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UNIQUENESS OF MEROMORPHIC FUNCTIONS SHARING

SETS

(COMMUNICATED BY R. K. RAINA)

SUBHAS S BHOOSNURMATH AND RENUKADEVI S DYAVANAL

Abstract. In this article, we investigate the problem of uniqueness of mero-
morphic functions sharing one set and having deficient values, and obtain a
result which provides an answer to a question of F.Gross [2] and H.X.Yi [9].

1. Introduction

In this paper, by a meromorphic function we always mean a function which is
meromorphic in the whole complex plane. Let f(z) be a non-constant meromorphic
function. We use the following standard notations of the value distributions theory,

T (r, f),m(r, f), N(r, f), N(r, f), N

(
r,

1

f

)
, · · ·

(See Hayman [3], Yang [7], Yi [8]]). We denote by S(r, f) any function satisfying

S(r, f) = o {T (r, f)} ,

as r → ∞, possibly outside of a set E with finite measure not necessarily the same
at each occurrence.

Let S be a subset of C̄ = C ∪ {∞}. Define

Ef (S) = E(S, f) =
∪
a∈S

{z : f(z)− a = 0} ,

where each zero is counted according to its multiplicity.

Let f and g be two nonconstant meromorphic functions. We say that f and g
share the set S CM if

E(S, f) = E(g, S).
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Define

N2

(
r,

1

f − a

)
= N

(
r,

1

f − a

)
+N (2

(
r,

1

f − a

)
.

Θ(∞, f) = 1− lim
r→∞

N(r, f)

T (r, f)
.

It is assumed that the reader is familiar with the notations of the Nevanlinna
Theory that can be found, for instance in [3], [7] and [8]

In 1977, Gross [2] posed the following question.
Question 1.1. Does there exist a finite set S such that, for any pair of nonconstant
entire functions f and g, E(S, f) = E(S, g) implies f = g ?.

If such a finite set exists, a natural problem is the following
Question 1.2. What is the smallest cardinality for such a finite set?.

The best answer to question 1.2 for meromorphic functions was obtained by
Frank and Reinders [1]. They proved the following result

Theorem 1.A. There exists a set S with 11 elements such that Ef (S) = Eg (S)
implies f ≡ g for any pair of nonconstant meromorphic functions f and g.

Question 1.3. If nonconstant meromorphic functions f and g have few poles, can
the numbers of elements of the set S in Theorem 1.A be reduced to seven?.

Regarding question 1.3, Xu [5] proved the following result.

Theorem 1.B. Let f and g be two nonconstant meromorphic functions. If Θ(∞, f) >
3/4 and Θ(∞, g) > 3/4, then there exists a set S with seven elements such that
Ef (S) = Eg (S) implies f ≡ g

Regarding question 1.1 and question 1.2, Yi [9] proved the following theorem

Theorem 1.C. Let S = {z : zn + azn−m + b = 0}, where n and m are two positive
integers such that m ≥ 2, n ≥ 2m + 7 with n and m having no common factor, a
and b be two nonzero constants such that zn + azn−m + b = 0 has no multiple root.
If f and g are non-constant meromorphic functions satisfying Ef (S) = Eg(S) and
Ef (∞) = Eg(∞), then f ≡ g.

Yi asked the following question
Question 1.4. What can be said if m = 1 in the Theorem 1.C ?

Recently, using the notion of weighted sharing Lahiri [4] proved the following
result which provides an answer to the question of Yi.

Theorem 1.D. Let S =
{
z : zn + azn−1 + b = 0

}
, where n(≥ 7) be a positive

integer and a, b be two nonzero constants such that zn + azn−1 + b = 0 has no
multiple root. If Θ(∞, f) + Θ(∞, g) > 1 and Ef (S, 2) = Eg(S, 2), Ef ({∞} ,∞) =
Eg({∞} ,∞), then f ≡ g.

In this paper, we have reduced the number of elements of S to 5 by proving the
following theorem.
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Theorem 1.1. Let S =
{
z : zn + azn−1 + b = 0

}
, where n ≥ 5 be a positive in-

teger and a, b be two nonzero constants such that zn + azn−1 + b = 0 has no re-
peated root. If f and g are two non constant meromorphic functions satisfying

N1)

(
r, 1

f

)
= S(r, f), N1)

(
r, 1

f

)
= S(r, f), Θ(∞, f) > 2

n−1 , Θ(∞, g) > 2
n−1 ,

and E(S, f) = E(S, g), E({∞}, f) = E({∞}, g). Then f ≡ g.

