INCLUSION PROPERTIES OF CERTAIN CLASSES OF MEROMORPHIC SPIRAL-LIKE FUNCTIONS OF COMPLEX ORDER ASSOICATED WITH THE GENERALIZED HYPERGEOMETRIC FUNCTION

(COMMUNICATED BY SHIGEYOSHI OWA)

ALI MUHAMMAD

Abstract

The purpose of the present paper is to introduce new classes of meromorphic spiral-like functions defined by using a meromorphic analogue of the Choi-Saigo-Srivastava operator for the generalized hypergeometric function and investigate a number of inclusion relationships of these classes.

1. Introduction

Let M denote the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{k=0}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the punctured unit disk $E^{*}=\{z: 0<|z|<1\}=E \backslash\{0\}$.
If f and g are analytic in $E=E^{*} \cup\{0\}$, we say that f is subordinate to g, written $f \prec g$ or $f(z) \prec g(z)$, if there exists a Schwarz function w in E such that $f(z)=g(w(z))$.

Let P be the class of all functions ϕ which are analytic and univalent in E and for which $\phi(E)$ is convex with $\phi(0)=1$ and $\operatorname{Re}\{\phi(z\}>0(z \in E)$.

For a complex parameters $\alpha_{1}, \ldots \alpha_{q}$ and $\beta_{1}, \ldots \beta_{s} \quad\left(\beta_{j} \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}=\{0,-1,-2, \ldots\}\right.$; $j=1, \ldots s)$, we now define the generalized hypergeometric function $[16,17]$ as follows:

$$
\begin{equation*}
{ }_{q} F_{s}\left(\alpha_{1}, \ldots \alpha_{q} ; \beta_{1}, \ldots \beta_{s}\right)=\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}\right)_{k} \ldots\left(\alpha_{q}\right)_{k}}{\left(\beta_{1}\right)_{k} \ldots\left(\beta_{s}\right)_{k} k!} z^{k} \tag{1.2}
\end{equation*}
$$

[^0]where $(q \leq s+1 ; s \in \mathbb{N} \cup\{0\} ; \mathbb{N}=\{1,2, \ldots\})$ and $(v)_{k}$ is the Pochhammer symbol (or shifted factorial) defined in (terms of the Gamma function) by
\[

(v)_{k}=\frac{\Gamma(v+k)}{\Gamma(v)}=\left\{$$
\begin{array}{l}
1 \text { if } k=0 \text { and } v \in \mathbb{C} \backslash\{0\} \\
v(v+1) \ldots(v+k-1) \text { if } k \in \mathbb{N} \text { and } v \in \mathbb{C} .
\end{array}
$$\right.
\]

Corresponding to a function

$$
\begin{equation*}
\mathcal{F}\left(\alpha_{1}, \ldots \alpha_{q} ; \beta_{1}, \ldots \beta_{s} ; z\right)=z^{-1}{ }_{q} F_{s}\left(\alpha_{1}, \ldots \alpha_{q} ; \beta_{1}, \ldots \beta_{s} ; z\right) . \tag{1.3}
\end{equation*}
$$

Liu and Srivastava [11] consider a linear operator $H\left(\alpha_{1}, \ldots \alpha_{q} ; \beta_{1}, \ldots \beta_{s}\right): M \longrightarrow M$ defined by the following Hadamard product(or convolution):

$$
H\left(\alpha_{1}, . . \alpha_{q} ; \beta_{1}, . . \beta_{s}\right) f(z)=h\left(\alpha_{1}, \ldots \alpha_{q} ; \beta_{1}, \ldots \beta_{s} ; z\right) * f(z)
$$

