BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 3 Issue 3 (2011), Pages 159-164.

ON SOME PROPERTIES OF ANALYTIC AND MEROMORPHIC FUNCTIONS

(COMMUNICATED BY SHIGEYOSHI OWA)

M. NUNOKAWA, S.P. GOYAL, R. KUMAR

ABSTRACT. In the present paper, we obtain some new properties of analytic and meromorphic functions

1. INTRODUCTION

Let p(z) be analytic in the open unit disc $\mathcal{U} = \{z : z \in C; |z| < 1\}$ with p(0) = 1and suppose that there exists a point z_0 ($|z_0| < 1$) such that (i) |p(z)| > a ($|z| < |z_0|; 0 < a < 1$) and $|p(z_0)| = a$ or (ii) Re $\{p(z)\} < M$ ($|z| < |z_0|; M > 1$) and Re $\{p(z_0)\} = M$.

Also let

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$
 (1.1)

be analytic in \mathcal{U} and

$$F(z) = \frac{1}{z} + \sum_{n=0}^{\infty} b_n z^n$$
 (1.2)

be meromorphic in \mathcal{U} .

In this paper, we shall obtain some basic results for $z_0 p'(z_0)/p(z_0)$ under the condition (i) or (ii). Our main results will be applied to get some properties of $z_0 f'(z_0)/f(z_0)$ or $-z_0 F'(z_0)/F(z_0)$.

²⁰¹⁰ Mathematics Subject Classification. 30C55.

 $Key\ words\ and\ phrases.$ Analytic functions; meromorphic functions; starlike functions; convex functions.

^{©2011} Universiteti i Prishtinës, Prishtinë, Kosovë.

S.P.G is supported by CSIR, New Delhi, India for Emeritus Scientistship, under the scheme number 21(084)/10/EMR-II.

Submitted March 29, 2011. Published July 10, 2011.

2. Main Results

Lemma 2.1. (see [[1]]). Let w(z) be regular in \mathcal{U} with w(0) = 0. If w(z) attains its maximum value on the circle |z| = r at a given point $z_0 \in \mathcal{U}$, then $z_0w'(z_0) = kw(z_0)$, where k is a real number and $k \ge 1$.

Theorem 2.2. Let p(z) be analytic in \mathcal{U} with p(0) = 1 and suppose that there exists a point z_0 , $|z_0| < 1$ such that |p(z)| > a ($|z| < |z_0|$) and $|p(z_0)| = a$, where 0 < a < 1.

Then we have

$$\frac{z_0 p'(z_0)}{p(z_0)} = \operatorname{Re}\left(\frac{z_0 p'(z_0)}{p(z_0)}\right) \le -\frac{1-a}{1+a}.$$

Proof. Let us put

$$p(z) = \frac{a(1+\psi(z))}{1-\psi(z)}$$

or

$$\psi(z) = \frac{p(z) - a}{p(z) + a} \quad (|z| < |z_0|).$$

Then $\psi(z)$ is analytic in $|z| < |z_0|$ and

$$0 < \psi(0) = \frac{1-a}{1+a} < 1.$$

By the hypothesis of the theorem, we have

Re

$$|p(z)| = a \left| \frac{1 + \psi(z)}{1 - \psi(z)} \right| > a \quad (|z| < |z_0|).$$

Thus

$$\left|\frac{1+\psi(z)}{1-\psi(z)}\right| > 1 \quad (|z| < |z_0|) \,.$$

It shows that

$$\{\psi(z)\} > 0 \quad (|z| < |z_0|).$$

On the other hand, we have

$$|p(z_0)| = a \left| \frac{1 + \psi(z_0)}{1 - \psi(z_0)} \right| = a,$$

this shows that

$$\operatorname{Re}\left\{\psi(z_0)\right\} = 0.$$

Putting

$$\Phi(z) = \frac{\psi(0) - \psi(z)}{\psi(0) + \psi(z)}, \ \Phi(0) = 0,$$

then we have $\Phi(z)$ is analytic in \mathcal{U} , $|\Phi(z)| < 1$ for $|z| < |z_0|$ and $|\Phi(z_0)| = 1$. Therefore, applying Lemma, we have that

$$\frac{z_0 \, \Phi'(z_0)}{\Phi(z_0)} = -\frac{2\psi(0)z_0 \, \psi'(z_0)}{(\psi(0))^2 + |\psi(z_0)|^2}$$
$$= k \ge 1.$$

This means that $z_0 \psi'(z_0)$ is real negative because $0 < \psi(0) < 1$. Then we say that

$$\frac{z_0 p'(z_0)}{p(z_0)} = \frac{z_0 \psi'(z_0)}{1 + \psi(z_0)} + \frac{z_0 \psi'(z_0)}{1 - \psi(z_0)}$$

160

$$= \frac{2z_0\psi'(z_0)}{1 - (\psi(z_0))^2}$$

= $\frac{2z_0\psi'(z_0)}{1 + |\psi(z_0)|^2}$
= $-\frac{k}{\psi(0)} \left(\frac{(\psi(0))^2 + |\psi(z_0)|^2}{1 + |\psi(z_0)|^2}\right)$
 $\leq -\psi(0) \left(\frac{(\psi(0))^2 + |\psi(z_0)|^2}{(\psi(0))^2 + (\psi(0))^2 |\psi(z_0)|^2}\right)$
 $< -\psi(0) = -\frac{1-a}{1+a}.$

This completes the proof.