2. Lemmas

In order to prove Theorem 1.1, we need the following lemmas.
Lemma 2.1. (See [3], [7] and [8]) Let f(z) be a meromorphic function. Then

(i) T

(
r,

1

f − a

)
= T (r, f) +O(1), a ∈ C

(ii) m

(
r,
f (k)

f (l)

)
= S(r, f), k > l ≥ 0

(iii) T (r, f) ≤ N(r, f) + N

(
r,

1

f

)
+N

(
r,

1

f (k) − c

)
−N0

(
r,

1

f (k+1)

)
+ S(r, f),

(iv) T (r, f) ≤
3∑

j=1

N

(
r,

1

f − aj

)
+ S(r, f).

where a1, a2, a3 are three distinct small functions, c ∈ C − {0} and

where in No

(
r, 1

f(k+1)

)
only zeros of f (k+1)(z) not corresponding to the repeated roots of

f (k)(z) = c are to be considered.

In Lemma 2.1, the four conclusions are called ; The First Fundamental Theorem,
The Lemma of Logarithmic Derivative, The Milloux’s inequality and The Second
Fundamental Theorem, respectively.

Lemma 2.2. ([8]) Let a1, a2, · · · , an be finite complex numbers, an ̸= 0, and let
f be a non-constant meromorphic function. Then

T
(
r, anf

n + an−1f
n−1 + · · ·+ a1f

)
= nT (r, f) + S(r, f).

Lemma 2.3. Let f and g be two non-constant meromorphic functions and k is a
positive integer. If E

(
1, f (k)

)
= E

(
1, g(k)

)
, E(∞, f) = E(∞, g) and

lim
r→∞
r/∈E

N
(
r, f (k)

)
+N2

(
r, 1

f(k)

)
+N

(
r, g(k)

)
+N2

(
r, 1

g(k)

)
T
(
r, f (k)

)
+ T

(
r, g(k)

) <
1

2

Then either, f (k) = g(k) or f (k)g(k) ≡ 1.

Proof: Set

Θ(z) =
f (k+2)(z)

f (k+1)(z)
− 2f (k+1)(z)

f (k) − 1
− g(k+2)(z)

g(k+1)(z)
+

2g(k+1)(z)

g(k)(z)− 1
(2.1)

We consider the cases, Θ(z) ̸≡ 0 and Θ(z) ≡ 0.
Let Θ(z) ̸≡ 0, then if z0 is a common simple 1-point f (k)(z) and g(k)(z), substituting
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their Taylor series at z0 into (2.1), we see that z0 is a zero of Θ(z). Thus by the
first fundamental theorem, we have

N1)

(
r,

1

f (k) − 1

)
= N1)

(
r,

1

g(k) − 1

)
≤ N

(
r,

1

Θ

)
≤ T (r,Θ) +O(1)

Here N1)

(
r, 1

f(k)−1

)
is the counting function which only counts those simple zeros

of f (k) − 1.
By the above inequality and the lemma of logarithmic derivative, we have

N1)

(
r,

1

f (k) − 1

)
≤ N(r,Θ) + S(r, f) + S(r, g) (2.2)

Since f (k) and g(k) share 1,∞ CM, from (2.1) we derive

N(r,Θ) ≤ N (2

(
r,

1

f (k)

)
+N (2

(
r,

1

g(k)

)
+No

(
r,

1

f (k+1)

)
+No

(
r,

1

g(k+1)

)
,

(2.3)

where N (2

(
r, 1

f(k)

)
is the counting function of the zeros of f (k) whose multiplicities

are greater than or equal to 2 and counted only once.
Substituting above inequality (2.3) into (2.2), we have

N1)

(
r,

1

f (k) − 1

)
≤ N (2

(
r,

1

f (k)

)
+N (2

(
r,

1

g(k)

)
+No

(
r,

1

f (k+1)

)
+No

(
r,

1

g(k+1)

)
+ S(r, f) + S(r, g).