We note that the linear operator $H\left(\alpha_{1}, . . \alpha_{q} ; \beta_{1}, . . \beta_{s}\right)$ was motivated essentially by Dzoik and Srivastava [4]. Some interesting developments with the generalized hypergeometric function were considered recently by Dzoik and Srivastava [5, 6] and Liu and Srivastava $[9,10]$. Corresponding to the function $h\left(\alpha_{1}, \ldots \alpha_{q} ; \beta_{1}, \ldots \beta_{s} ; z\right)$ defined by (1.3), we introduce a function $h_{\lambda}\left(\alpha_{1}, \ldots \alpha_{q} ; \beta_{1}, \ldots \beta_{s} ; z\right)$ given by

$$
\begin{equation*}
h\left(\alpha_{1}, \ldots \alpha_{q} ; \beta_{1}, \ldots \beta_{s} ; z\right) * h_{\lambda}\left(\alpha_{1}, \ldots \alpha_{q} ; \beta_{1}, \ldots \beta_{s} ; z\right)=\frac{1}{z(1-z)^{\lambda}} \quad(\lambda>0) \tag{1.5}
\end{equation*}
$$

Analogous to $H\left(\alpha_{1}, . . \alpha_{q} ; \beta_{1}, . . \beta_{s}\right)$ defined by (1.4), we now define the linear operator $H_{\lambda}\left(\alpha_{1}, . . \alpha_{q} ; \beta_{1}, . . \beta_{s}\right)$ on M as follows:

$$
\begin{equation*}
H_{\lambda}\left(\alpha_{1}, . . \alpha_{q} ; \beta_{1}, . . \beta_{s}\right) f(z)=h_{\lambda}\left(\alpha_{1}, \ldots \alpha_{q} ; \beta_{1}, \ldots \beta_{s} ; z\right) * f(z), \tag{1.6}
\end{equation*}
$$

where $\alpha_{i}, \beta_{j} \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; i=1, . . q ; j=1, . . s ; \lambda>0 ; z \in E^{*} ; f \in M$.
For convenience, we write

$$
H_{\lambda, q, s}\left(\alpha_{1}\right)=H_{\lambda}\left(\alpha_{1}, . . \alpha_{q} ; \beta_{1}, . . \beta_{s}\right) .
$$

It is easily verified from the definition (1.5) and (1.6) that

$$
\begin{equation*}
z\left(H_{\lambda, q, s}\left(\alpha_{1}+1\right) f(z)\right)^{\prime}=\alpha_{1} H_{\lambda, q, s}\left(\alpha_{1}\right) f(z)-\left(\alpha_{1}+1\right) H_{\lambda, q, s}\left(\alpha_{1}+1\right) f(z) \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
z\left(H_{\lambda, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}=\lambda H_{\lambda+1, q, s}\left(\alpha_{1}\right) f(z)-(\lambda+1) H_{\lambda, q, s}\left(\alpha_{1}\right) f(z) \tag{1.8}
\end{equation*}
$$

We note that the operator $H_{\lambda, q, s}\left(\alpha_{1}\right)$ is closely related to the Choi-Saigo-Srivastava operator [3] for analytic functions, which includes the integral operator studied by Liu [8] and Noor et al [13, 15]. The interested readers are refered to the work done by the authors [$1,2,14]$.

Definition 1.1. Using the subordination principle between two analytic functions, we introduce the subclasses $M S_{b}^{\alpha}(\phi(z)), M C_{b}^{\alpha}(\phi(z))$ and $M K_{b, c}^{\alpha, \beta}(\phi(z), \psi(z))$ of the class M as follows:

$$
\begin{aligned}
M S_{b}^{\alpha}(\phi(z)) & =\left\{f(z) \in M: 1+\frac{e^{i \alpha}}{b \cos \alpha}\left(-\frac{z f^{\prime}(z)}{f(z)}-1\right) \prec \phi(z) \text { in } E\right\} \\
M C_{b}^{\alpha}(\phi(z)) & =\left\{f(z) \in M: 1+\frac{e^{i \alpha}}{b \cos \alpha}\left(-\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}-1\right) \prec \phi(z) \text { in } E\right\} \\
M K_{b, c}^{\alpha, \beta}(\phi(z), \psi(z)) & =\left\{f(z) \in M: 1+\frac{e^{i \beta}}{b \cos \beta}\left(-\frac{z f^{\prime}(z)}{g(z)}-1\right) \prec \psi(z),\right\},
\end{aligned}
$$

with $g(z) \in M S_{b}^{\alpha}(\phi(z))$ in E and $\alpha, \beta \in \mathbb{R}:|\alpha|<\frac{\pi}{2},|\beta|<\frac{\pi}{2}, b, c \neq 0$ with $b . c \in \mathbb{C}$ and $\phi(z), \psi(z) \in P, z \in E$.

