) ∩ F (T2).

Proof. We split the proof into three steps.
Step 1. Show that limn→∞ ∥xn − p∥ exists for all p ∈ F (T1) ∩ F (T2).
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Let p ∈ F (T1) ∩ F (T2). Since un, vn are bounded, therefore exists M > 0 such
that max{supn∈N ∥un − p∥, supn∈N ∥vn − p∥} ≤ M . Then

∥yn − p∥ ≤ α′
n∥z′n − p∥+ β′

n∥xn − p∥+ (1− α′
n − β′

n)∥un − p∥
≤ α′

nd(z
′
n, T1p) + β′

n∥xn − p∥+ (1− α′
n − β′

n)M

≤ α′
nH(T1xn, T1p) + β′

n∥xn − p∥+ (1− α′
n − β′

n)M

≤ (α′
n + β′

n)∥xn − p∥+ (1− α′
n − β′

n)M

≤ ∥xn − p∥+ (1− α′
n − β′

n)M. (2.2)

It follows that

∥xn+1 − p∥ ≤ αn∥zn − p∥+ βn∥xn − p∥+ (1− αn − βn)∥vn − p∥
= αnd(zn, T2p) + βn∥xn − p∥+ (1− αn − βn)M

≤ αnH(T2yn, T2p) + βn∥xn − p∥+ (1− αn − βn)M

≤ αn∥yn − p∥+ βn∥xn − p∥+ (1− αn − βn)M

≤ αn

(
∥xn − p∥+ (1− α′

n − β′
n)M

)
+ βn∥xn − p∥

+ (1− αn − βn)M

= (αn + βn)∥xn − p∥+
(
αn(1− α′

n − β′
n) + (1− αn − βn)

)
M

≤ ∥xn − p∥+
(
αn(1− α′

n − β′
n) + (1− αn − βn)

)
M

= ∥xn − p∥+ εn, (2.3)

where εn =
(
αn(1−α′

n−β′
n)+(1−αn−βn)

)
M . By (ii), we have εn → 0 as n → ∞.

Thus by Lemma 2.1, we have limn→∞ ∥xn − p∥ exists for all p ∈ F (T1) ∩ F (T2).
Step 2. Show that limn→∞ ∥zn − xn∥ = 0 = limn→∞ ∥z′n − xn∥.
Let p ∈ F (T1) ∩ F (T2). By Step 1, there is a real number c > 0 such that

limn→∞ ∥xn − p∥ = c. Let S = max{supn∈N ∥vn − yn∥, supn∈N ∥un − xn∥}. From
2.2, we get

lim sup
n→∞

∥yn − p∥ ≤ c. (2.4)

Next, we consider

∥zn − p+ (1− αn − βn)(vn − xn)∥ ≤ ∥zn − p∥+ (1− αn − βn)∥vn − xn∥
≤ d(zn, T2p) + (1− αn − βn)S

≤ H(T2yn, T2p) + (1− αn − βn)S

≤ ∥yn − p∥+ (1− αn − βn)S

It follows that

lim sup
n→∞

∥zn − p+ (1− αn − βn)(vn − xn)∥ ≤ c.

Also

∥xn − p+ (1− αn − βn)(vn − xn)∥ ≤ ∥xn − p∥+ (1− αn − βn)∥vn − xn∥
≤ ∥xn − p∥+ (1− αn − βn)S

which implies that

lim sup
n→∞

∥xn − p+ (1− αn − βn)(vn − xn)∥ ≤ c.
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Since

lim
n→∞

∥ αn

(
zn − p+ (1− αn − βn)(vn − xn)

)
+(1− αn)

(
xn − p+ (1− αn − βn)(vn − xn)

)
∥ = lim

n→∞
∥xn+1 − p∥ = c.

By Lemma 2.2, we obtain that

lim
n→∞

∥zn − xn∥ = 0. (2.5)

By the nonexpansiveness of T2, we have

∥xn − p∥ ≤ ∥xn − zn∥+ ∥zn − p∥
= ∥xn − zn∥+ d(zn, T2p)

≤ ∥xn − zn∥+H(T2yn, T2p)

≤ ∥xn − zn∥+ ∥yn − p∥

which implies

c ≤ lim inf
n→∞

∥yn − p∥ ≤ lim sup
n→∞

∥yn − p∥ ≤ c.

Hence limn→∞ ∥yn − p∥ = c. Since

yn − p = α′
n

(
z′n − p+ (1− α′

n − β′
n)(un − xn)

)
+ (1− α′

n)
(
xn − p+ (1− α′

n − β′
n)(un − xn)

)
,

we have

lim
n→∞

∥ α′
n

(
z′n − p+ (1− α′

n − β′
n)(un − xn)

)
+ (1− α′

n)
(
xn − p+ (1− α′

n − β′
n)(un − xn)

)
∥ = c.

Moreover, we get

∥z′n − p+ (1− α′
n − β′

n)(un − xn)∥ ≤ ∥z′n − p∥+ (1− α′
n − β′

n)∥un − xn∥
≤ d(z′n, T1p) + (1− α′

n − β′
n)S

≤ H(T1xn, T1p) + (1− α′
n − β′

n)S

≤ ∥xn − p∥+ (1− α′
n − β′

n)S.

This yields that

lim sup
n→∞

∥z′n − p+ (1− α′
n − β′

n)(un − xn)∥ ≤ c.

