UNIQUENESS OF MEROMORPHIC FUNCTIONS SHARING SETS

(COMMUNICATED BY R. K. RAINA)
SUBHAS S BHOOSNURMATH AND RENUKADEVI S DYAVANAL

Abstract

In this article, we investigate the problem of uniqueness of meromorphic functions sharing one set and having deficient values, and obtain a result which provides an answer to a question of F.Gross [2] and H.X.Yi [9].

1. Introduction

In this paper, by a meromorphic function we always mean a function which is meromorphic in the whole complex plane. Let $f(z)$ be a non-constant meromorphic function. We use the following standard notations of the value distributions theory,

$$
T(r, f), m(r, f), N(r, f), \bar{N}(r, f), N\left(r, \frac{1}{f}\right), \cdots
$$

(See Hayman [3], Yang [7], Yi [8]]). We denote by $S(r, f)$ any function satisfying

$$
S(r, f)=o\{T(r, f)\}
$$

as $r \rightarrow \infty$, possibly outside of a set E with finite measure not necessarily the same at each occurrence.

Let S be a subset of $\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$. Define

$$
E_{f}(S)=E(S, f)=\bigcup_{a \in S}\{z: f(z)-a=0\}
$$

where each zero is counted according to its multiplicity.
Let f and g be two nonconstant meromorphic functions. We say that f and g share the set S CM if

$$
E(S, f)=E(g, S)
$$

[^0]Define

$$
\begin{aligned}
N_{2}\left(r, \frac{1}{f-a}\right) & =\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-a}\right) \\
\Theta(\infty, f) & =1-\varlimsup_{r \rightarrow \infty} \frac{\bar{N}(r, f)}{T(r, f)}
\end{aligned}
$$

It is assumed that the reader is familiar with the notations of the Nevanlinna Theory that can be found, for instance in [3], [7] and [8]

In 1977, Gross [2] posed the following question.
Question 1.1. Does there exist a finite set S such that, for any pair of nonconstant entire functions f and $g, E(S, f)=E(S, g)$ implies $f=g$?.

If such a finite set exists, a natural problem is the following
Question 1.2. What is the smallest cardinality for such a finite set?.
The best answer to question 1.2 for meromorphic functions was obtained by Frank and Reinders [1]. They proved the following result

Theorem 1.A. There exists a set S with 11 elements such that $E_{f}(S)=E_{g}(S)$ implies $f \equiv g$ for any pair of nonconstant meromorphic functions f and g.
Question 1.3. If nonconstant meromorphic functions f and g have few poles, can the numbers of elements of the set S in Theorem 1.A be reduced to seven?.

Regarding question 1.3, Xu [5] proved the following result.
Theorem 1.B. Let f and g be two nonconstant meromorphic functions. If $\Theta(\infty, f)>$ $3 / 4$ and $\Theta(\infty, g)>3 / 4$, then there exists a set S with seven elements such that $E_{f}(S)=E_{g}(S)$ implies $f \equiv g$

Regarding question 1.1 and question 1.2, Yi [9] proved the following theorem
Theorem 1.C. Let $S=\left\{z: z^{n}+a z^{n-m}+b=0\right\}$, where n and m are two positive integers such that $m \geq 2, n \geq 2 m+7$ with n and m having no common factor, a and b be two nonzero constants such that $z^{n}+a z^{n-m}+b=0$ has no multiple root. If f and g are non-constant meromorphic functions satisfying $E_{f}(S)=E_{g}(S)$ and $E_{f}(\infty)=E_{g}(\infty)$, then $f \equiv g$.

Yi asked the following question
Question 1.4. What can be said if $m=1$ in the Theorem 1.C?
Recently, using the notion of weighted sharing Lahiri [4] proved the following result which provides an answer to the question of Yi.

Theorem 1.D. Let $S=\left\{z: z^{n}+a z^{n-1}+b=0\right\}$, where $n(\geq 7)$ be a positive integer and a, b be two nonzero constants such that $z^{n}+a z^{n-1}+b=0$ has no multiple root. If $\Theta(\infty, f)+\Theta(\infty, g)>1$ and $E_{f}(S, 2)=E_{g}(S, 2), E_{f}(\{\infty\}, \infty)=$ $E_{g}(\{\infty\}, \infty)$, then $f \equiv g$.

In this paper, we have reduced the number of elements of S to 5 by proving the following theorem.