Now by using the operator $\left(H_{\lambda, q, s}\left(\alpha_{1}\right)\right.$, we introduce a new subclasses of meromorphic functions.

$$
\begin{align*}
M S_{b, \lambda, q, s, \alpha_{1}}^{\alpha}(\phi(z)) & =\left\{f(z) \in M: H_{\lambda, q, s}\left(\alpha_{1}\right) f(z) \in M S_{b}^{\alpha}(\phi(z))\right\} \tag{1.9}\\
M C_{b, \lambda, q, s, \alpha_{1}}^{\alpha}(\phi(z)) & =\left\{f(z) \in M: H_{\lambda, q, s}\left(\alpha_{1}\right) f(z) \in M C_{b}^{\alpha}(\phi(z))\right\} \tag{1.10}\\
M K_{b, c, \lambda, q, s,, \alpha_{1}}^{\alpha, \beta}(\phi(z), \psi(z)) & =\left\{f(z) \in M: H_{\lambda, q, s}\left(\alpha_{1}\right) f(z) \in M K_{b, c}^{\alpha, \beta}(\phi(z), \psi(z))\right\}, \tag{1.11}
\end{align*}
$$

where $\alpha, \beta \in \mathbb{R}:|\alpha|<\frac{\pi}{2},|\beta|<\frac{\pi}{2}, b, c \neq 0$ with $b . c \in \mathbb{C}$ and $\phi(z), \psi(z) \in P$. From (1.9) and (1.10), it is clear that

$$
\begin{equation*}
f(z) \in M C_{b, \lambda, q, s, \alpha_{1}}^{\alpha}(\phi(z)) \Longleftrightarrow-z f^{\prime}(z) \in M S_{b, \lambda, q, s, \alpha_{1}}^{\alpha}(\phi(z)) \tag{1.12}
\end{equation*}
$$

2. Preliminary Results

To establish our main results we need the following Lemmas.
Lemma 2.1 [7]. Let ϕ be convex univalent in E with $\phi(0)=1$ and $\operatorname{Re}\{\gamma \phi(z)+$ $t)>0(\gamma, t \in \mathbb{C})$. If p is analytic in E with $p(0)=1$, then

$$
p(z)+\frac{z p^{\prime}(z)}{\gamma p(z)+t} \prec \phi(z) \quad(z \in E), \Rightarrow p(z) \prec \phi(z)
$$

Lemma 2.2 [12]. Let $\phi(z) \in P$ be convex univalent in E and $\omega(z)$ be analytic in E with $\operatorname{Re}\{\omega(z)\} \geq 0$. If p is analytic in E with $p(0)=\phi(0)$, then

$$
p(z)+\omega(z) z p^{\prime}(z) \prec \phi(z) \quad(z \in E) \Longrightarrow p(z) \prec \phi(z)
$$

