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SUBHAS S BHOOSNURMATH AND RENUKADEVI S DYAVANAL

ABSTRACT. In this article, we investigate the problem of uniqueness of mero-
morphic functions sharing one set and having deficient values, and obtain a
result which provides an answer to a question of F.Gross [2] and H.X.Yi [9].

1. INTRODUCTION

In this paper, by a meromorphic function we always mean a function which is
meromorphic in the whole complex plane. Let f(z) be a non-constant meromorphic
function. We use the following standard notations of the value distributions theory,

T(r,f),m(r,f),N(r,f),N(r,f),N <T7L]];) )T

(See Hayman (3], Yang [7], Yi [8]]). We denote by S(r, f) any function satisfying
S(r, f) = o{T(r, f)},

as r — 00, possibly outside of a set E with finite measure not necessarily the same
at each occurrence. -
Let S be a subset of C = CU {c0}. Define

Ep(S) = E(S,f) = | J{z: f(z) —a=0},

a€S

where each zero is counted according to its multiplicity.

Let f and g be two nonconstant meromorphic functions. We say that f and g
share the set S CM if

E(S,f) = E(g,5)

2000 Mathematics Subject Classification. 30D35.

Key words and phrases. Nevanlinna theory; sharing sets; uniqueness .

Submitted August 13, 2010. Published June 21, 2011.

S.S.B. was supported by the DST grant of India, Project no. SR/S4/MS:520/08.

R.S.D. was partially supported by the UGC grant of India, Project No.F.39-934/2010(SR) and
UGC-SAP-DRS-II, No.F.510/1/DRS/2010(SAP-I),India.

200



UNIQUE RANGE SET 201

Define
N. VY C w2 )W
2(’f—a> (“f—a)+ <2<’“’f >
oCen) = 1T

It is assumed that the reader is familiar with the notations of the Nevanlinna
Theory that can be found, for instance in [3], [7] and [8]

In 1977, Gross [2] posed the following question.
Question 1.1. Does there exist a finite set S such that, for any pair of nonconstant
entire functions f and g, E(S, f) = E(S, g) implies f =g 7.

If such a finite set exists, a natural problem is the following
Question 1.2. What is the smallest cardinality for such a finite set?.

The best answer to question 1.2 for meromorphic functions was obtained by
Frank and Reinders [1]. They proved the following result

Theorem 1.A. There exists a set S with 11 elements such that Ey (S) = E4 (S)
implies f = g for any pair of nonconstant meromorphic functions f and g.

Question 1.3. If nonconstant meromorphic functions f and g have few poles, can
the numbers of elements of the set S in Theorem 1.A be reduced to seven?.

Regarding question 1.3, Xu [5] proved the following result.

Theorem 1.B. Let f and g be two nonconstant meromorphic functions. If ©(oco, f) >
3/4 and O(co,g) > 3/4, then there exists a set S with seven elements such that
E; (S)=Eg4(S) implies f =g

Regarding question 1.1 and question 1.2, Yi [9] proved the following theorem

Theorem 1.C. Let S = {z: 2" 4+ az"™ 4+ b = 0}, where n and m are two positive
integers such that m > 2,n > 2m + 7 with n and m having no common factor, a
and b be two nonzero constants such that z™ + az"~" 4+ b = 0 has no multiple root.
If f and g are non-constant meromorphic functions satisfying E;(S) = E4(S) and
E¢(00) = Eg(00), then f=g.

Yi asked the following question
Question 1.4. What can be said if m = 1 in the Theorem 1.C ?

Recently, using the notion of weighted sharing Lahiri [4] proved the following
result which provides an answer to the question of Yi.

Theorem 1.D. Let S = {z:2" +az""'+b=0}, where n(> 7) be a positive
integer and a,b be two nonzero constants such that z™ + az"' + b = 0 has no
multiple root. If ©(oo, f) + ©(c0,g) > 1 and Ef(S,2) = E,(S,2), Ef({o0},00) =
Ey({o0},00), then f = g.