Theorem 2.3. Let p(z) be analytic in \mathcal{U} with p(0) = 1, suppose that there exists a point z_0 ($|z_0| < 1$) such that $\operatorname{Re} \{p(z)\} < M$, $p(z) \neq 0$ for $|z| < |z_0|$, and $\operatorname{Re} \{p(z_0)\} = M$, where M > 1. Then we have

$$\operatorname{Re} \{ z_0 \, p'(z_0) \} \ge \frac{M-1}{2}.$$

Proof. Let us put

$$g(z) = \frac{1}{2M - 1} \left(\frac{2M - p(z)}{p(z)} \right), \ g(0) = 1.$$

Since $\operatorname{Re} \{p(z)\} < M$ for $|z| < |z_0|$, we see that

$$\left|\frac{2M - p(z)}{p(z)}\right| > 1$$

for $|z| < |z_0|$. This gives us that

$$|g(z)| > \frac{1}{2M-1} \quad (|\mathbf{z}| < |\mathbf{z}_0|)$$

and

$$|g(z_0)| = \frac{1}{2M-1}$$
.

Now

$$\operatorname{Re}\left(\frac{z_0 g'(z_0)}{g(z_0)}\right) = \operatorname{Re}\left(-\frac{z_0 p'(z_0)}{p(z_0)} - \frac{z_0 p'(z_0)}{2M - p(z_0)}\right)$$
(2.1)

Applying Theorem (2.2), we have

$$\operatorname{Re}\left(\frac{z_0g'(z_0)}{g(z_0)}\right) \le -\frac{1-\frac{1}{2M-1}}{1+\frac{1}{2M-1}} = -\frac{M-1}{M}.$$
(2.2)

Putting $p(z_0) = M + ia$, where a is a real number, we have

$$-\operatorname{Re}\left(\frac{z_0 p'(z_0)}{p(z_0)} + \frac{z_0 p'(z_0)}{2M - p(z_0)}\right) = -\operatorname{Re}\left(\frac{2M}{M^2 + a^2} z_0 p'(z_0)\right)$$
$$= -\frac{2M}{M^2 + a^2} \operatorname{Re}\left\{z_0 p'(z_0)\right\}.$$
(2.3)

Now (2.1) in conjunction with (2.2) and (2.3) gives

$$-\frac{2M}{M^2+a^2}\operatorname{Re}\left\{z_0p'(z_0)\right\} \le -\frac{M-1}{M}.$$

$$\operatorname{Re}\left\{z_0p'(z_0)\right\} \ge \left(\frac{M^2+a^2}{2M}\right)\left(\frac{M-1}{M}\right)$$

(2.4)

This shows that

$$\operatorname{Re}\left\{z_{0}p'(z_{0})\right\} \geq \left(\frac{M^{2}+a^{2}}{2M}\right)\left(\frac{M-1}{M}\right)$$
$$\geq \frac{M-1}{2}.$$

It completes the proof.

Corollary 2.4. Let p(z) be analytic in U with p(0) = 1 and suppose that

$$\operatorname{Re}\left(p(z) + \frac{z\,p'(z)}{p(z)}\right) > \frac{a^2 + 2a - 1}{a + 1} \ (|z| < 1; 0 < a < 1).$$
(2.5)

Then we have |p(z)| > a in \mathcal{U} .

Proof. Suppose that there exists a point z_0 ($|z_0| < 1$) such that a < |p(z)| in $|z| < |z_0|$ and $|p(z_0)| = a$, then Theorem (2.2) gives

$$\frac{z_0 p'(z_0)}{p(z_0)} = \operatorname{Re}\left(\frac{z_0 p'(z_0)}{p(z_0)}\right) \le -\frac{1-a}{1+a}.$$

Thus it follows that

$$\operatorname{Re}\left(\frac{z_0p'(z_0)}{p(z_0)} + p(z_0)\right) \le -\frac{1-a}{1+a} + a = \frac{a^2 + 2a - 1}{a+1}.$$

It contradicts the hypothesis (2.5) and it completes the proof.

Corollary 2.5. Let f(z) defined by (1.1) be analytic and $f'(z) \neq 0$ in \mathcal{U} , suppose that

$$\operatorname{Re}\left(1 + \frac{z f''(z)}{f'(z)}\right) > \frac{a^2 + 2a - 1}{a + 1} \ (z \in U; \ 0 < a < 1).$$

Then we have

$$\left|\frac{zf'(z)}{f(z)}\right| > a \text{ in } \mathcal{U}.$$

Proof. Let us put

$$p(z) = \frac{zf'(z)}{f(z)}, \quad p(0) = 1.$$

Then we have

$$1 + \frac{zf''(z)}{f'(z)} = p(z) + \frac{zp'(z)}{p(z)}.$$

Applying Corollary 2.4, we have Corollary 2.5.