3. Main Results

Theorem 3.1. Let $\alpha \in \mathbb{R}$, where $|\alpha|<\frac{\pi}{2}$ and let $b=b_{1}+i b_{2} \neq 0, \tan \nu=\frac{b_{2}}{b_{1}}$, $\phi(z) \in P$ for $z \in E\left(\lambda, \alpha_{1}>0\right)$. Then

$$
M S_{b, \lambda+1, q, s, \alpha_{1}}^{\alpha}(\phi(z)) \subset M S_{b, \lambda, q, s, \alpha_{1}}^{\alpha}(\phi(z)) \subset M S_{b, \lambda, q, s, \alpha_{1}+1}^{\alpha}(\phi(z))
$$

for $\operatorname{Im} \phi(z)<(\operatorname{Re} \phi(z)-1) \cot (\alpha-v)$.
Proof. To prove the first part of Theorem 3.1, let $f \in M S_{b, \lambda+1, q, s, \alpha_{1}}^{\alpha}(\phi(z))$ and set

$$
\begin{equation*}
p(z)=\frac{1}{b \cos \alpha}\left(-e^{i \alpha} \frac{z\left(H_{\lambda, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{\lambda, q, s}\left(\alpha_{1}\right) f(z)}-(1-b) \cos \alpha-i \sin \alpha\right) . \tag{3.1}
\end{equation*}
$$

Then $p(z)$ is analytic in E with $p(0)=1$. Applying (1.8) in (3.1) and with a simple computations, we have for $\lambda>0$

$$
\begin{equation*}
\left\{1+\frac{e^{i \alpha}}{b \cos \alpha}\left(-\frac{z\left(H_{\lambda_{+1}, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{\lambda_{+1}, q, s}\left(\alpha_{1}\right) f(z)}-1\right)\right\}=p(z)+\frac{z p^{\prime}(z)}{-e^{-i \alpha} b \cos \alpha(p(z)-1)+\lambda+1} \prec \phi(z) \tag{3.2}
\end{equation*}
$$

Since $\operatorname{Re}\left\{-e^{-i \alpha} b \cos \alpha(\phi(z)-1)+\lambda+1\right)>0$ for $\operatorname{Im} \phi(z)<(\operatorname{Re} \phi(z)-1) \cot (\alpha-v)$ and where $\tan \nu=\frac{b_{2}}{b_{1}}$, so by Lemma 2.1 and (3.2), we have $p(z) \prec \phi(z)$. This proves that

$$
\begin{equation*}
M S_{b, \lambda+1, q, s, \alpha_{1}}^{\alpha}(\phi(z)) \subset M S_{b, \lambda, q, s, \alpha_{1}}^{\alpha}(\phi(z)) \tag{3.3}
\end{equation*}
$$

To prove the second part of Theorem 3.1, we consider

$$
\begin{equation*}
p(z)=\frac{1}{b \cos \alpha}\left(-e^{i \alpha} \frac{z\left(H_{\lambda, q, s}\left(\alpha_{1}+1\right) f(z)\right)^{\prime}}{H_{\lambda, q, s}\left(\alpha_{1}+1\right) f(z)}-(1-b) \cos \alpha-i \sin \alpha\right) . \tag{3.4}
\end{equation*}
$$

Then $p(z)$ is analytic in E with $p(0)=1$. Applying (1.7) in (3.1) and with a simple computation, we have for $\alpha_{1}>0$

$$
\begin{equation*}
\left\{1+\frac{e^{i \alpha}}{b \cos \alpha}\left(-\frac{z\left(H_{\lambda, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{\lambda, q, s}\left(\alpha_{1}\right) f(z)}-1\right)\right\}=p(z)+\frac{z p^{\prime}(z)}{-e^{-i \alpha} b \cos \alpha(p(z)-1)+\alpha_{1}+1} \prec \phi(z) \tag{3.5}
\end{equation*}
$$

Since $\operatorname{Re}\left\{-e^{-i \alpha} b \cos \alpha(\phi(z)-1)+\alpha_{1}+1\right)>0$ for $\operatorname{Im} \phi(z)<(\operatorname{Re} \phi(z)-1) \cot (\alpha-v)$ and where $\tan \nu=\frac{b_{2}}{b_{1}}$, so by Lemma 2.1 and (3.5), we have $p(z) \prec \phi(z)$. This complete the proof of second inclusion.