In this paper, we have reduced the number of elements of S to 5 by proving the
following theorem.
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Theorem 1.1. Let S = {z (2" a4+ b= O}, where n > 5 be a positive in-
teger and a,b be two nonzero constants such that z" + az™ ' +b = 0 has no re-
peated root. If f and g are two mon constant meromorphic functions satisfying

Ny (rd) =800, Moy (r) = S000), 6, ) > 325, O(oc.g) >
and E(S,f) = E(S,g), E({oc},f)=FE({co},g). Then f =g.

n—1’

2. Lemmas

In order to prove Theorem 1.1, we need the following lemmas.
Lemma 2.1. (See [3], [7] and [8]) Let f(z) be a meromorphic function. Then

(i) T(r,fia>T(r,f)+O(1), aeC

=S(rf), k>1>0

(iii) T(r,f) <N f)+ N (r, }) .y (r, f(k)l_c> ~No (r, f(klﬂ)) +S(r f).

(iv) T(r,f) < XS:N <r, f—laj) + S(r, f).

where ay,as,az are three distinct small functions, ¢ € C — {0} and

where in N, (r, ﬁ) only zeros of f(k+1)(z) not corresponding to the repeated roots of

f(’“)(z) = ¢ are to be considered.

In Lemma 2.1, the four conclusions are called ; The First Fundamental Theorem,
The Lemma of Logarithmic Derivative, The Milloux’s inequality and The Second
Fundamental Theorem, respectively.

Lemma 2.2. ([8]) Letaj,as, -+ ,a, be finite complex numbers, a, # 0, and let
f be a non-constant meromorphic function. Then

T (r, A f"F Q1 fV 4+ alf) =nT(r, f)+ S(r f).

Lemma 2.3. Let f and g be two non-constant meromorphic functions and k is a
positive integer. If E (1,f(k)) =F (1,g(k)), E(o0, f) = E(c0,g) and

N(Taf(k)) + N2 (7’, ﬁ) +N(r’g(k)) +N2 (7,.’ g(lT)>
lim

r—yce T (r, f®)) +T (r,g®)

< 1
r¢E 2

Then either, fF) = g) or fF)gk) =1,

Proof: Set

(k+2) 9 f(k+1) (k+2) 9¢g(k+1)
o(z) FoO) 2f() gt E) L 29 (2) 2.1)
FED() T fI1 () g - 1
We consider the cases, ©(z) £ 0 and ©(z) = 0.
Let ©(z) # 0, then if zg is a common simple 1-point f*)(z) and g(¥)(2), substituting
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their Taylor series at zp into (2.1), we see that 2z is a zero of ©(z). Thus by the
first fundamental theorem, we have

_ 1 — 1 1
%o (g =1) = Mo (n =) < (ng) <7001+ 00

Here N1 (r, ﬁ) is the counting function which only counts those simple zeros

of f) — 1.
By the above inequality and the lemma of logarithmic derivative, we have

Ny (r, f(k)11> < N(,©) 4 S(r, f) + S(r,g) (2.2)

Since f*) and g(*) share 1,00 CM, from (2.1) we derive

— 1 — 1 1 1
500N (17 ) + Ve (g )+ (1 g )+ ()
(2.3)

where W(g (r, ﬁ) is the counting function of the zeros of f(*) whose multiplicities

are greater than or equal to 2 and counted only once.
Substituting above inequality (2.3) into (2.2), we have

— 1 — 1 — 1 1
W (rqw=1) = Fo (@) Ve (g ) <% (o)

1 (2.4)
+No (7”, g(k+1)> + S(Ta f) + S(rmg)
By the Second Fundamental Theorem, we have
_ — 1 — 1
(k) (k) _
T(nf ) < N(nf ) + N (n f(’“)> + N (r, 7 1)
1

*No (7', f(kJrl)) + S(T‘,f)

(2.5)

Using (2.4) in (2.5), we obtain

T(r.f®) +7 (rg") < N(T,f(k)>+N(r7g(k))+N(r’ f(lk)> +N<T’g(1k))

_ 1 — 1 — 1
+N1) (Taf(k)_l)+N(2 T7g(k)_1)+N<r>g(k)_l>

1 1
_No (Ta f(kJrl)) _No <7,.7 g(k+1)> +S(7",f) +S(7’7g)