Theorem 1.1. Let $S=\left\{z: z^{n}+a z^{n-1}+b=0\right\}$, where $n \geq 5$ be a positive integer and a, b be two nonzero constants such that $z^{n}+a z^{n-1}+b=0$ has no repeated root. If f and g are two non constant meromorphic functions satisfying $N_{1)}\left(r, \frac{1}{f}\right)=S(r, f), \quad N_{1)}\left(r, \frac{1}{f}\right)=S(r, f), \quad \Theta(\infty, f)>\frac{2}{n-1}, \quad \Theta(\infty, g)>\frac{2}{n-1}$, and $E(S, f)=E(S, g), \quad E(\{\infty\}, f)=E(\{\infty\}, g)$. Then $f \equiv g$.

2. Lemmas

In order to prove Theorem 1.1, we need the following lemmas.
Lemma 2.1. (See [3], [7] and [8]) Let $f(z)$ be a meromorphic function. Then
(i) $\quad T\left(r, \frac{1}{f-a}\right)=T(r, f)+O(1), \quad a \in \mathbb{C}$
(ii) $\quad m\left(r, \frac{f^{(k)}}{f^{(l)}}\right)=S(r, f), \quad k>l \geq 0$
(iii) $T(r, f) \leq \bar{N}(r, f)+N\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}-c}\right)-N_{0}\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f)$,
(iv) $T(r, f) \leq \sum_{j=1}^{3} \bar{N}\left(r, \frac{1}{f-a_{j}}\right)+S(r, f)$.
where a_{1}, a_{2}, a_{3} are three distinct small functions, $c \in C-\{0\}$ and where in $N_{o}\left(r, \frac{1}{f^{(k+1)}}\right)$ only zeros of $f^{(k+1)}(z)$ not corresponding to the repeated roots of $f^{(k)}(z)=c$ are to be considered.

In Lemma 2.1, the four conclusions are called ; The First Fundamental Theorem, The Lemma of Logarithmic Derivative, The Milloux's inequality and The Second Fundamental Theorem, respectively.

Lemma 2.2. ([8]) Let $a_{1}, a_{2}, \cdots, a_{n}$ be finite complex numbers, $a_{n} \neq 0$, and let f be a non-constant meromorphic function. Then

$$
T\left(r, a_{n} f^{n}+a_{n-1} f^{n-1}+\cdots+a_{1} f\right)=n T(r, f)+S(r, f)
$$

Lemma 2.3. Let f and g be two non-constant meromorphic functions and k is a positive integer. If $E\left(1, f^{(k)}\right)=E\left(1, g^{(k)}\right), E(\infty, f)=E(\infty, g)$ and

$$
\lim _{\substack{r \rightarrow \infty \\ r \notin E}} \frac{\bar{N}\left(r, f^{(k)}\right)+N_{2}\left(r, \frac{1}{f^{(k)}}\right)+\bar{N}\left(r, g^{(k)}\right)+N_{2}\left(r, \frac{1}{g^{(k)}}\right)}{T\left(r, f^{(k)}\right)+T\left(r, g^{(k)}\right)}<\frac{1}{2}
$$

Then either, $f^{(k)}=g^{(k)}$ or $f^{(k)} g^{(k)} \equiv 1$.
Proof: Set

$$
\begin{equation*}
\Theta(z)=\frac{f^{(k+2)}(z)}{f^{(k+1)}(z)}-\frac{2 f^{(k+1)}(z)}{f^{(k)}-1}-\frac{g^{(k+2)}(z)}{g^{(k+1)}(z)}+\frac{2 g^{(k+1)}(z)}{g^{(k)}(z)-1} \tag{2.1}
\end{equation*}
$$

We consider the cases, $\Theta(z) \not \equiv 0$ and $\Theta(z) \equiv 0$.
Let $\Theta(z) \not \equiv 0$, then if z_{0} is a common simple 1-point $f^{(k)}(z)$ and $g^{(k)}(z)$, substituting
their Taylor series at z_{0} into (2.1), we see that z_{0} is a zero of $\Theta(z)$. Thus by the first fundamental theorem, we have

$$
\bar{N}_{1)}\left(r, \frac{1}{f^{(k)}-1}\right)=\bar{N}_{1)}\left(r, \frac{1}{g^{(k)}-1}\right) \leq N\left(r, \frac{1}{\Theta}\right) \leq T(r, \Theta)+O(1)
$$

