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A SUBORDINATION THEOREM WITH APPLICATIONS TO
ANALYTIC FUNCTIONS

(COMMUNICATED BY DAVID KALAJ)

SUKHWINDER SINGH BILLING

ABSTRACT. In this paper, a subordination theorem is obtained and its appli-
cations to multivalent functions are discussed. It is shown that the results of
this paper extend and unify some known results regarding p-valently close-
to-convex functions. Some results for univalent close-to-convex functions are
obtained as special cases.

1. INTRODUCTION

Let A be the class of all functions f which are analytic in the open unit disk
E = {z : |z2|] < 1} and normalized by the conditions that f(0) = f’(0) —1 = 0.
Thus, f € A has the Taylor series expansion

f)=z+ Zakzk.
k=2

A function f is said to be univalent in a domain D in the extended complex plane C
if and only if it is analytic in D except for at most one simple pole and f(z1) # f(22)
for z1 # 22 (21,22 € D). In this case, the equation f(z) = w has at most one root
in D for any complex number w. Such functions map D conformally onto a domain
in the w-plane. Let S denote the class of all analytic univalent functions f defined
on the unit disk E which are normalized by the conditions f(0) = f'(0)—1=0. A
function f € A is said to be starlike in E if and only if
R (L) -0
f(2)

A function f € A is said to be close-to-convex in E if there is a starlike function g
(not necessarily normalized) such that

R(20) o0

2000 Mathematics Subject Classification. 30C80, 30C45.

Key words and phrases. Analytic function; p-valently close to convex function; Differential
subordination.

(©2010 Universiteti i Prishtinés, Prishtiné, Kosové.

Submitted July 19, 2010. Published February 27, 2011.

1



2 S. S. BILLING

It is well-known that every close-to-convex function is univalent. In 1934/35,
Noshiro [3] and Warchawski [] obtained a simple but interesting criterion for close-
to-convexity of analytic functions. They proved that if an analytic function f sat-
isfies the condition R(f’(z)) > 0 for all z in E, then f is close-to-convex and hence
univalent in E.

The function, for which the equation f(z) = w has p roots in D for every complex
number w, is said to be p-valent (or multivalent) function. Let A, denote the class
of functions of the form

fR)=2"+ Y az®, peN={1,2},
k=p+1

which are analytic and p-valent (or multivalent) in the open unit disk E. Note that
A = A. A function f € A, is said to be p-valently starlike in E if and only if

R(£0) o0 e

A function f € A, is said to be p-valently close-to-convex if there exists a p-valently
starlike function g € A, such that

3%(?&?) >0, z €E. (1.1)

For g(z) = 2P in condition (LI]), we have that f € A, is p-valently close-to-convex

if )
%<f(z)) >0, z € E.

zp—1

It is also well known that every p-valenty close-to-convex function is p-valent in E
0. For two analytic functions f and g in the unit disk E, we say that a function f is
subordinate to a function g in E and write f < g if there exists a Schwarz function
w analytic in E with w(0) = 0 and |w(z)| < 1,z € E such that f(z) = g(w(2)),z €
E. In case the function g is univalent, the above subordination is equivalent to
f(0) = g(0) and f(E) C g(E).

Let ¢ : C?> x E — C and let h be univalent in E. If p is analytic in E and satisfies
the differential subordination

U(p(2), 2p'(2); 2) < h(z), ¥(p(0),0;0) = h(0), (1.2)
then p is called a solution of the differential subordination (I2). The univalent
function ¢ is called a dominant of the differential subordination ([2) if p < ¢ for
all p satisfying (I2). A dominant ¢ that satisfies § < ¢ for all dominants ¢ of (I2),
is said to be the best dominant of (2]).

The main objective of this paper is to extend and unify some known results
regarding p-valently close-to-convex functions. For this purpose, a subordination
theorem is obtained and its applications to multivalent functions are discussed.
It is shown that the region of variability of some differential operators implying
p-valently close-to-convex functions is extended. To prove the main theorem, we
need the following lemma due to Miller and Mocanu.

Lemma 1.1. ([3, p.132, Theorem 3.4 h) Let q be univalent in E and let 6 and ¢
be analytic in a domain D containing q(E), with ¢(w) # 0, when w € q(E). Set

Q(z) = zd' (2)9la(2)], h(z) = 0[q(2)] + Q(2) and suppose that either

(i) h is convez, or
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(i) Q is starlike.

In addition, assume that
zh'(z)

R0

If p is analytic in B, with p(0) = ¢(0),p(E) C D and

>0, z € E.

0lp(2)] + 2p'(2)8lp(2)] < Ola(2)] + 2q'(z)8la(2)],
then p < q and q is the best dominant.