Also

∥xn − p+ (1− α′
n − β′

n)(un − xn)∥ ≤ ∥xn − p∥+ (1− α′
n − β′

n)∥un − xn∥
≤ ∥xn − p∥+ (1− α′

n − β′
n)S.

This implies that

lim sup
n→∞

∥xn − p+ (1− α′
n − β′

n)(un − xn)∥ ≤ c.

Again by Lemma 2.2, we have

lim
n→∞

∥z′n − xn∥ = 0. (2.6)

Step 3. Show that {xn} converges strongly to q for some q ∈ F (T1) ∩ F (T2)
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From Step 2, we know that limn→∞ ∥zn − xn∥ = 0 = limn→∞ ∥z′n − xn∥. Also
d(xn, T1xn) ≤ ∥z′n − xn∥ → 0 as n → ∞. Since {xn}, {un} are bounded, so is
{un − z′n}. Now, let K = supn∈N ∥un − z′n∥. By assumption and (2.6), we get

∥yn − z′n∥ ≤ ∥α′
nz

′
n + β′

nxn + (1− α′
n − β′

n)un − z′n∥
≤ β′

n∥xn − z′n∥+ (1− α′
n − β′

n)∥un − z′n∥
≤ β′

n∥xn − z′n∥+ (1− α′
n − β′

n)K

→ 0 (2.7)

as n → ∞. It follows from (2.6) and (2.7) that

∥yn − xn∥ ≤ ∥yn − z′n∥+ ∥z′n − xn∥
→ 0 (2.8)

as n → ∞. It follows from (2.5) and (2.8) that

d(xn, T2xn) ≤ d(xn, T2yn) +H(T2yn, T2xn)

≤ ∥xn − zn∥+ L∥yn − xn∥
→ 0.

Since that T1, T2 satisfy the condition (II), we have d(xn, F (T1)∩F (T2)) → 0. Thus
there is a subsequence {xnk

} of {xn} and a sequence {pk} ⊂ F (T1) ∩ F (T2) such
that

∥xnk
− pk∥ <

1

2k
(2.9)

for all k. From (2.3), we obtain

∥xnk+1
− p∥ ≤ ∥xnk+1−1 − p∥+ εnk+1−1

≤ ∥xnk+1−2 − p∥+ εnk+1−2 + εnk+1−1

...

≤ ∥xnk
− p∥+

nk+1−nk−1∑
i=0

εnk+i

for all p ∈ F (T1) ∩ F (T2). This implies that

∥xnk+1
− pk∥ ≤ ∥xnk

− pk∥+
nk+1−nk−1∑

i=0

εnk+i <
1

2k
+

nk+1−nk−1∑
i=0

εnk+i.

Next, we shall show that {pk} is Cauchy sequence in D. Notice that

∥pk+1 − pk∥ ≤ ∥pk+1 − xnk+1
∥+ ∥xnk+1

− pk∥

<
1

2k+1
+

1

2k
+

nk+1−nk−1∑
i=0

εnk+i

<
1

2k−1
+

nk+1−nk−1∑
i=0

εnk+i.

This implies that {pk} is Cauchy sequence in D and thus converges to q ∈ D. Since

d(pk, Tiq) ≤ H(Tiq, Tipk) ≤ ∥q − pk∥
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for all i = 1, 2 and pk → q as n → ∞, it follows that d(q, Tiq) = 0 for all i = 1, 2
and thus q ∈ F (T1) ∩ F (T2). It implies by (2.9) that {xnk

} converges strongly to
q. Since limn→∞ ∥xn − q∥ exists, it follows that {xn} converges strongly to q. This
completes the proof. �

For T1 = T2 = T and αn + βn = 1 = α′
n + β′

n in Theorem 2.3, we obtain the
following result.

Theorem 2.4. (See [12], Theorem 2.3) Let E be a uniformly convex Banach space,
D a nonempty, closed and convex subset of E, and T : D → CB(D) a quasi-
nonexpansive multi-valued map with F (T ) ̸= ∅ and Tp = {p} for each p ∈ F (T ).
Let {xn} be the Ishikawa iterates defined by (A). Assume that T satisfies condition
(I) and αn, α

′
n ∈ [a, b] ⊂ (0, 1). Then {xn} converges strongly to a fixed point of T .

The main result of this paper holds true under the assumption that Tp = {p}
for all p ∈ F (T ). This condition was introduced by Shahzad and Zegeye [12]. The
following examples give an example of a nonexpansive multi-valued map T which
satisfies the property that Tp = {p} for all p ∈ F (T ) and Tx is not a singleton for
all x /∈ F (T ).

Example 1. Consider D = [0, 1] × [0, 1] with the usual norm. Define T : D →
CB(D) by

T (x, y) =


{(x, 0)}, x ̸= 0, y = 0
{(0, y)}, x = 0, y ̸= 0
{(x, 0), (0, y)}, x, y ̸= 0
{(0, 0)}, x, y = 0.

Example 2. Consider D = [0, 1] with the usual norm. Define T : D → CB(D)
by

Tx = [
x+ 1

2
, 1].

Example 3. Consider D = [0, 1] × [0, 1] with the usual norm. Define T : D →
CB(D) by

T (x, y) = {x} × [
y + 1

2
, 1].
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