Here $\bar{N}_{1)}\left(r, \frac{1}{f^{(k)}-1}\right)$ is the counting function which only counts those simple zeros of $f^{(k)}-1$.
By the above inequality and the lemma of logarithmic derivative, we have

$$
\begin{equation*}
\bar{N}_{1)}\left(r, \frac{1}{f^{(k)}-1}\right) \leq N(r, \Theta)+S(r, f)+S(r, g) \tag{2.2}
\end{equation*}
$$

Since $f^{(k)}$ and $g^{(k)}$ share $1, \infty$ CM, from (2.1) we derive

$$
\begin{equation*}
N(r, \Theta) \leq \bar{N}_{(2}\left(r, \frac{1}{f^{(k)}}\right)+\bar{N}_{(2}\left(r, \frac{1}{g^{(k)}}\right)+N_{o}\left(r, \frac{1}{f^{(k+1)}}\right)+N_{o}\left(r, \frac{1}{g^{(k+1)}}\right) \tag{2.3}
\end{equation*}
$$

where $\bar{N}_{(2}\left(r, \frac{1}{f^{(k)}}\right)$ is the counting function of the zeros of $f^{(k)}$ whose multiplicities are greater than or equal to 2 and counted only once.
Substituting above inequality (2.3) into (2.2), we have

$$
\begin{align*}
\bar{N}_{1)}\left(r, \frac{1}{f^{(k)}-1}\right) \leq \bar{N}_{(2}\left(r, \frac{1}{f^{(k)}}\right) & +\bar{N}_{(2}\left(r, \frac{1}{g^{(k)}}\right)+N_{o}\left(r, \frac{1}{f^{(k+1)}}\right) \\
+ & N_{o}\left(r, \frac{1}{g^{(k+1)}}\right)+S(r, f)+S(r, g) \tag{2.4}
\end{align*}
$$

By the Second Fundamental Theorem, we have

$$
\begin{align*}
& T\left(r, f^{(k)}\right) \leq \bar{N}\left(r, f^{(k)}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}-1}\right) \\
&-N_{o}\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f) \\
& T\left(r, g^{(k)}\right) \leq \bar{N}\left(r, g^{(k)}\right)+\bar{N}\left(r, \frac{1}{g^{(k)}}\right)+\bar{N}\left(r, \frac{1}{g^{(k)}-1}\right) \tag{2.5}\\
&-N_{o}\left(r, \frac{1}{g^{(k+1)}}\right)+S(r, g)
\end{align*}
$$

Using (2.4) in (2.5), we obtain

$$
\begin{aligned}
T\left(r, f^{(k)}\right)+T\left(r, g^{(k)}\right) \leq & \bar{N}\left(r, f^{(k)}\right)+\bar{N}\left(r, g^{(k)}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}}\right)+\bar{N}\left(r, \frac{1}{g^{(k)}}\right) \\
& +\bar{N}_{1)}\left(r, \frac{1}{f^{(k)}-1}\right)+\bar{N}_{(2}\left(r, \frac{1}{g^{(k)}-1}\right)+\bar{N}\left(r, \frac{1}{g^{(k)}-1}\right) \\
& -N_{o}\left(r, \frac{1}{f^{(k+1)}}\right)-N_{o}\left(r, \frac{1}{g^{(k+1)}}\right)+S(r, f)+S(r, g) \\
\leq & \bar{N}\left(r, f^{(k)}\right)+\bar{N}\left(r, g^{(k)}\right)+N_{2}\left(r, \frac{1}{f^{(k)}}\right)+N_{2}\left(r, \frac{1}{g^{(k)}}\right) \\
& +N\left(r, \frac{1}{g^{(k)}-1}\right)+S(r, f)+S(r, g) .
\end{aligned}
$$

Therefore,

$$
T\left(r, f^{(k)}\right) \leq \bar{N}\left(r, f^{(k)}\right)+\bar{N}\left(r, g^{(k)}\right)+N_{2}\left(r, \frac{1}{f^{(k)}}\right)+N_{2}\left(r, \frac{1}{g^{(k)}}\right)+S(r, f)+S(r, g)
$$