2. MAIN THEOREM

In what follows, all the powers taken, are the principle ones.

Theorem 2.1. Let o, 8,7 be complex numbers such that o # 0. Let q, q(z) # 0,
be a univalent function in E such that

(i) R [1 + 20 4 (y - 1)%;‘)} > 0 and

(ii) R [1 + 20 (y 1))y BB () +m} > 0.

If P, P(z) # 0,z € E, satisfies the differential subordination

(1—a)(P(2))f +a(P(2)) (p—i— Zﬁ;S)) < (1—=a)(q(2))? +a(q(2))" (p—|— Z;];S)> )
21)

then P(z) < q(z) and q is the best dominant.
Proof. Let us define the functions 6 and ¢ as follows:
O(w) = (1 — a)w® 4+ apw?,
and
d(w) = aw? L.

Obviously, the functions 6 and ¢ are analytic in domain D = C\ {0} and ¢(w) # 0
in . Now, define the functions @) and h as under:

Q(2) = 24/ (2)d(a(2)) = azq ()" (2) ,

and

zq’(Z)) _

) = a(2) + Q) = (1= )al))” +ala(a))” (p+ 225

Then in view of conditions (i) and (ii), we have
(1) @ is starlike in E and
@) 2 K (z)
Q(2)
Thus conditions (ii) and (iii) of Lemma [[T] are satisfied. In view of (21I), we have

0[P (2)] + 2P'(2)6[P(2)] < 6lq(2)] + 2¢'(2)dla(2)].

Therefore, the proof, now, follows from Lemma 11 O

>0, z€E.
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3. APPLICATIONS

Theorem 3.1. Let « be a non zero complex number. Let q, q(z) # 0, be a univalent
function in E such that

(5 5) s (5 )

/
If f € Ap, fp(z) #0,z € E, satisfies the differential subordination

1
f'(2) 2f"(2) 24 (2)
(l—a)zp_l—l—a 1+ 70 <(1—-a)gz)+alp+ ) , z €E,
/
then fp(_zl) =< q(2) and q is the best dominant.
z
!/
Proof. By setting 8 =1, v =0 and P(z) = fp(_zl) in Theorem [2.1] we obtain this
z
result. 0

Theorem 3.2. Let a be a non zero complex number. Let q, q(z) # 0, be a univalent
function in E such that

R (1+ 4 (2)) > max{O,% (a—l) —p}.
7 (2) o
If f € Ap, ]fz%i)l #£0,z € E, satisfies the differential subordination
oL L ()

pzP~t  pzpTl f'(z)

(1-

) < - +ag) (p+ L) s e
/)

then
pzP~!

=< q(z) and q is the best dominant.

!/
Proof. Select 8 =1, v =1and P(z) = % in Theorem 2T]to get this result. O
pz

Theorem 3.3. Let « be a non zero complex number. Let q, q(z) # 0, be a univalent
function in E such that

R <1 + Zs(g)> > max {o, R (@q(z)) - p} :

/
If fe A, /') # 0,z € E, satisfies the differential subordination

pzPt
a-a) (L5) + 2L8) (14 LB < - ) e (p+ L),
then ]j;()_)l =< q(z) and q is the best dominant.

/
Proof. Writing 8 = 2, v = 1 and P(z) = ];legi)l in Theorem 2] we get this

result. O
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p(1+2)
1—

2¢"(2)  z2q'(z) 1427

Remark 3.4. When we select the dominant q(z) = , 2z € E. Then

1 — =
TYE e 1
and hence ) (2
R1+— - >0, z € E.
q(z)  q(2)

We also have

2¢"(2)  2¢(2)  1-«a )_1+22 p(l—a)l+z

1 =
+ q(2) q(2) ! al 1—22 a 1-2
2
and therefore for 0 < a < P ,
2p —1
2¢"(z)  z2¢(z) 1-—«
|1+ - + q(z)| >0z €cE.
/G e a1
p(l+2) iy . ‘
Hence q(z) = T satisfies the conditions of Theorem [31] and we immediately
-z
get the following result.
2
Corollary 3.5. Let o be a real number such that 0 < a < 5 P T Let f €
p—
f'(2) , : : o
Ap, 1 # 0,z € E, satisfy the differential subordination
f'(z) 2f"(z) p(1+2) 2z 1\ _
(1—a)zp71+a 1+ 70 %(1—a)ﬁ+a p+1—z2 = F(z),
/
1
then fp(_zl) =< p(l + Z), z € E. Hence, f is p-valently close-to-convez.
z —z
In view of above corollary, we obtain the following result.
2
Corollary 3.6. Let a be a real number such that 0 < a < 5 P 1 Let f €
P —
f'(z) : : : —_
Ap, gy # 0,z € E, satisfy the differential subordination
f'(z) 2f"(2)
(1- )Zp71+a 1+ 7o) < F(z2),

where F' is a conformal mapping of the unit disk E with F(0) = p and

FE)=C\{weC:Rw=ap, |Su>ala+2(1-apl},
f'(2) _p(1+2)