Theorem 3.2. Let $\alpha \in \mathbb{R}$, where $|\alpha|<\frac{\pi}{2}$ and let $b=b_{1}+i b_{2} \neq 0, \tan \nu=\frac{b_{2}}{b_{1}}$, $\phi(z) \in P$ for $z \in E\left(\lambda, \alpha_{1}>0\right)$. Then

$$
M C_{b, \lambda+1, q, s, \alpha_{1}}^{\alpha}(\phi(z)) \subset M C_{b, \lambda, q, s, \alpha_{1}}^{\alpha}(\phi(z)) \subset M C_{b, \lambda, q, s, \alpha_{1}+1}^{\alpha}(\phi(z)) .
$$

for $\operatorname{Im} \phi(z)<(\operatorname{Re} \phi(z)-1) \cot (\alpha-v), z \in E$.
Proof. The proof follows from Theorem 3.1 and (1.12).
Taking

$$
\phi(z)=\frac{1+A z}{1+B z}(-1<B<A \leq 1 ; z \in E)
$$

Corollary 3.3. Let $\alpha \in \mathbb{R}$, where $|\alpha|<\frac{\pi}{2}$ and let $b=b_{1}+i b_{2} \neq 0, \tan \nu=\frac{b_{2}}{b_{1}}$, $\frac{1+A}{1+B}<\min \left\{\lambda+1 / e^{-i \alpha} b \cos \alpha, \alpha_{1}+1 / e^{-i \alpha} b \cos \alpha\right\},-1<B<A \leq 1$. Then

$$
\left.M S_{b, \lambda+1, q, s, \alpha_{1}}^{\alpha}(A, B)\right) \subset M S_{b, \lambda, q, s, \alpha_{1}}^{\alpha}(A, B) \subset M S_{b, \lambda, q, s, \alpha_{1}+1}^{\alpha}(A, B)
$$

and

$$
M C_{b, \lambda+1, q, s, \alpha_{1}}^{\alpha}(A, B) \subset M C_{b, \lambda, q, s, \alpha_{1}}^{\alpha}(A, B) \subset M C_{b, \lambda, q, s, \alpha_{1}+1}^{\alpha}(A, B)
$$

Next, by using Lemma 2.2, we obtain the following Inclusion relation for the class of meromorphically close to convex functions.

Theorem 3.4. Let $\alpha, \beta \in \mathbb{R}$, where $|\alpha|<\frac{\pi}{2},|\beta|<\frac{\pi}{2}$ and let $b=b_{1}+i b_{2} \neq 0$, $\tan \nu=\frac{b_{2}}{b_{1}}, \phi(z), \psi(z) \in P$ for $z \in E$. Then
$M K_{b, c, \lambda+1, q, s,, \alpha_{1}}^{\alpha, \beta}(\phi(z), \psi(z)) \subset M K_{b, c, \lambda, q, s,, \alpha_{1}}^{\alpha, \beta}(\phi(z), \psi(z)) \subset M K_{b, c, \lambda, q, s,, \alpha_{1}+1}^{\alpha, \beta}(\phi(z), \psi(z))$,
for $\operatorname{Im} \phi(z)<\operatorname{Re}(\operatorname{Re} \phi(z)-1) \cot (\alpha-v), \operatorname{Im}(q(z)<(\operatorname{Re} q(z)-1) \cot (\alpha-v)(z \in E)$, $\left(\lambda, \alpha_{1}>0\right)$.

Proof. To prove the first inclusion of Theorem 3.4, let $f \in M K_{b, c, \lambda+1, q, s,, \alpha_{1}}^{\alpha, \beta}(\phi(z), \psi(z))$. Then from the definition of $M K_{b, c, \lambda+1, q, s,, \alpha_{1}}^{\alpha, \beta}(\phi(z), \psi(z))$, there existsa function $\left.g \in M S_{b, \lambda+1, q, s, \alpha_{1}}^{\alpha}(\psi(z))\right)$ such that

$$
\begin{equation*}
\frac{1}{c \cos \beta}\left(-e^{i \beta} \frac{z\left(H_{\lambda+1, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{\lambda+1, q, s}\left(\alpha_{1}\right) g(z)}-(1-c) \cos \beta-i \sin \beta\right) \prec \psi(z) .(z \in E) \tag{3.6}
\end{equation*}
$$