IA
2
/N
3
~

=
N—
_|_
=
/N
=
Q
=
——
+
&
7~
=
S~
z
~—
_|_
&
T~
=
=
~—
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Therefore,

— — 1 1
T (r,f(k)) <N (r,f(k)>+N (r,g(k))—l-Ng (r, f(k:))+N2 (r, g(k))—i-S(r, [)+S8(r,g).
Since, E(oo, f) = E(oo, g) implies E(co, f*)) = E(co, ™)), we get

T (r,f(k)) <N (r,f(k)> TN, ( f(k)>

Similarly,

7 (r.g®) < 2N (rg®) + Mo (v 5 ) 4 s (1 ) 80 0) + S(r0) (2)
From (2.6) and (2.7), we obtain

mnijwyuwpq%)+ﬁgywyuwgﬁ%)>
i TG fP) T -
which is contradiction to our hypothesis.
Hence, ©(z) = 0. That is
FEDE) 2t g 2 )
fOD(z) W =1 gkt(z) gRI(2) —
Solving above equation, we obtain

)+S r, f)+S(r,g) (2.6)

| =

where a, b, ¢, d are complex numbers such that ad — bc # 0.
From (2.8), we get

T (r./®) =T (r,g®) + 001). (2.9)
We now consider the following cases
Case 1: Let ac # 0, then from (2.8), we have

ad
po 0 _ b
¢ cg® +d

By the second fundamental theorem, we have
T (r, /%) <N (r,1®) +N< f(k)> +N ( M) +S(r, f)
<N (r, f(’“>> +N <r, f(k)> + N (r, g(k)) + S(r, f) (2.10)
<N (r, f““)) +N (T,g(k)> + Ny (r, f(lk)> +S(r, f).
Similarly

T (r,g(k)) ( ) —|—N(r,f(k)) + No (7‘, g(lk)> + S(r, g). (2.11)

From (2.10) and (2.11), we obtain

N (1, /) + Nz (r, 75 ) + N (1,9®) + N2 (7, 5 )
lim >

i T (r, f®)) +T (r,g®)

l\.’)\»—l
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which is contradiction to our hypothesis.

Case 2: Let ac = 0. Since ad — bc # 0, it follows that a and ¢ are not simulta-
neously zero.

Let a = 0. Then from (2.8), we get

d b

(k) . 2 7
g Jrcicf(’“)7

(2.12)

where bc # 0.
If d # 0, from (2.12) we get by the Second Fundamental Theorem

_ — 1 — 1
(k) (k) i -
T(T’,g ) S N<Tag )+N<T7g(k))+N<T’g(k)+d/c>+s(’rag)
_ 1 _
(k) = (k)
< N(r g ) +N (r, g(’f)) +N(r,f ) + S(r,9)
< N(r,f®)+N(r,¢®)+N (r,)—I—ST,f)
( ) ( ) 2\ g® (
Similarly
_ — 1
k) < (k) (k) _
T (r®) <N (1 ®) + N (r,9®) + N <r, f(k)> +5(r.9).
We get a contradiction as in case 1.
Let d = 0. Then from (2.8), we get
b
gF) k) — p (2.13)

Since E(oo, f) = E(00,g), we get E (oo,f(k)) =F (oo,g(k)), it follows from (2.13
that f*) has no zero and pole. Hence there exists zy € C such that f*) (zy) =
g®) (20) = 1, since E (1, f®) = E(1,9™). So from (2.13), we get b/c = 1 and so
fRgk) =1,

Let ¢ = 0. Then from (2.8), we get

b
ga

a
J# = Sg® (2.14)

where ad # 0.
If b # 0, from (2.14), we get, by the Second Fundamental Theorem

T (r, f(k)) f(1k)> +N <'r, f(k)l—b/d> + S(r, f)

+N (r, g(lk)) +S(r, f)

IN A
2 =
/
3 =
~ ~

= =
N— N—

+ 4+

=z =
N N

=3 =

\ -

IN
=
—
=
~
G
~—
+
=
N
=3

Similarly
_ /1 1
k) k) 1 —
T(r,g )SN(T,g )+N<r,g(k))+]\f2(r, )+S(r,g).