(2.4)

By the Second Fundamental Theorem, we have

T
(
r, f (k)

)
≤ N

(
r, f (k)

)
+N

(
r,

1

f (k)

)
+N

(
r,

1

f (k) − 1

)
−No

(
r,

1

f (k+1)

)
+ S(r, f)

T
(
r, g(k)

)
≤ N

(
r, g(k)

)
+N

(
r,

1

g(k)

)
+N

(
r,

1

g(k) − 1

)
−No

(
r,

1

g(k+1)

)
+ S(r, g).

(2.5)

Using (2.4) in (2.5), we obtain

T
(
r, f (k)

)
+ T

(
r, g(k)

)
≤ N

(
r, f (k)

)
+N

(
r, g(k)

)
+N

(
r,

1

f (k)

)
+N

(
r,

1

g(k)

)
+N1)

(
r,

1

f (k) − 1

)
+N (2

(
r,

1

g(k) − 1

)
+N

(
r,

1

g(k) − 1

)
−No

(
r,

1

f (k+1)

)
−No

(
r,

1

g(k+1)

)
+ S(r, f) + S(r, g)

≤ N
(
r, f (k)

)
+N

(
r, g(k)

)
+N2

(
r,

1

f (k)

)
+N2

(
r,

1

g(k)

)
+N

(
r,

1

g(k) − 1

)
+ S(r, f) + S(r, g).



204 S.S. BHOOSNURMATH, R.S. DYAVANAL

Therefore,

T
(
r, f (k)

)
≤ N

(
r, f (k)

)
+N

(
r, g(k)

)
+N2

(
r,

1

f (k)

)
+N2

(
r,

1

g(k)

)
+S(r, f)+S(r, g).

Since, E(∞, f) = E(∞, g) implies E(∞, f (k)) = E(∞, g(k)), we get

T
(
r, f (k)

)
≤ 2N

(
r, f (k)

)
+N2

(
r,

1

f (k)

)
+N2

(
r,

1

g(k)

)
+S(r, f)+S(r, g) (2.6)

Similarly,

T
(
r, g(k)

)
≤ 2N

(
r, g(k)

)
+N2

(
r,

1

g(k)

)
+N2

(
r,

1

f (k)

)
+ S(r, f) + S(r, g) (2.7)

From (2.6) and (2.7), we obtain

lim
r→∞
r/∈E

N
(
r, f (k)

)
+N2

(
r, 1

f(k)

)
+N

(
r, g(k)

)
+N2

(
r, 1

g(k)

)
T
(
r, f (k)

)
+ T

(
r, g(k)

) ≥ 1

2

which is contradiction to our hypothesis.
Hence, Θ(z) ≡ 0. That is

f (k+2)(z)

f (k+1)(z)
− 2f (k+1)(z)

f (k) − 1
=

g(k+2)(z)

g(k+1)(z)
− 2g(k+1)(z)

g(k)(z)− 1

Solving above equation, we obtain

f (k) =
ag(k) + b

cg(k) + d
, (2.8)

where a, b, c, d are complex numbers such that ad− bc ̸= 0.
From (2.8), we get

T
(
r, f (k)

)
= T

(
r, g(k)

)
+O(1). (2.9)

We now consider the following cases
Case 1: Let ac ̸= 0, then from (2.8), we have

f (k) − a

c
=

b− ad
c

cg(k) + d
.

By the second fundamental theorem, we have

T
(
r, f (k)

)
≤ N

(
r, f (k)

)
+N

(
r,

1

f (k)

)
+N

(
r,

1

f (k) − a/c

)
+ S(r, f)

≤ N
(
r, f (k)

)
+N

(
r,

1

f (k)

)
+N

(
r, g(k)

)
+ S(r, f)

≤ N
(
r, f (k)

)
+N

(
r, g(k)

)
+N2

(
r,

1

f (k)

)
+ S(r, f).