Now let

$$
\begin{equation*}
p(z)=\frac{1}{c \cos \beta}\left(-e^{i \beta} \frac{z\left(H_{\lambda, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{\lambda, q, s}\left(\alpha_{1}\right) g(z)}-(1-c) \cos \beta-i \sin \beta\right) \tag{3.7}
\end{equation*}
$$

where $p(z)$ is analytic in E with $p(0)=1$. Using (1.8), we obtain that

$$
\begin{align*}
& \frac{1}{c \cos \beta}\left(-e^{i \beta} \frac{z\left(H_{\lambda+1, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{\lambda+1, q, s}\left(\alpha_{1}\right) g(z)}-(1-c) \cos \beta-i \sin \beta\right) \\
= & \frac{1}{c \cos \beta}\left(e^{\left.i \beta \frac{\frac{z\left(H_{\lambda, q, s}\left(\alpha_{1}\right)(-z f(z))^{\prime}\right.}{H_{\lambda, q, s}\left(\alpha_{1}\right) g(z)}+(\lambda+1) \frac{z\left(H_{\lambda, q, s}\left(\alpha_{1}\right)(-z f(z))\right.}{H_{\lambda, q, s}\left(\alpha_{1}\right) g(z)}}{\frac{\left(H_{\lambda, q, s}\left(\alpha_{1}\right) g(z)\right)^{\prime}}{H_{\lambda, q, s}\left(\alpha_{1}\right) g(z)}+\lambda+1}-(1-c) \cos \beta-i \sin \beta\right) .}\right. \tag{3.8}
\end{align*}
$$

Since $g(z) \in M S_{b, \lambda+1, q, s, \alpha_{1}}^{\alpha}(\phi(z)) \subset M S_{b, \lambda, q, s, \alpha_{1}}^{\alpha}(\phi(z))$, by Theorem 3.1, we set

$$
\begin{equation*}
q(z)=\frac{1}{b \cos \alpha}\left(-e^{i \alpha} \frac{z\left(H_{\lambda, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{\lambda, q, s}\left(\alpha_{1}\right) g(z)}-(1-b) \cos \alpha-i \sin \alpha\right), \tag{3.9}
\end{equation*}
$$

where $q \prec \phi$ in E with assumption $\phi \in P$. Then, by virtue of (3.7), (3.8) and (3.9), we obtain that

$$
\begin{align*}
& \frac{1}{c \cos \beta}\left(-e^{i \beta} \frac{z\left(H_{\lambda+1, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{\lambda+1, q, s}\left(\alpha_{1}\right) g(z)}-(1-c) \cos \beta-i \sin \beta\right) \\
= & p(z)+\frac{z p^{\prime}(z)}{-e^{-i \alpha}(q(z)-1)+\lambda+1} \prec \psi(z) \quad(z \in E) . \tag{3.10}
\end{align*}
$$

Since $q \prec \phi$ and $\lambda>0$ in E with $\operatorname{Re}\left(-e^{-i \alpha}(q(z)-1)+\lambda+1\right)>0$ for $\operatorname{Im} \phi(z)<$ $\operatorname{Re}(\operatorname{Re} \phi(z)-1) \cot (\alpha-v), \operatorname{Im}(q(z)<(\operatorname{Re} q(z)-1) \cot (\alpha-v)$. Hence, by taking

$$
\omega(z)=\frac{1}{-e^{-i \alpha}(q(z)-1)+\lambda+1}
$$

in (3.10), and applying Lemma2.2, we can show that $p(z) \prec \psi(z)$ in E, so that $f(z) \in M K_{b, c, \lambda, q, s,, \alpha_{1}}^{\alpha, \beta}(\phi(z), \psi(z))$. Moreover, we have the second inclusion by using the similar arguments to those detailed above with (1.7). Therefore we complete the proof of the Theorem 3.4.