We get a contradiction as in case 1.
Let b = 0. Then from (2.14), we get

a
J#) = Sg® (2.15)
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If () has no 1 - point, by the Second Fundamental Theorem, we get

T (7,’ f(k)) <N (7‘, f(k)) +N <7‘, (lk)> +S(r, f)
f (2.16)
<N (T’ f(k)) +N (r,g<k>) + Ny (7“, f(lk)> +5(r, f)

Similarly
T (ng(k)) <N (T,g(k)) +N (r, f(k)) + Ny (r, g(lk)) + S(r, g). (2.17)

From (2.16) and (2.17), we get a contradiction as in case 1.

Let £ (29) = 1 for some zp € C. Since E(1, f®) = E(1,¢g™)), we get g¥ (20) = 1
and so from (2.15) it follows that a/d = 1. Therefore f(*) = g(®¥). This completes
the proof of Lemma 2.3.

3. Proof of Theorem 1.1

Let
Py (f+a) and G=—3(g)" g +a) (31)
Therefore
N(r,F)=N(r,f) and N(r,G)=N(r,g). (3.2)
We have
Ny <1",}17 N(r,;_‘>+N(2 (T,F), (3.3)
where

(D) =7 () () 5

N
N(g (T, }]:_‘> = Nl) <7”, }) +N(2 <7”, }) +N(2 <7”, f_:'l_a> . (35)

Ny (r, ;) <N <7‘, % N (r, f+a> S0 ). (3.6)

Ny (r,é) <N (r,é) +N (r, ! ) + S(r,g). (3.7)
Adding (3.6) and (3.7), we get
o) 03 () = () 5 () o0 ()
1
+N <r, W) +S(r, f)+ S(r,9)

<2(T(r, f)+T(r,9)) + S(r, f)+ S(r,g). (3.8)
From (3.2) and (3.8), we get

N(r,F)+N, (r, ;) RGN, <r7 L )

< N(r f) +N(r,9) +2(T(r, f) + T(r,g)) + S(r, f) + S(r, g) (3.9)

Similarly
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Since O(o0, f) > 25 and O(c0,g) > (hypothesis of the theorem) and from

(3.9), we get " o
lim N (r,F)+ N ( %) + N (r,G) + Ny (T, é)
or T(r,F)+T(r,G)
()T n + (52) 1009 + 200 ) + Tlrg)
s n (. )+ T(r,g)]
_ (222 +2) [T 1) + T, g)] s 1 .
= T AR Nt gl a1 -2 for nz
Therefore,
) N(T’,F)-FNQ(T',l)+N(T,G)+N2(T,L) 1
Jim T F) T (0 - for m 25

r¢E
and also E[1,F] = E[1,G], since E[S, f] = E[S, g] and E[oco, F| = E[oo, G, since
E[oo, f] = Eloo,g]. Therefore by Lemma 2.3 for k = 0, we get either F' = G or
FG=1.
Consider FF'G = 1, that is,

] [t =1

()" Hf +a) (9)" g +a) =b". (3.10)
If F has no poles, then f has no poles. Then from (3.10) it follows that g has
neither zero nor —a point. So by the deficiency relation we get ©(co, f) = 0, which
contradicts the given condition ©(oo, f) > —2+.
If zp is a pole of F, then z is a pole of f, it follows that z is either a zero or —a
point of g and this contradicts E({oc}, f) = E({o0}, g).
Thus, FFG =1 is not possible. Therefore F' = G, that is

T @) = 5 g+ a).

Suppose f Z g

e _pn—1
(i) Let h=g/f. Then f = b ' ()

T and g = S

T(?", f) = (n=1)T[r, Al

- Z (ris) = =30

where a; # 1 (j = 1,2,--- ,n — 1 are roots of the algebraic equation A" = 1.
Therefore
N —(n=3)T(r,h - 2
|- T Y0 = 3Ty n=3 :
r—oo T'(r, f) r—oo(n —1)T(r, h) n—1 n-1
that is 5
O < =
(00, ) < .

which is a contradiction to our hypothesis ©(co, f) >
Thus f = g.

n—1-°
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This completes the proof of Theorem 1.1.
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