Since, $E(\infty, f)=E(\infty, g)$ implies $E\left(\infty, f^{(k)}\right)=E\left(\infty, g^{(k)}\right)$, we get

$$
\begin{equation*}
T\left(r, f^{(k)}\right) \leq 2 \bar{N}\left(r, f^{(k)}\right)+N_{2}\left(r, \frac{1}{f^{(k)}}\right)+N_{2}\left(r, \frac{1}{g^{(k)}}\right)+S(r, f)+S(r, g) \tag{2.6}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
T\left(r, g^{(k)}\right) \leq 2 \bar{N}\left(r, g^{(k)}\right)+N_{2}\left(r, \frac{1}{g^{(k)}}\right)+N_{2}\left(r, \frac{1}{f^{(k)}}\right)+S(r, f)+S(r, g) \tag{2.7}
\end{equation*}
$$

From (2.6) and (2.7), we obtain

$$
\lim _{\substack{r \rightarrow \infty \\ r \notin E}} \frac{\bar{N}\left(r, f^{(k)}\right)+N_{2}\left(r, \frac{1}{f^{(k)}}\right)+\bar{N}\left(r, g^{(k)}\right)+N_{2}\left(r, \frac{1}{g^{(k)}}\right)}{T\left(r, f^{(k)}\right)+T\left(r, g^{(k)}\right)} \geq \frac{1}{2}
$$

which is contradiction to our hypothesis.
Hence, $\Theta(z) \equiv 0$. That is

$$
\frac{f^{(k+2)}(z)}{f^{(k+1)}(z)}-\frac{2 f^{(k+1)}(z)}{f^{(k)}-1}=\frac{g^{(k+2)}(z)}{g^{(k+1)}(z)}-\frac{2 g^{(k+1)}(z)}{g^{(k)}(z)-1}
$$

Solving above equation, we obtain

$$
\begin{equation*}
f^{(k)}=\frac{a g^{(k)}+b}{c g^{(k)}+d}, \tag{2.8}
\end{equation*}
$$

where a, b, c, d are complex numbers such that $a d-b c \neq 0$.
From (2.8), we get

$$
\begin{equation*}
T\left(r, f^{(k)}\right)=T\left(r, g^{(k)}\right)+O(1) \tag{2.9}
\end{equation*}
$$

We now consider the following cases
Case 1: Let $a c \neq 0$, then from (2.8), we have

$$
f^{(k)}-\frac{a}{c}=\frac{b-\frac{a d}{c}}{c g^{(k)}+d} .
$$

By the second fundamental theorem, we have

$$
\begin{align*}
T\left(r, f^{(k)}\right) & \leq \bar{N}\left(r, f^{(k)}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}-a / c}\right)+S(r, f) \\
& \leq \bar{N}\left(r, f^{(k)}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}}\right)+\bar{N}\left(r, g^{(k)}\right)+S(r, f) \tag{2.10}\\
& \leq \bar{N}\left(r, f^{(k)}\right)+\bar{N}\left(r, g^{(k)}\right)+N_{2}\left(r, \frac{1}{f^{(k)}}\right)+S(r, f)
\end{align*}
$$

Similarly

$$
\begin{equation*}
T\left(r, g^{(k)}\right) \leq \bar{N}\left(r, g^{(k)}\right)+\bar{N}\left(r, f^{(k)}\right)+N_{2}\left(r, \frac{1}{g^{(k)}}\right)+S(r, g) \tag{2.11}
\end{equation*}
$$

From (2.10) and (2.11), we obtain

$$
\lim _{\substack{r \rightarrow \infty \\ r \notin E}} \frac{\bar{N}\left(r, f^{(k)}\right)+N_{2}\left(r, \frac{1}{f^{(k)}}\right)+\bar{N}\left(r, g^{(k)}\right)+N_{2}\left(r, \frac{1}{g^{(k)}}\right)}{T\left(r, f^{(k)}\right)+T\left(r, g^{(k)}\right)} \geq \frac{1}{2}
$$

which is contradiction to our hypothesis.
Case 2: Let $a c=0$. Since $a d-b c \neq 0$, it follows that a and c are not simultaneously zero.
Let $a=0$. Then from (2.8), we get

$$
\begin{equation*}
g^{(k)}+\frac{d}{c}=\frac{b}{c f^{(k)}} \tag{2.12}
\end{equation*}
$$

where $b c \neq 0$.
If $d \neq 0$, from (2.12) we get by the Second Fundamental Theorem

$$
\begin{aligned}
T\left(r, g^{(k)}\right) & \leq \bar{N}\left(r, g^{(k)}\right)+\bar{N}\left(r, \frac{1}{g^{(k)}}\right)+\bar{N}\left(r, \frac{1}{g^{(k)}+d / c}\right)+S(r, g) \\
& \leq \bar{N}\left(r, g^{(k)}\right)+\bar{N}\left(r, \frac{1}{g^{(k)}}\right)+\bar{N}\left(r, f^{(k)}\right)+S(r, g) \\
& \leq \bar{N}\left(r, f^{(k)}\right)+\bar{N}\left(r, g^{(k)}\right)+N_{2}\left(r, \frac{1}{g^{(k)}}\right)+S(r, f)
\end{aligned}
$$