Corollary 2.6. Let p(z) be analytic in \mathcal{U} with p(0) = 1 and suppose that there exists a point $z_0(|z_0| < 1)$ such that $\operatorname{Re} \{p(z)\} < M$, $p(z) \neq 0$ for $|z| < |z_0|$, $\operatorname{Re} \{p(z_0)\} = M$ where where M > 1.

Then we have

$$\operatorname{Re}\left(\frac{z_0 p'(z_0)}{p(z_0)}\right) \ge \frac{M-1}{2M}.$$

162

Proof. Applying (2.4) of Theorem (2.3), we have

$$\operatorname{Re}\left\{z_0 p'(z_0)\right\} \ge \left(\frac{M^2 + a^2}{2M}\right) \left(\frac{M - 1}{M}\right)$$

where $p(z_0) = M + ia$, a is a real number. Then it follows that

$$\operatorname{Re}\left(\frac{z_0 p'(z_0)}{p(z_0)}\right) = \operatorname{Re}\left(\frac{z_0 p'(z_0)}{M+ia}\right)$$
$$= \operatorname{Re}\left\{\left(\frac{M-ia}{M^2+a^2}\right) z_0 p'(z_0)\right\}$$
$$= \left(\frac{M}{M^2+a^2}\right) z_0 p'(z_0)$$
$$\geq \left(\frac{M}{M^2+a^2}\right) \left(\frac{M^2+a^2}{2M^2}\right) (M-1)$$
$$= \frac{M-1}{2M}.$$

It completes the proof.

Applying the same method as the proof of Corollary (2.5) and (2.6), we have the following result.

Corollary 2.7. Let f(z) defined by (1.1) be analytic and in $f'(z) \neq 0$ in \mathcal{U} . Also suppose that

$$1 + \operatorname{Re}\left(\frac{z\,f''(z)}{f'(z)}\right) < \frac{2M^2 + M - 1}{2M} \quad (|z| < 1\,; M > 1)\,.$$

Then we have

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) < M \text{ in } \mathcal{U}.$$

Corollary ?? is equivalent to Corollary 2.7.

Corollary 2.8. Let f(z) defined by (1.1) be analytic and $f'(z) \neq 0$ in \mathcal{U} . Also suppose that

$$1 + \operatorname{Re}\left(\frac{zf''(z)}{f'(z)}\right) < \beta \quad (|z| < 1; \beta > 1).$$

Then we have

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) < \frac{2\beta - 1 + \sqrt{4\beta^2 - 4\beta + 9}}{4} \quad in \ \mathcal{U}.$$

Corollary 2.9. Let F(z) defined by (1.2) be meromorphic and $F'(z) \neq 0$ in U. Also suppose that

$$-\left\{1 + \operatorname{Re}\left(\frac{zF''(z)}{F'(z)}\right)\right\} > \frac{2M^2 - M + 1}{2M} \quad (|z| < 1; M > 1).$$
 (2.6)

Then we have

$$-\operatorname{Re}\left(\frac{z\,F'(z)}{F(z)}\right) < M \quad in \ \mathcal{U}.$$

Proof. Let us put

$$p(z) = -\frac{zF'(z)}{F(z)}, \quad p(0) = 1.$$

then p(z) is analytic in \mathcal{U} and it follows that

$$-\left(1+\frac{zF''(z)}{F'(z)}\right) = p(z) - \frac{zp'(z)}{p(z)}.$$
(2.7)

If there exists a point z_0 ($|z_0| < 1$) such that Re $\{p(z)\} < M$ for $|z| < |z_0|$ and $Re \{p(z_0)\} = M$, then from Corollary 2.5, we have

$$\operatorname{Re}\left(\frac{z_0p'(z_0)}{p(z_0)}\right) \ge \frac{M-1}{2M}.$$

It follows that

$$-\left\{1 + \operatorname{Re}\left(\frac{z_0 F''(z_0)}{F'(z_0)}\right)\right\} = \operatorname{Re}\left(p(z_0) - \frac{z_0 p'(z_0)}{p(z_0)}\right)$$
$$\leq M - \frac{M - 1}{2M} = \frac{2M^2 - M + 1}{2M}.$$

This contradicts (2.6) and it completes the proof of Corollary 2.9.

Acknowledgment. The authors are thankful to the worthy referee for his valuable suggestions for the improvement of the paper.

References

[1] I.S. Jack, Functions starlike and convex of order α , J. London. Math. Soc., **2** (3) (1971), 469-474.

M. Nunokawa

UNIVERSITY OF GUNMA, HOSHIKUKI-CHO 798-8, CHUOU-WARD, CHIBA (JAPAN)-2600808 E-mail address: Momaru_nuno@doctor.nifty.jp

S.P. Goyal

Department of Mathematics, University of Rajasthan, Jaipur (INDIA)-302055 $E\text{-}mail\ address:\ \texttt{somprg@gmail.com}$

R. Kumar

164