Inclusion properties involving the Integral operaton F_{μ}
Consider the operator F_{μ}, defined by

$$
\begin{equation*}
F_{\mu}(f)(z)=\frac{\mu}{z^{\mu+1}} \int_{0}^{z} t^{\mu} f(t) d t \quad(f \in M ; \mu>0) \tag{3.11}
\end{equation*}
$$

From the definition of F_{μ} defined by (3.11), we observe that

$$
\begin{equation*}
z\left(H_{\lambda, q, s}\left(\alpha_{1}\right) F_{\mu} f(z)\right)^{\prime}=\mu H_{\lambda, q, s}\left(\alpha_{1}\right) f(z)-(\mu+1) H_{\lambda, q, s}\left(\alpha_{1}\right) F_{\mu} f(z) \tag{3.12}
\end{equation*}
$$

Theorem 3.5. Let $\alpha \in \mathbb{R}$, where $|\alpha|<\frac{\pi}{2}$ and let $b=b_{1}+i b_{2} \neq 0, \phi(z) \in$ P for $z \in E\left(\lambda, \alpha_{1}>0\right)$. Then for $f(z) \in M S_{b, \lambda, q, s, \alpha_{1}}^{\alpha}(\phi(z))$, then $F_{\mu}(f)(z) \in$ $M S_{b, \lambda, q, s, \alpha_{1}}^{\alpha}(\phi(z))$, for $\operatorname{Im} \phi(z)<(\operatorname{Re} \phi(z)-1) \cot (\alpha-v)$, where $\tan v=\frac{b_{2}}{b_{1}}, z \in E$.

Proof. Consider

$$
\begin{equation*}
p(z)=\frac{1}{b \cos \alpha}\left(-e^{i \alpha} \frac{z\left(H_{\lambda, q, s}\left(\alpha_{1}\right) F_{\mu}(f)(z)\right)^{\prime}}{H_{\lambda, q, s}\left(\alpha_{1}\right) F_{\mu}(f)(z)}-(1-b) \cos \alpha-i \sin \alpha\right) \tag{3.13}
\end{equation*}
$$

where $p(z)$ is analytic in E with $p(0)=1$. Using (3.12) in (3.13) and after simple computation we have

$$
p(z)+\frac{z p^{\prime}(z)}{-e^{-i \alpha} b \cos \alpha(p(z)-1)+\mu} \prec \phi(z)
$$

For $\operatorname{Im} \phi(z)<(\operatorname{Re} \phi(z)-1) \cot (\alpha-v)$, where $\tan v=\frac{b_{2}}{b_{1}}$, we have

$$
\operatorname{Re}\left(-e^{-i \alpha} b \cos \alpha(p(z)-1)+\mu\right)>0
$$

Thus, by Lemma 2.1 yeilds $p(z) \prec \phi(z)$. Hence we have the desired proof.
Next, we derive an inclusion property involving F_{μ} which is obtaind by applying (1.8) and Theorem 3.5.

Theorem 3.6. Let $\alpha \in \mathbb{R}$, where $|\alpha|<\frac{\pi}{2}$ and let $b=b_{1}+i b_{2} \neq 0, \phi(z) \in$ P for $z \in E\left(\lambda, \alpha_{1}>0\right)$. Then for $f(z) \in M C_{b, \lambda, q, s, \alpha_{1}}^{\alpha}(\phi(z))$, then $F_{\mu}(f)(z) \in$ $M C_{b, \lambda, q, s, \alpha_{1}}^{\alpha}(\phi(z))$, for $\operatorname{Im} \phi(z)<(\operatorname{Re} \phi(z)-1) \cot (\alpha-v)$, where $\tan v=\frac{b_{2}}{b_{1}}, z \in E$.