Similarly

$$
T\left(r, f^{(k)}\right) \leq \bar{N}\left(r, f^{(k)}\right)+\bar{N}\left(r, g^{(k)}\right)+N_{2}\left(r, \frac{1}{f^{(k)}}\right)+S(r, g)
$$

We get a contradiction as in case 1 .
Let $d=0$. Then from (2.8), we get

$$
\begin{equation*}
g^{(k)} f^{(k)}=\frac{b}{c} \tag{2.13}
\end{equation*}
$$

Since $E(\infty, f)=E(\infty, g)$, we get $E\left(\infty, f^{(k)}\right)=E\left(\infty, g^{(k)}\right)$, it follows from (2.13) that $f^{(k)}$ has no zero and pole. Hence there exists $z_{0} \in \mathbb{C}$ such that $f^{(k)}\left(z_{0}\right)=$ $g^{(k)}\left(z_{0}\right)=1$, since $E\left(1, f^{(k)}\right)=E\left(1, g^{(k)}\right)$. So from (2.13), we get $b / c=1$ and so $f^{(k)} g^{(k)} \equiv 1$.
Let $c=0$. Then from (2.8), we get

$$
\begin{equation*}
f^{(k)}=\frac{a}{d} g^{(k)}+\frac{b}{d} \tag{2.14}
\end{equation*}
$$

where $a d \neq 0$.
If $b \neq 0$, from (2.14), we get, by the Second Fundamental Theorem

$$
\begin{aligned}
T\left(r, f^{(k)}\right) & \leq \bar{N}\left(r, f^{(k)}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}-b / d}\right)+S(r, f) \\
& \leq \bar{N}\left(r, f^{(k)}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}}\right)+\bar{N}\left(r, \frac{1}{g^{(k)}}\right)+S(r, f) \\
& \leq \bar{N}\left(r, f^{(k)}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}}\right)+N_{2}\left(r, \frac{1}{g^{(k)}}\right)+S(r, f)
\end{aligned}
$$

Similarly

$$
T\left(r, g^{(k)}\right) \leq \bar{N}\left(r, g^{(k)}\right)+\bar{N}\left(r, \frac{1}{g^{(k)}}\right)+N_{2}\left(r, \frac{1}{f^{(k)}}\right)+S(r, g)
$$

We get a contradiction as in case 1 .
Let $b=0$. Then from (2.14), we get

$$
\begin{equation*}
f^{(k)}=\frac{a}{d} g^{(k)} \tag{2.15}
\end{equation*}
$$

If $f^{(k)}$ has no 1 - point, by the Second Fundamental Theorem, we get

$$
\begin{align*}
T\left(r, f^{(k)}\right) & \leq \bar{N}\left(r, f^{(k)}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}}\right)+S(r, f) \\
& \leq \bar{N}\left(r, f^{(k)}\right)+\bar{N}\left(r, g^{(k)}\right)+N_{2}\left(r, \frac{1}{f^{(k)}}\right)+S(r, f) \tag{2.16}
\end{align*}
$$

Similarly

$$
\begin{equation*}
T\left(r, g^{(k)}\right) \leq \bar{N}\left(r, g^{(k)}\right)+\bar{N}\left(r, f^{(k)}\right)+N_{2}\left(r, \frac{1}{g^{(k)}}\right)+S(r, g) \tag{2.17}
\end{equation*}
$$

From (2.16) and (2.17), we get a contradiction as in case 1.
Let $f^{(k)}\left(z_{0}\right)=1$ for some $z_{0} \in \mathbb{C}$. Since $E\left(1, f^{(k)}\right)=E\left(1, g^{(k)}\right)$, we get $g^{(k)}\left(z_{0}\right)=1$ and so from (2.15) it follows that $a / d=1$. Therefore $f^{(k)} \equiv g^{(k)}$. This completes the proof of Lemma 2.3.