(2.10)

Similarly

T
(
r, g(k)

)
≤ N

(
r, g(k)

)
+N

(
r, f (k)

)
+N2

(
r,

1

g(k)

)
+ S(r, g). (2.11)

From (2.10) and (2.11), we obtain

lim
r→∞
r/∈E

N
(
r, f (k)

)
+N2

(
r, 1

f(k)

)
+N

(
r, g(k)

)
+N2

(
r, 1

g(k)

)
T
(
r, f (k)

)
+ T

(
r, g(k)

) ≥ 1

2
,
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which is contradiction to our hypothesis.
Case 2: Let ac = 0. Since ad − bc ̸= 0, it follows that a and c are not simulta-
neously zero.
Let a = 0. Then from (2.8), we get

g(k) +
d

c
=

b

cf (k)
, (2.12)

where bc ̸= 0.
If d ̸= 0, from (2.12) we get by the Second Fundamental Theorem

T
(
r, g(k)

)
≤ N

(
r, g(k)

)
+N

(
r,

1

g(k)

)
+N

(
r,

1

g(k) + d/c

)
+ S(r, g)

≤ N
(
r, g(k)

)
+N

(
r,

1

g(k)

)
+N

(
r, f (k)

)
+ S(r, g)

≤ N
(
r, f (k)

)
+N

(
r, g(k)

)
+N2

(
r,

1

g(k)

)
+ S(r, f).

Similarly

T
(
r, f (k)

)
≤ N

(
r, f (k)

)
+N

(
r, g(k)

)
+N2

(
r,

1

f (k)

)
+ S(r, g).

We get a contradiction as in case 1.
Let d = 0. Then from (2.8), we get

g(k)f (k) =
b

c
(2.13)

Since E(∞, f) = E(∞, g), we get E
(
∞, f (k)

)
= E

(
∞, g(k)

)
, it follows from (2.13)

that f (k) has no zero and pole. Hence there exists z0 ∈ C such that f (k) (z0) =
g(k) (z0) = 1, since E

(
1, f (k)

)
= E

(
1, g(k)

)
. So from (2.13), we get b/c = 1 and so

f (k)g(k) ≡ 1.
Let c = 0. Then from (2.8), we get

f (k) =
a

d
g(k) +

b

d
, (2.14)

where ad ̸= 0.
If b ̸= 0, from (2.14), we get, by the Second Fundamental Theorem

T
(
r, f (k)

)
≤ N

(
r, f (k)

)
+N

(
r,

1

f (k)

)
+N

(
r,

1

f (k) − b/d

)
+ S(r, f)

≤ N
(
r, f (k)

)
+N

(
r,

1

f (k)

)
+N

(
r,

1

g(k)

)
+ S(r, f)

≤ N
(
r, f (k)

)
+N

(
r,

1

f (k)

)
+N2

(
r,

1

g(k)

)
+ S(r, f).

Similarly

T
(
r, g(k)

)
≤ N

(
r, g(k)

)
+N

(
r,

1

g(k)

)
+N2

(
r,

1

f (k)

)
+ S(r, g).

We get a contradiction as in case 1.
Let b = 0. Then from (2.14), we get

f (k) =
a

d
g(k) (2.15)
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If f (k) has no 1 - point, by the Second Fundamental Theorem, we get

T
(
r, f (k)

)
≤ N

(
r, f (k)

)
+N

(
r,

1

f (k)

)
+ S(r, f)

≤ N
(
r, f (k)

)
+N

(
r, g(k)

)
+N2

(
r,

1

f (k)

)
+ S(r, f)

(2.16)

Similarly

T
(
r, g(k)

)
≤ N

(
r, g(k)

)
+N

(
r, f (k)

)
+N2

(
r,

1

g(k)

)
+ S(r, g). (2.17)

From (2.16) and (2.17), we get a contradiction as in case 1.
Let f (k) (z0) = 1 for some z0 ∈ C. Since E(1, f (k)) = E(1, g(k)), we get g(k) (z0) = 1
and so from (2.15) it follows that a/d = 1. Therefore f (k) ≡ g(k). This completes
the proof of Lemma 2.3.