Finally, we obtain Theorem 3.7 below by using the same lines of proof as we used in the proof of Theorem3.4.

Theorem 3.7. Let $\alpha, \beta \in \mathbb{R}$, where $|\alpha|<\frac{\pi}{2},|\beta|<\frac{\pi}{2}$ and let $b=b_{1}+i b_{2} \neq 0$, $\tan \nu=\frac{b_{2}}{b_{1}}, \phi(z), \psi(z) \in P$ for $z \in E\left(\lambda, \alpha_{1}>0\right)$. If $f \in M K_{b, c, \lambda+1, q, s,, \alpha_{1}}^{\alpha, \beta}(\phi(z), \psi(z))$, Then $F_{\mu}(f)(z) \in M K_{b, c, \lambda+1, q, s,, \alpha_{1}}^{\alpha, \beta}(\phi(z), \psi(z))(\mu>0)$ for
$\operatorname{Im} \phi(z)<(\operatorname{Re} \phi(z)-1) \cot (\alpha-v), \operatorname{Im} q(z)<(\operatorname{Re} q(z)-1) \cot (\alpha-v)$ and $q(z) \prec \phi(z), z \in E$.
Acknowledgments. The authors would like to thank S. Owa for his comments that helped us improve this article.

References

[1] Ali Muhammad, On certain class of meromorphic functions defined by means of a linear operator, J. Acta. Univesitatis. Apulensis, no 23 (2010), 251-262.
[2] N. E. Cho and In. Hwa. Kim, Inclusion properties of certain of certain classes of meromophic functions associated with the gerneralized hepergeometric functions. Appl. Math. Comput. 187 (2007), 115-121.
[3] J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432 -445.
[4] J. Dziok, and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput, 103 (1999), 1-13.
[5] J. Dziok, and H. M. Srivastava, Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric functions, Adv. Stud. Contemp. Math. 5 (2002), 115 -125.
[6] J. Dziok, and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Trans. Spec. Funct. 14 (2003), 7-18.
[7] P. Eenigenberg, S. S. Miller, P.T. Mocanu and M. O. Reade, On a Briot-Bouquet differential subordination, General Inequalities 3 (1983),339-348.
[8] J. L. Liu, The Noor integral and strongly starlike functions, J. Math. Anal. Appl. 261 (2001), 441-447.
[9] J. L. Liu and H. M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl. 259 (2001), 566-581.
[10] J. L. Liu and H. M. Srivastava, Certain properties of the Dzoik Srivastava operator, Appl. Math. Comput. 159 (2004), 485-493.
[11] J. L. Liu and H. M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeormetric function, Math. Comut. Modell. 39 (2004), 21-34.
[12] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171.
[13] K. I. Noor, On new classes of integral operators, J. Natur. Geom. 16 (1999), 71- 80.
[14] K. I. Noor and Ali Muhammad, On certain subclasses of meromorphic univalent functions, Bull. Institute. Maths. Academia. Sinica, Vol 5 (2010), 83-94.
[15] K. I. Noor and M. A. Noor, On integral operators, J. Math. Anal. Appl. 238 (1999), 341-352.
[16] S. Owa and H. M. Srivastava, univalent and starlike generalized hypergeometric functions, canad. J. Math. 39 (1987), 1057-1077.
[17] H. M. Srivastava and S. Owa, Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators, and certain subclasses of analytic functions, Nagoya Math. J. 106 (1987), 1-28.

Ali Muhammad, Departement of Basic Sciences, University of Engineering and Technology Peshawar, Pakistan

E-mail address: ali7887@gmail.com

[^0]: 2000 Mathematics Subject Classification. 30C45, 30C50.
 Key words and phrases. Meromorphic functions; Spiral-like functions of complex order; Hadamard product; Differential subordination; Choi-Saigo-Srivastava operator.
 © 2011 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted March 17, 2011. Accepted June 2, 2011.
 Dedicated to Mr. and Mrs. Ibrahim Amodu Nigeria.