3. Proof of Theorem 1.1

Let

$$
\begin{equation*}
F=-\frac{1}{b}(f)^{n-1}(f+a) \quad \text { and } \quad G=-\frac{1}{b}(g)^{n-1}(g+a) \tag{3.1}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\bar{N}(r, F)=\bar{N}(r, f) \quad \text { and } \quad \bar{N}(r, G)=\bar{N}(r, g) \tag{3.2}
\end{equation*}
$$

We have

$$
\begin{equation*}
N_{2}\left(r, \frac{1}{F}\right)=\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{F}\right) \tag{3.3}
\end{equation*}
$$

where

$$
\begin{gather*}
\bar{N}\left(r, \frac{1}{F}\right)=\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f+a}\right) \tag{3.4}\\
\bar{N}_{(2}\left(r, \frac{1}{F}\right)=\bar{N}_{1)}\left(r, \frac{1}{f}\right)+\bar{N}_{(2}\left(r, \frac{1}{f}\right)+\bar{N}_{(2}\left(r, \frac{1}{f+a}\right) . \tag{3.5}
\end{gather*}
$$

By our hypothesis, $N_{1)}\left(r, \frac{1}{f}\right)=S(r, f)$ and from (3.3), (3.4) and (3.5), we get

$$
\begin{equation*}
N_{2}\left(r, \frac{1}{F}\right) \leq N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f+a}\right)+S(r, f) \tag{3.6}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
N_{2}\left(r, \frac{1}{G}\right) \leq N\left(r, \frac{1}{g}\right)+N\left(r, \frac{1}{g+a}\right)+S(r, g) \tag{3.7}
\end{equation*}
$$

Adding (3.6) and (3.7), we get

$$
\begin{gather*}
N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right) \leq N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f+a}\right)+N\left(r, \frac{1}{g}\right) \\
+N\left(r, \frac{1}{g+a}\right)+S(r, f)+S(r, g) \\
\leq 2(T(r, f)+ \tag{3.8}
\end{gather*}
$$

From (3.2) and (3.8), we get

$$
\begin{align*}
& \bar{N}(r, F)+ N_{2} \\
&\left(r, \frac{1}{F}\right)+\bar{N}(r, G)+N_{2}\left(r, \frac{1}{G}\right) \tag{3.9}\\
& \leq \bar{N}(r, f)+\bar{N}(r, g)+2(T(r, f)+T(r, g))+S(r, f)+S(r, g)
\end{align*}
$$

Since $\Theta(\infty, f)>\frac{2}{n-1}$ and $\Theta(\infty, g)>\frac{2}{n-1}$, (hypothesis of the theorem) and from (3.9), we get

$$
\begin{aligned}
& \lim _{\substack{r \rightarrow \infty \\
r \notin E}} \frac{\bar{N}(r, F)+N_{2}\left(r, \frac{1}{F}\right)+\bar{N}(r, G)+N_{2}\left(r, \frac{1}{G}\right)}{T(r, F)+T(r, G)} \\
< & \lim _{\substack{r \rightarrow \infty \\
r \notin E}} \frac{\left(\frac{n-3}{n-1}\right) T(r, f)+\left(\frac{n-3}{n-1}\right) T(r, g)+2(T(r, f)+T(r, g))}{n[T(r, f)+T(r, g)]} \\
\leq & \lim _{\substack{r \rightarrow \infty \\
r \notin E}} \frac{\left(\frac{n-3}{n-1}+2\right)[T(r, f)+T(r, g)]}{n[T(r, f)+T(r, g)]}=\frac{3 n-5}{n(n-1)} \leq \frac{1}{2}, \quad \text { for } n \geq 5
\end{aligned}
$$

Therefore,

$$
\lim _{\substack{r \rightarrow \infty \\ r \notin E}} \frac{\bar{N}(r, F)+N_{2}\left(r, \frac{1}{F}\right)+\bar{N}(r, G)+N_{2}\left(r, \frac{1}{G}\right)}{T(r, F)+T(r, G)}<\frac{1}{2}, \quad \text { for } n \geq 5
$$

and also $E[1, F]=E[1, G]$, since $E[S, f]=E[S, g]$ and $E[\infty, F]=E[\infty, G]$, since $E[\infty, f]=E[\infty, g]$. Therefore by Lemma 2.3 for $k=0$, we get either $F \equiv G$ or $F G \equiv 1$.
Consider $F G \equiv 1$, that is,

$$
\begin{gather*}
{\left[-\frac{1}{b}(f)^{n-1}(f+a)\right]\left[-\frac{1}{b}(g)^{n-1}(g+a)\right] \equiv 1} \\
(f)^{n-1}(f+a)(g)^{n-1}(g+a) \equiv b^{2} \tag{3.10}
\end{gather*}
$$