3. Proof of Theorem 1.1

Let

F = −1

b
(f)n−1(f + a) and G = −1

b
(g)n−1(g + a). (3.1)

Therefore
N(r, F ) = N(r, f) and N(r,G) = N(r, g). (3.2)

We have

N2

(
r,

1

F

)
= N

(
r,

1

F

)
+N (2

(
r,

1

F

)
, (3.3)

where

N

(
r,

1

F

)
= N

(
r,

1

f

)
+N

(
r,

1

f + a

)
(3.4)

N (2

(
r,

1

F

)
= N1)

(
r,

1

f

)
+N (2

(
r,

1

f

)
+N (2

(
r,

1

f + a

)
. (3.5)

By our hypothesis, N1)

(
r, 1

f

)
= S(r, f) and from (3.3), (3.4) and (3.5), we get

N2

(
r,

1

F

)
≤ N

(
r,

1

f

)
+N

(
r,

1

f + a

)
+ S(r, f). (3.6)

Similarly

N2

(
r,

1

G

)
≤ N

(
r,
1

g

)
+N

(
r,

1

g + a

)
+ S(r, g). (3.7)

Adding (3.6) and (3.7), we get

N2

(
r,

1

F

)
+N2

(
r,

1

G

)
≤ N

(
r,

1

f

)
+N

(
r,

1

f + a

)
+N

(
r,
1

g

)
+N

(
r,

1

g + a

)
+ S(r, f) + S(r, g)

≤ 2 (T (r, f) + T (r, g)) + S(r, f) + S(r, g). (3.8)

From (3.2) and (3.8), we get

N(r, F )+N2

(
r,

1

F

)
+N(r,G)+N2

(
r,

1

G

)
≤ N(r, f) +N(r, g) + 2 (T (r, f) + T (r, g)) + S(r, f) + S(r, g) (3.9)
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Since Θ(∞, f) > 2
n−1 and Θ(∞, g) > 2

n−1 , (hypothesis of the theorem) and from

(3.9), we get

lim
r→∞
r/∈E

N (r, F ) +N2

(
r, 1

F

)
+N (r,G) +N2

(
r, 1

G

)
T (r, F ) + T (r,G)

< lim
r→∞
r/∈E

(
n−3
n−1

)
T (r, f) +

(
n−3
n−1

)
T (r, g) + 2 (T (r, f) + T (r, g))

n [T (r, f) + T (r, g)]

≤ lim
r→∞
r/∈E

(
n−3
n−1 + 2

)
[T (r, f) + T (r, g)]

n [T (r, f) + T (r, g)]
=

3n− 5

n(n− 1)
≤ 1

2
, for n ≥ 5

Therefore,

lim
r→∞
r/∈E

N (r, F ) +N2

(
r, 1

F

)
+N (r,G) +N2

(
r, 1

G

)
T (r, F ) + T (r,G)

<
1

2
, for n ≥ 5

and also E[1, F ] = E[1, G], since E[S, f ] = E[S, g] and E[∞, F ] = E[∞, G], since
E[∞, f ] = E[∞, g]. Therefore by Lemma 2.3 for k = 0, we get either F ≡ G or
FG ≡ 1.
Consider FG ≡ 1, that is,[

−1

b
(f)n−1(f + a)

] [
−1

b
(g)n−1(g + a)

]
≡ 1,

(f)n−1(f + a) (g)n−1(g + a) ≡ b2. (3.10)

If F has no poles, then f has no poles. Then from (3.10) it follows that g has
neither zero nor −a point. So by the deficiency relation we get Θ(∞, f) = 0, which
contradicts the given condition Θ(∞, f) > 2

n−1 .
If z0 is a pole of F , then z0 is a pole of f , it follows that z0 is either a zero or −a
point of g and this contradicts E({∞}, f) = E({∞}, g).
Thus, FG ≡ 1 is not possible. Therefore F ≡ G, that is

−1

b
(f)n−1(f + a) ≡ −1

b
(g)n−1(g + a).

Suppose f ̸≡ g

(i) Let h = g/f . Then f = 1−hn−1

1−hn and g =
(1−hn−1)h

1−hn .

T (r, f) = (n− 1)T [r, h]

N(r, f) =
n−1∑
j=1

N

(
r,

1

h− αj

)
≥ (n− 3)T (r, g),

where αj ̸= 1 (j = 1, 2, · · · , n − 1 are roots of the algebraic equation hn = 1.
Therefore

1− lim
r→∞

N(r, f)

T (r, f)
≤ 1− lim

r→∞

(n− 3)T (r, h)

(n− 1)T (r, h)
≤ 1− n− 3

n− 1
=

2

n− 1
,

that is

Θ(∞, f) ≤ 2

n− 1
,

which is a contradiction to our hypothesis Θ(∞, f) > 2
n−1 .

Thus f ≡ g.
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This completes the proof of Theorem 1.1.
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