=< and therefore, f is p-valently close-to-convex.
zp—1 1—2z
Remark 3.7. The result in Corollary extends the region of variability of the

! 1"
F'(z) +a (1 + 2 (2)> over the result of Patel and Cho

then

differential operator (1—a) po )
[3, Corollary 1] for implying p-valently close-to-convezity of f € A,. According to

/ "
the result of Corollary[30, the differential operator (1 — ) fp(i) +a (1 + Z}C/((j))
> z

can vary over the entire complex plane except two slits parallel to imaginary azis
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for the implication of p-valently close-to-convezity of f € A, whereas by the result
of Patel and Cho [3, Corollary 1], the same operator varies over the portion of
the complex plane right to the slits parallel to the imaginary axis. Thus our result
extends the result of Patel and Cho [3]. The above claim is shown below pictorially
in Figure 3.1. In a special case when oo = 1/2, p = 2, the image of the unit disk
E under function F (given in Corollary[F3) is the entire complex plane except two

5
slits <R z=1, |S 2| > g . This justify our claim.

Figure 3.1 (when o =1/2, p=2)

1+ 2

Remark 3.8. For the dominant q(z) = ——, z € E, we have
—z
1
1
14 2 (2 _ —i—z7
q'(2) 1—2

and hence

%[L+?é?]>&zeE

Therefore, from Theorem[TZ, we obtain the following result.

_1a
Corollary 3.9. Let o be a non zero complex number such that R (%) <p.
@
f'(z)
pzP~t
f'z)  af'(2) z2f"(z) 14z 20z
(l_a)pzp—l + o 1+ e <(1-a+ap)— +

1—2z (1-2)%
4
1
F'(2) = i, z € E. Hence, f is p-valently close-to-convex.
pzP~l " 1—2z

Let f € Ay, # 0,z € E, satisfy the differential subordination

z e,

then

In a special case when p = 1, the above corollary reduces to the following result.
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Corollary 3.10. Let « be a non zero complex number such that R(a) > 0 and let
feA fl(z)+#0,z €E, satisfy the differential subordination

, , z2f"(z) 1+2 202
(-ar@+afe) (14 L) < 220 22 )
then f'(z) < 11—2, i.e. R(f'(2)) >0, z € E and hence f is close-to-conver.

Remark 3.11. Forp=1, A=1, B = —1, Theorem 4 of Patel and Cho [Z] gives
the following result.
If f € A, satisfies the differential subordination

(- +are) (148 < 112

a>0, z€E,

1
then f'(z) < ;, z € E.
—z

Now we compare this result with the result of Corollary [510 According to the

above result of Patel and Cho [Z], the region of variability of the differential operator
2f"(z

(-aferaf () (14 2L
whereas the result of Corollary [310 extends the region of variability of the above
operator for the same conclusion.

To justify the claim, we consider below a particular case when o = 1/2 and show
the extended region pictorially in Figure 3.2.

for the required implication is the right half plane

e
N
S,

g

Figure 3.2 (when o =1/2)

The function G (given in Corollary [T10) maps the unit disk E onto the portion
of the plane right to the plotted curve (image of the unit circle under G ). Therefore,

1 1"
according to Corollary[310, the differential operator f'(z) (1 + = 2MC)

5 f’(z) > can vary

in the portion of the plane right to the plotted curve whereas by the above mentioned
result of Patel and Cho [J], this differential operator varies in the portion of the
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plane right to the imaginary axis. Thus the region bounded by the plotted curve and
the imaginary axis is the claimed extension.

1
Remark 3.12. Consider the dominant q(z) = 1+—Z, z € E. We have
—z
1
1
14 20 tz
¢(z) 1-z
n "(z)  2(1-a) 2 al
2q"(z - —al+z
1 =
+ q(z) « a(z)+p a 1—2z

1
Obviously for 0 < a < 2, the dominant q(z) = 1+
Theorem [3.3 and we have the following result.

z
satisfies the conditions of
z

/
Corollary 3.13. Let a(0 < a < 2) be a real number. Let f € Ap, % #0,z €
pz

E, satisfy the differential subordination

o (20)'452 (1) < (2 2 o1 25).
fz) 14z

, 2z € E.
pzP~l " 1—2z

The result in Corollary BI3] corresponds to Theorem 5 of Patel and Cho [2].
Acknowledgement: I am thankful to the referee for his valuable comments.
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