If F has no poles, then f has no poles. Then from (3.10) it follows that g has neither zero nor $-a$ point. So by the deficiency relation we get $\Theta(\infty, f)=0$, which contradicts the given condition $\Theta(\infty, f)>\frac{2}{n-1}$.
If z_{0} is a pole of F, then z_{0} is a pole of f, it follows that z_{0} is either a zero or $-a$ point of g and this contradicts $E(\{\infty\}, f)=E(\{\infty\}, g)$.
Thus, $F G \equiv 1$ is not possible. Therefore $F \equiv G$, that is

$$
-\frac{1}{b}(f)^{n-1}(f+a) \equiv-\frac{1}{b}(g)^{n-1}(g+a)
$$

Suppose $f \not \equiv g$
(i) Let $h=g / f$. Then $f=\frac{1-h^{n-1}}{1-h^{n}}$ and $g=\frac{\left(1-h^{n-1}\right) h}{1-h^{n}}$.

$$
\begin{gathered}
T(r, f)=(n-1) T[r, h] \\
\bar{N}(r, f)=\sum_{j=1}^{n-1} \bar{N}\left(r, \frac{1}{h-\alpha_{j}}\right) \geq(n-3) T(r, g),
\end{gathered}
$$

where $\alpha_{j} \neq 1\left(j=1,2, \cdots, n-1\right.$ are roots of the algebraic equation $h^{n}=1$. Therefore

$$
1-\varlimsup_{r \rightarrow \infty} \frac{\bar{N}(r, f)}{T(r, f)} \leq 1-\overline{\lim }_{r \rightarrow \infty} \frac{(n-3) T(r, h)}{(n-1) T(r, h)} \leq 1-\frac{n-3}{n-1}=\frac{2}{n-1}
$$

that is

$$
\Theta(\infty, f) \leq \frac{2}{n-1}
$$

which is a contradiction to our hypothesis $\Theta(\infty, f)>\frac{2}{n-1}$.
Thus $f \equiv g$.

This completes the proof of Theorem 1.1.

Acknowledgments. The authors would like to thank the referee for his/her comments and careful observations that helped us to improve this article.

References

[1] G. Frank, M. Reinders, A unique range set for meromorphic function with 11 elements, Complex Variables, Theory Appl. 37(1-4)(1998) 185-193.
[2] F. Gross, Factorization of meromorphic functions and some open problems, In Lecture Notes in Math., Springer, Berlin 599(1977) 51-69.
[3] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, (1964).
[4] I. Lahiri, On a question of Hong Xun Yi, Arch. Math (Brno), 38, (2002), 119-128.
[5] Yan. Xu, Meromorphic functions sharing one finite set, Comput.Math.Appl, 45, (2003), 1489-1495.
[6] C. C. Yang, On deficiencies of differential polynomials, Math Z., 125, (1972), 107-112.
[7] L. Yang, Value Distribution Theory, Springer Verlag, Berli, (1993).
[8] H. X. Yi, C. C Yang, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, (1995).
[9] H. X. Yi ,Unicity theorems for meromorphic or entire functions II, Bull. Austral. Math. Soc., 52, (1995), 215-224.

Subhas S Bhoosnurmath
Deparment of Mathematics, Karnatak University, Dharwad, Karnataka state, India
E-mail address: ssbmath@gmail.com
Renukadevi S Dyavanal
Deparment of Mathematics, Karnatak University, Dharwad, Karnataka state, India
E-mail address: renukadyavanal@gmail.com

[^0]: 2000 Mathematics Subject Classification. 30D35.
 Key words and phrases. Nevanlinna theory; sharing sets; uniqueness .
 Submitted August 13, 2010. Published June 21, 2011.
 S.S.B. was supported by the DST grant of India, Project no. SR/S4/MS:520/08.
 R.S.D. was partially supported by the UGC grant of India, Project No.F.39-934/2010(SR) and UGC-SAP-DRS-II, No.F.510/1/DRS/2010(SAP-I),India.

